1
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2024:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Liu L, Li J, Zhao C, Qu X, Liu X, Wang D, Wei J. The cellular expression patterns of gdnfa and gdnfb in the gonads of Nile tilapia and their differential response to retinoic acid. Theriogenology 2024; 224:1-8. [PMID: 38714023 DOI: 10.1016/j.theriogenology.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
In mammals, glial cell derived neurotrophic factor (GDNF) plays a critical role in the self-renewal and maintenance of spermatogonial stem cells (SSCs) in testis and oogenesis in ovary, whilst retinoic acid (RA), the key factor of meiosis initiation, can downregulate its expression. Unlike mammals, two Gdnf replication genes are widely present in teleost fishes, however, our understanding of them is still poor. In the present study, two paralogous gdnf from Nile tilapia (Oreochromis niloticus), namely as Ongdnfa and Ongdnfb, were characterized, and then their cellular expression profiles in testis and ovary and responsiveness to RA treatment at the tissue and cellular levels were investigated. In phylogenetic tree, the Gdnfa and Gdnfb from teleost fishes were clustered into two different subclasses, respectively, and then clustered with the homologs from cartilaginous fish and tetrapods, suggesting that OnGdnfa and OnGdnfb are orthologous to GDNF and paralogous to each other. Ongdnfa is expressed in Sertoli cells and Leydig cells in testis and oocytes in ovary. The expression pattern of Ongdnfb is similar to Ongdnfa. In the ex vivo testicular organ culture, RA down-regulated the expression of Ongdnfa, whereas up-regulated the expression of Ongdnfb (P < 0.05), suggesting that they have differential responsiveness to RA signaling. RA treatment of the cultured cells derived from adult Nile tilapia testis which have the expression of RA receptors (RAR), Ongdnfa and Ongdnfb further confirmed the above result. Collectively, our study suggests that Ongdnfa and Ongdnfb have non-germline expression patterns in testis and germline expression patterns in ovary; furthermore, they have differential responsiveness to RA signaling, implying that they might have differential biological functions. This study broadens and enriches our understanding of fish GDNF homologs and lays foundation for the study of their biological functions in the future.
Collapse
Affiliation(s)
- Lei Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jianeng Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Changle Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ximei Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chengdu Kangnuoxing Biopharmaceutical Technology Co., Ltd, Chengdu, 610219, China
| | - Xiang Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Jing Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Targeting Cancer Stem Cells by Dietary Agents: An Important Therapeutic Strategy against Human Malignancies. Int J Mol Sci 2021; 22:ijms222111669. [PMID: 34769099 PMCID: PMC8584029 DOI: 10.3390/ijms222111669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/β-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.
Collapse
|
4
|
Swapnil P, Meena M, Singh SK, Dhuldhaj UP, Harish, Marwal A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. CURRENT PLANT BIOLOGY 2021; 26:100203. [DOI: 10.1016/j.cpb.2021.100203] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
5
|
Bahmad HF, Chamaa F, Assi S, Chalhoub RM, Abou-Antoun T, Abou-Kheir W. Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier. Front Mol Neurosci 2019; 12:131. [PMID: 31191243 PMCID: PMC6546065 DOI: 10.3389/fnmol.2019.00131] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor often diagnosed in childhood. Despite intense efforts to develop a successful treatment, current available therapies are still challenged by high rates of resistance, recurrence and progression, most notably in advanced cases and highly malignant tumors. Emerging evidence proposes that this might be due to a subpopulation of cancer stem cells (CSCs) or tumor-initiating cells (TICs) found in the bulk of the tumor. Therefore, the development of more targeted therapy is highly dependent on the identification of the molecular signatures and genetic aberrations characteristic to this subpopulation of cells. This review aims at providing an overview of the key molecular players involved in NB CSCs and focuses on the experimental evidence from NB cell lines, patient-derived xenografts and primary tumors. It also provides some novel approaches of targeting multiple drivers governing the stemness of CSCs to achieve better anti-tumor effects than the currently used therapeutic agents.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sahar Assi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reda M Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
6
|
Delta-like 1 homologue promotes tumorigenesis and epithelial-mesenchymal transition of ovarian high-grade serous carcinoma through activation of Notch signaling. Oncogene 2019; 38:3201-3215. [PMID: 30626939 DOI: 10.1038/s41388-018-0658-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/26/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023]
Abstract
Ovarian carcinoma is the most lethal type of gynecologic malignancies. Alterations of Notch pathway are prevalent in ovarian carcinogenesis. This study investigated the expression profile and function of delta-like 1 homolog (DLK1), a non-canonical Notch ligand, during ovarian carcinogenesis. Tissue microarray (TMA) consisting of surgically resected samples from 221 patients with ovarian carcinoma was constructed for DLK1 expression. DLK1 overexpression or knockdown was achieved by adenovirus gene delivery to evaluate the effect of DLK1 on the oncogenic behaviors in ovarian cancer cells and in xenografted tumors. TMA analysis revealed that elevated DLK1 expression was correlated with stages, lymph node metastasis and E-cadherin downregulation. Despite no influence on survival among ovarian carcinoma patients, DLK1 overexpression was specially associated with overall survival and progression free survival in high-grade serous carcinoma (HGSC) patients, constituting an independent prognostic factor for these patients. By adenovirus gene delivery, it was found modulation of cellular DLK1 level regulated the tumorigenic behaviors and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Immunohistochemical analysis further showed that DLK1 overexpression resulted in escalated proliferation, angiogenesis, EMT and Notch activities. Application of recombinant DLK1 extracellular domain (rDLK1-EC) recapitulated the tumorigenic behaviors of DLK1 in ovarian cancer cells. By using neutralizing antibody or pharmaceutical inhibitor, blockade of Notch signaling attenuated the tumorigenic behaviors evoked by DLK1 overexpression. The present study indicates that DLK1 overexpression participates in ovarian carcinogenesis through Notch activation and EMT induction. Moreover, DLK1 may constitute a novel diagnostic biomarker and therapeutic target for HGSC.
Collapse
|
7
|
de Carvalho Melo-Cavalcante AA, da Rocha Sousa L, Alencar MVOB, de Oliveira Santos JV, da Mata AMO, Paz MFCJ, de Carvalho RM, Nunes NMF, Islam MT, Mendes AN, Gonçalves JCR, da Silva FCC, Ferreira PMP, de Castro E Sousaa JM. Retinol palmitate and ascorbic acid: Role in oncological prevention and therapy. Biomed Pharmacother 2018; 109:1394-1405. [PMID: 30551390 DOI: 10.1016/j.biopha.2018.10.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer development has been directly related to oxidative stress. During chemotherapy, some cancer patients use dietary antioxidants to avoid nutritional deficiencies due to cancer treatment. Among the antioxidants consumed, there are vitamins, including retinyl palmitate (PR) and ascorbic acid (AA), which have the capacity to reduce free radicals formation, protect cellular structures and maintain the cellular homeostasis. This systematic review evaluated the antioxidant and antitumor mechanisms of retinol palmitate (a derivative of vitamin A) and/or ascorbic acid (vitamin C) in cancer-related studies. Ninety-seven (97) indexed articles in the databases PubMed and Science Direct, published between 2013 and 2017, including 23 clinical studies (5 for every single compound while 13 in interaction) and 74 non-clinical studies (37 for retinol palmitate, 36 for ascorbic acid and 1 in interaction) were considered. Antioxidant and antitumor effects, with controversies over dosage and route of administration, were observed for the test compounds in their isolated form or associated in clinical studies. Prevention of cancer risks against oxidative damage was seen in lower doses of retinol palmitate and/or vitamin C. However, at high doses, they can generate reactive oxygen species, cytotoxicity and apoptosis in test systems. Non-clinical studies using cell lines have allowed understanding the mechanisms related to antioxidants and antitumor effects of the isolated compounds, however, studies on vitamin interactions, acting as antioxidants and/or antitumor are still rare and controversial. More studies, mainly related to modulation of antineoplastic drugs are needed for understanding the risks and benefits of their use during treatment in order to achieve effectiveness in cancer therapy and patient's quality of life.
Collapse
Affiliation(s)
- Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Leonardo da Rocha Sousa
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Marcus Vinícius Oliveira Barros Alencar
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - José Victor de Oliveira Santos
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Ana Maria Oliveira da Mata
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Márcia Fernanda Correia Jardim Paz
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Ricardo Melo de Carvalho
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Nárcia Mariana Fonseca Nunes
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Anderson Nogueira Mendes
- Department of Biophysics and Physiology of Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Juan Carlos Ramos Gonçalves
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Felipe Cavalcanti Carneiro da Silva
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam; Department of Biological Sciences, Federal University of Piauí, Picos, Piauí, 64.067-670, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Department of Biophysics and Physiology of Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - João Marcelo de Castro E Sousaa
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam; Department of Biological Sciences, Federal University of Piauí, Picos, Piauí, 64.067-670, Brazil.
| |
Collapse
|
8
|
Jin X, Zhao T, Shi D, Ye MB, Yi Q. Protective role of fucoxanthin in diethylnitrosamine-induced hepatocarcinogenesis in experimental adult rats. Drug Dev Res 2018; 80:209-217. [PMID: 30379338 DOI: 10.1002/ddr.21451] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/18/2018] [Accepted: 06/23/2018] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) accounts for majority of cancer related deaths. Two major risk factors in induction of HCC are chemical and virus, however, the possible mechanisms of their differences remain indefinable. The current study focused on protective role of Fucoxanthin (Fx) in liver affected by diethylnitrosamine (DEN)-induced HCC. In this study, levels of liver enzymes, oxidative stressors, antioxidant status, and lipoproteins were compared both in tissue and blood. Tissues were also analyzed extensively by histological studies using H and E staining and transmission electron microscopy (TEM). Rats were clustered into four groups of six experimental animals. Group I: Control rats were administered isotonic saline intraperitoneal Group II: Animals received 0.01% DEN through drinking water to induce hepatocellular carcinoma. Group III: Animals received 0.01% DEN simultaneously oral supplementation of Fx (50 mg/kg b.w). Group IV: Rats were given Fx alone (50 mg/kg b.w) orally and the treatment is for 15 weeks. Results showed the decrease in body weight, serum albumin, antioxidant enzymes, and increased all the liver enzymes, serum bilirubin, and stress markers in DEN induced rats, where as the simultaneous supplementation of Fx reverted them to normal levels. Administration of only Fx did not show any change. Therefore, Fx may serve as a chemotherapeutic agent against liver cancer.
Collapse
Affiliation(s)
- Xin Jin
- Department of General Surgery, Ankang Central Hospital of Shaanxi, Shaanxi, China
| | - TingTing Zhao
- The Center of Experimental Teaching Management, Chongqing Medical University, Chongqing, China
| | - Dan Shi
- Surgical Operating Room, Chinese Medicine Hospital of Dianjiang County, Chongqing, China
| | - Ming Bao Ye
- Department of Urological Surgery, The First People's Hospital of Xianyang, Shaanxi Province, China
| | - Qiying Yi
- The Laboratory Animal Center of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Naz H, Khan P, Tarique M, Rahman S, Meena A, Ahamad S, Luqman S, Islam A, Ahmad F, Hassan MI. Binding studies and biological evaluation of β-carotene as a potential inhibitor of human calcium/calmodulin-dependent protein kinase IV. Int J Biol Macromol 2016; 96:161-170. [PMID: 27956097 DOI: 10.1016/j.ijbiomac.2016.12.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 12/27/2022]
Abstract
Human calcium/calmodulin-dependent protein kinase IV (CAMKIV), a member of Ser/Thr kinase family, is associated with cancer, cerebral hypoxia and neurodegenerative diseases. β-carotene is a colored organic compound, abundant in plants and fruits and is used in cancer prevention. Here, we report a strong binding affinity of β-carotene with CAMKIV using molecular docking, fluorescence binding and isothermal titration calorimetry methods. Furthermore, β-carotene also reduces the enzyme activity of CAMKIV moderately as observed during ATPase assay. To see the role of β-carotene on cell proliferation and apoptosis, cancerous cells (HeLa, HuH7and MCF-7) and normal (HEK-293-T) cell lines were used. Admirable anticancer activity of β-carotene was observed. We further performed propidium iodide and DAPI (4',6-diamidino-2-phenylindole) assays to understand the mechanism of anticancer activity of β-carotene at molecular level. Our findings provide a newer insight into the use of β-carotene in cancer prevention and protection via inhibition of CAMKIV by regulating the signaling pathways.
Collapse
Affiliation(s)
- Huma Naz
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Tarique
- Department of Biochemistry, All India Institute of Medical Sciences, AIIMS, New Delhi, 110029, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Abha Meena
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Shahzaib Ahamad
- Department of Biotechnology, College of Engineering & Technology, IFTM University, Lodhipur-Rajput, Delhi Road, Moradabad, India
| | - Suaib Luqman
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|