1
|
Giliberti G, Marrapodi MM, Di Feo G, Pota E, Di Martino M, Di Pinto D, Rossi F, Di Paola A. Curcumin and Methotrexate: A Promising Combination for Osteosarcoma Treatment via Hedgehog Pathway Inhibition. Int J Mol Sci 2024; 25:11300. [PMID: 39457084 PMCID: PMC11509055 DOI: 10.3390/ijms252011300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Osteosarcoma (OS) is the most severe bone tumor in children. A chemotherapy regimen includes a combination of high-dose Methotrexate (MTX), doxorubicin, and cisplatin. These drugs cause acute and chronic side effects, such as infections, thrombocytopenia, neutropenia, DNA damage, and inflammation. Therefore, to identify new therapeutic strategies, effective and with a safety profile, is necessary. The Hedgehog (Hh) signaling pathway involved in tumorigenesis is active in OS. Hh components Patched receptor 1 (PTCH1), Smoothened (SMO), and glioma-associated oncogene homolog transcription factors (GLI1 and GLI2) are overexpressed in OS cell lines and patient samples. Curcumin (CUR)-with antioxidant and anti-cancer properties-downregulates Hh components in cancer, inhibiting progression. This study investigates CUR effects on the MG-63 OS cell line, alone and combined with MTX, to propose a novel therapeutic approach. Our study suggests CUR as a novel therapeutic agent in OS, particularly when combined with MTX. Targeting the Hh signaling pathway, CUR and MTX showed significant pro-apoptotic effects, increasing the BAX/Bcl-2 ratio and total apoptotic cell percentage. They reduced the expression of Hh pathway components (PTCH1, SMO, GLI1, and GLI2), inhibiting OS cell proliferation, survival, and invasion. CUR and MTX combined determined a β-Catenin decrease and a trend toward reducing NF-kB and matrix metalloproteinases (MMP-2 and MMP-9). Our findings suggest CUR as a support to OS treatment, improving outcomes and reducing the adverse effects of current therapies.
Collapse
Affiliation(s)
- Giulia Giliberti
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy;
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (M.M.M.); (G.D.F.); (E.P.); (M.D.M.); (D.D.P.); (A.D.P.)
| | - Giuseppe Di Feo
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (M.M.M.); (G.D.F.); (E.P.); (M.D.M.); (D.D.P.); (A.D.P.)
| | - Elvira Pota
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (M.M.M.); (G.D.F.); (E.P.); (M.D.M.); (D.D.P.); (A.D.P.)
| | - Martina Di Martino
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (M.M.M.); (G.D.F.); (E.P.); (M.D.M.); (D.D.P.); (A.D.P.)
| | - Daniela Di Pinto
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (M.M.M.); (G.D.F.); (E.P.); (M.D.M.); (D.D.P.); (A.D.P.)
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (M.M.M.); (G.D.F.); (E.P.); (M.D.M.); (D.D.P.); (A.D.P.)
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (M.M.M.); (G.D.F.); (E.P.); (M.D.M.); (D.D.P.); (A.D.P.)
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| |
Collapse
|
2
|
Tian X, El-Deiry WS. Integrated stress response (ISR) activation and apoptosis through HRI kinase by PG3 and other p53 pathway-restoring cancer therapeutics. Oncotarget 2024; 15:614-633. [PMID: 39288289 PMCID: PMC11407758 DOI: 10.18632/oncotarget.28637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Restoration of the p53 pathway has been a long-term goal in the field of cancer research to treat tumors with mutated p53 and aggressive clinical behavior. p53 pathway restoration in p53-deficient cancers can be achieved by small molecules via p53-dependent or p53-independent processes. Hereafter p53-independent restoration of p53-pathway-signaling in p53-deficient/mutated tumors is referred to as 'restoration of the p53 pathway'. We compare activation of p53 target genes by novel compounds PG3 and PG3-Oc, that activate p53-target genes in a p53-independent manner, and four mutant p53-activating compounds while Nutlin-3a is used as negative control. PG3 and PG3-Oc upregulate p21, PUMA, and DR5 in five cancer cell lines with various p53 mutational statuses through ATF4 (Activating Transcriptional Factor 4) and integrated stress response (ISR) independent of p53. Mutant p53-targeting compounds induce expression of the 3 major downstream p53 target genes and ATF4 in a highly variable and cell-type-dependent manner. PG3 treatment activates ATF4 through ISR via kinase HRI (Heme-Regulated Inhibitor). ATF4 mediates upregulation of PUMA, p21, and NAG-1/GDF15 (Nonsteroidal anti-inflammatory drug-activated gene 1). We note that PUMA mediates apoptosis through activation of caspase-8 in HT29 cells and potentially caspase-10 in SW480 cells. We provide a novel mechanism engaged by PG3 to induce cell death via the HRI/ATF4/PUMA axis. Our results provide unique insights into the mechanism of action of PG3 as a novel cancer therapeutic targeting p53 pathway-like tumor suppression.
Collapse
Affiliation(s)
- Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02912, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02912, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02906, USA
| |
Collapse
|
3
|
Walczak-Szeffer A, Piastowska-Ciesielska AW. Endoplasmic reticulum stress as a target for retinoids in cancer treatment. Life Sci 2024; 352:122892. [PMID: 38971363 DOI: 10.1016/j.lfs.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Retinoids, natural and synthetic derivatives of vitamin A, have various regulatory activities including controlling cellular proliferation, differentiation, and death. Furthermore, they have been used to treat specific cancers with satisfying results. Nevertheless, retinoids have yet to be converted into effective systemic therapies for the majority of tumor types. Regulation of unfolded protein response signaling, and persistent activation of endoplasmic reticulum stress (ER-stress) are promising treatment methods for cancer. The present article reviews the current understanding of how vitamin A and its derivatives may aid to cause ER-stress-activated apoptosis, as well as therapeutic options for exploiting ER-stress for achieving beneficial goal. The therapeutic use of some retinoids discussed in this article was related to decreased disease recurrence and improved therapeutic outcomes via ER-stress activation and promotion, indicating that retinoids may play an important role in cancer treatment and prevention. More research is needed to expand the use of vitamin A derivatives in cancer therapy, either alone or in combination with unfolded protein response inducers.
Collapse
Affiliation(s)
- Anna Walczak-Szeffer
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Poland.
| | | |
Collapse
|
4
|
Virard F, Giraud S, Bonnet M, Magadoux L, Martin L, Pham TH, Skafi N, Deneuve S, Frem R, Villoutreix BO, Sleiman NH, Reboulet J, Merabet S, Chaptal V, Chaveroux C, Hussein N, Aznar N, Fenouil T, Treilleux I, Saintigny P, Ansieau S, Manié S, Lebecque S, Renno T, Coste I. Targeting ERK-MYD88 interaction leads to ERK dysregulation and immunogenic cancer cell death. Nat Commun 2024; 15:7037. [PMID: 39147750 PMCID: PMC11327251 DOI: 10.1038/s41467-024-51275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
The quest for targeted therapies is critical in the battle against cancer. The RAS/MAP kinase pathway is frequently implicated in neoplasia, with ERK playing a crucial role as the most distal kinase in the RAS signaling cascade. Our previous research demonstrated that the interaction between ERK and MYD88, an adaptor protein in innate immunity, is crucial for RAS-dependent transformation and cancer cell survival. In this study, we examine the biological consequences of disrupting the ERK-MYD88 interaction through the ERK D-recruitment site (DRS), while preserving ERK's kinase activity. Our results indicate that EI-52, a small-molecule benzimidazole targeting ERK-MYD88 interaction induces an HRI-mediated integrated stress response (ISR), resulting in immunogenic apoptosis specific to cancer cells. Additionally, EI-52 exhibits anti-tumor efficacy in patient-derived tumors and induces an anti-tumor T cell response in mice in vivo. These findings suggest that inhibiting the ERK-MYD88 interaction may be a promising therapeutic approach in cancer treatment.
Collapse
Affiliation(s)
- François Virard
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- University of Lyon, Faculté d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - Stéphane Giraud
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- Center for Drug Discovery and Development, Synergy Lyon Cancer Foundation, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Mélanie Bonnet
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Léa Magadoux
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Laetitia Martin
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- Center for Drug Discovery and Development, Synergy Lyon Cancer Foundation, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Thuy Ha Pham
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Najwa Skafi
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Sophie Deneuve
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Rita Frem
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Bruno O Villoutreix
- Université de Paris, NeuroDiderot, Inserm, Hôpital Robert Debré, 75019, Paris, France
| | - Nawal Hajj Sleiman
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242-CNRS/ENSL, Université Claude Bernard Lyon 1, Lyon, France
| | - Jonathan Reboulet
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242-CNRS/ENSL, Université Claude Bernard Lyon 1, Lyon, France
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242-CNRS/ENSL, Université Claude Bernard Lyon 1, Lyon, France
| | - Vincent Chaptal
- Drug Resistance & Membrane Proteins group, Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, Lyon, France
| | - Cédric Chaveroux
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Nader Hussein
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Nicolas Aznar
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Tanguy Fenouil
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- University of Lyon, Faculté de Médecine, Hospices Civils de Lyon, Lyon, France
| | | | - Pierre Saintigny
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Stéphane Ansieau
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Serge Manié
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Serge Lebecque
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- University of Lyon, Faculté de Médecine, Hospices Civils de Lyon, Lyon, France
| | - Toufic Renno
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France.
| | - Isabelle Coste
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
5
|
Munro V, Kelly V, Messner CB, Kustatscher G. Cellular control of protein levels: A systems biology perspective. Proteomics 2024; 24:e2200220. [PMID: 38012370 DOI: 10.1002/pmic.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
How cells regulate protein levels is a central question of biology. Over the past decades, molecular biology research has provided profound insights into the mechanisms and the molecular machinery governing each step of the gene expression process, from transcription to protein degradation. Recent advances in transcriptomics and proteomics have complemented our understanding of these fundamental cellular processes with a quantitative, systems-level perspective. Multi-omic studies revealed significant quantitative, kinetic and functional differences between the genome, transcriptome and proteome. While protein levels often correlate with mRNA levels, quantitative investigations have demonstrated a substantial impact of translation and protein degradation on protein expression control. In addition, protein-level regulation appears to play a crucial role in buffering protein abundances against undesirable mRNA expression variation. These findings have practical implications for many fields, including gene function prediction and precision medicine.
Collapse
Affiliation(s)
- Victoria Munro
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Van Kelly
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Christoph B Messner
- Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Georg Kustatscher
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Fatima N, Shen Y, Crassini K, Burling O, Thurgood L, Iwanowicz EJ, Lang H, Karanewsky DS, Christopherson RI, Mulligan SP, Best OG. The CIpP activator, TR-57, is highly effective as a single agent and in combination with venetoclax against CLL cells in vitro. Leuk Lymphoma 2024; 65:585-597. [PMID: 38227293 DOI: 10.1080/10428194.2023.2300055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Despite advances in treatment, a significant proportion of patients with chronic lymphocytic leukemia (CLL) will relapse with drug-resistant disease. The imipridones, ONC-201 and ONC-212, are effective against a range of different cancers, including acute myeloid leukemia (AML) and tumors of the brain, breast, and prostate. These drugs induce cell death through activation of the mitochondrial protease, caseinolytic protease (CIpP), and the unfolded protein response (UPR). Here we demonstrate that the novel imipridone analog, TR-57, has efficacy as a single agent and synergises with venetoclax against CLL cells under in vitro conditions that mimic the tumor microenvironment. Changes in protein expression suggest TR-57 activates the UPR, inhibits the AKT and ERK1/2 pathways and induces pro-apoptotic changes in the expression of proteins of the BCL-2 family. The study suggests that TR-57, as a single agent and in combination with venetoclax, may represent an effective treatment option for CLL.
Collapse
MESH Headings
- Humans
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Apoptosis/drug effects
- Drug Synergism
- Cell Line, Tumor
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Unfolded Protein Response/drug effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Narjis Fatima
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Yandong Shen
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Kyle Crassini
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
| | - Olivia Burling
- Flinders Health and Medical Research Institute, Department of Genetics and Molecular Medicine, College of Medicine and Public Health, Flinders University, Camperdown, Australia
| | - Lauren Thurgood
- Flinders Health and Medical Research Institute, Department of Genetics and Molecular Medicine, College of Medicine and Public Health, Flinders University, Camperdown, Australia
| | | | - Henk Lang
- Madera Therapeutics, LLC, Cary, North Carolina, USA
| | | | | | - Stephen P Mulligan
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - O Giles Best
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
- Flinders Health and Medical Research Institute, Department of Genetics and Molecular Medicine, College of Medicine and Public Health, Flinders University, Camperdown, Australia
| |
Collapse
|
7
|
Viana P, Hamar P. Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189069. [PMID: 38176599 DOI: 10.1016/j.bbcan.2023.189069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The Heat Shock Response (HSR) is a cellular stress reaction crucial for cell survival against stressors, including heat, in both healthy and cancer cells. Modulated electro-hyperthermia (mEHT) is an emerging non-invasive cancer therapy utilizing electromagnetic fields to selectively target cancer cells via temperature-dependent and independent mechanisms. However, mEHT triggers HSR in treated cells. Despite demonstrated efficacy in cancer treatment, understanding the underlying molecular mechanisms for improved therapeutic outcomes remains a focus. This review examines the HSR induced by mEHT in cancer cells, discussing potential strategies to modulate it for enhanced tumor-killing effects. Approaches such as HSF1 gene-knockdown and small molecule inhibitors like KRIBB11 are explored to downregulate the HSR and augment tumor destruction. We emphasize the impact of HSR inhibition on cancer cell viability, mEHT sensitivity, and potential synergistic effects, addressing challenges and future directions. This understanding offers opportunities for optimizing treatment strategies and advancing precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Pedro Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| |
Collapse
|
8
|
Muramatsu N, Ichikawa M, Katagiri T, Taguchi Y, Hatanaka T, Okuda T, Okamoto H. p53 dry gene powder enhances anti-cancer effects of chemotherapy against malignant pleural mesothelioma. Gene Ther 2024; 31:119-127. [PMID: 37833562 DOI: 10.1038/s41434-023-00424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Dry gene powder is a novel non-viral gene-delivery system, which is inhalable with high gene expression. Previously, we showed that the transfection of p16INK4a or TP53 by dry gene powder resulted in growth inhibitions of lung cancer and malignant pleural mesothelioma (MPM) in vitro and in vivo. Here, we report that dry gene powder containing p53- expression-plasmid DNA enhanced the therapeutic effects of cisplatin (CDDP) against MPM even in the presence of endogenous p53. Furthermore, our results indicated that the safe transfection with a higher plasmid DNA (pDNA) concentration suppressed MPM growth independently of chemotherapeutic agents. To develop a new therapeutic alternative for MPM patients without safety concerns over "vector doses", our in vitro data provide basic understandings for dry gene powder.
Collapse
Affiliation(s)
- Naomi Muramatsu
- Randis Medical Developments Inc., Nagoya, Aichi, Japan
- Department of Drug Delivery Research, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | | | | | | | | | - Tomoyuki Okuda
- Department of Drug Delivery Research, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Hirokazu Okamoto
- Department of Drug Delivery Research, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan.
| |
Collapse
|
9
|
Lee DM, Kim IY, Lee HJ, Seo MJ, Cho MY, Lee HI, Yoon G, Ji JH, Park SS, Jeong SY, Choi EK, Choi YH, Yun CO, Yeo M, Kim E, Choi KS. Akt enhances the vulnerability of cancer cells to VCP/p97 inhibition-mediated paraptosis. Cell Death Dis 2024; 15:48. [PMID: 38218922 PMCID: PMC10787777 DOI: 10.1038/s41419-024-06434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Valosin-containing protein (VCP)/p97, an AAA+ ATPase critical for maintaining proteostasis, emerges as a promising target for cancer therapy. This study reveals that targeting VCP selectively eliminates breast cancer cells while sparing non-transformed cells by inducing paraptosis, a non-apoptotic cell death mechanism characterized by endoplasmic reticulum and mitochondria dilation. Intriguingly, oncogenic HRas sensitizes non-transformed cells to VCP inhibition-mediated paraptosis. The susceptibility of cancer cells to VCP inhibition is attributed to the non-attenuation and recovery of protein synthesis under proteotoxic stress. Mechanistically, mTORC2/Akt activation and eIF3d-dependent translation contribute to translational rebound and amplification of proteotoxic stress. Furthermore, the ATF4/DDIT4 axis augments VCP inhibition-mediated paraptosis by activating Akt. Given that hyperactive Akt counteracts chemotherapeutic-induced apoptosis, VCP inhibition presents a promising therapeutic avenue to exploit Akt-associated vulnerabilities in cancer cells by triggering paraptosis while safeguarding normal cells.
Collapse
Affiliation(s)
- Dong Min Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - In Young Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Hong Jae Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Min Ji Seo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Mi-Young Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Hae In Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Gyesoon Yoon
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Seok Soon Park
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong-Yun Jeong
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Kyung Choi
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Hyeon Choi
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Mirae Yeo
- Department of Biological Sciences, Ulsan National Institute Science and Technology, Ulsan, South Korea
| | - Eunhee Kim
- Department of Biological Sciences, Ulsan National Institute Science and Technology, Ulsan, South Korea.
| | - Kyeong Sook Choi
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
10
|
Liang R, Tan H, Jin H, Wang J, Tang Z, Lu X. The tumour-promoting role of protein homeostasis: Implications for cancer immunotherapy. Cancer Lett 2023; 573:216354. [PMID: 37625777 DOI: 10.1016/j.canlet.2023.216354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Protein homeostasis, an important aspect of cellular fitness that encompasses the balance of production, folding and degradation of proteins, has been linked to several diseases of the human body. Multiple interconnected pathways coordinate to maintain protein homeostasis within the cell. Recently, the role of the protein homeostasis network in tumorigenesis and tumour progression has gradually come to light. Here, we summarize the involvement of the most prominent components of the protein quality control mechanisms (HSR, UPS, autophagy, UPR and ERAD) in tumour development and cancer immunity. In addition, evidence for protein quality control mechanisms and targeted drugs is outlined, and attempts to combine these drugs with cancer immunotherapy are discussed. Altogether, combination therapy represents a promising direction for future investigations, and this exciting insight will be further illuminated by the development of drugs that can reach a balance between the benefits and hazards associated with protein homeostasis interference.
Collapse
Affiliation(s)
- Rong Liang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huabing Tan
- Department of Infectious Diseases, Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Honglin Jin
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jincheng Wang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Faculty of Medicine, Hokkaido University, Japan
| | - Zijian Tang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
11
|
Sannino S, Manuel AM, Shang C, Wendell SG, Wipf P, Brodsky JL. Non-Essential Amino Acid Availability Influences Proteostasis and Breast Cancer Cell Survival During Proteotoxic Stress. Mol Cancer Res 2023; 21:675-690. [PMID: 36961392 PMCID: PMC10330057 DOI: 10.1158/1541-7786.mcr-22-0843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/11/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023]
Abstract
Protein homeostasis (proteostasis) regulates tumor growth and proliferation when cells are exposed to proteotoxic stress, such as during treatment with certain chemotherapeutics. Consequently, cancer cells depend to a greater extent on stress signaling, and require the integrated stress response (ISR), amino acid metabolism, and efficient protein folding and degradation pathways to survive. To define how these interconnected pathways are wired when cancer cells are challenged with proteotoxic stress, we investigated how amino acid abundance influences cell survival when Hsp70, a master proteostasis regulator, is inhibited. We previously demonstrated that cancer cells exposed to a specific Hsp70 inhibitor induce the ISR via the action of two sensors, GCN2 and PERK, in stress-resistant and sensitive cells, respectively. In resistant cells, the induction of GCN2 and autophagy supported resistant cell survival, yet the mechanism by which these events were induced remained unclear. We now report that amino acid availability reconfigures the proteostasis network. Amino acid supplementation, and in particular arginine addition, triggered cancer cell death by blocking autophagy. Consistent with the importance of amino acid availability, which when limited activates GCN2, resistant cancer cells succumbed when challenged with a potentiator for another amino acid sensor, mTORC1, in conjunction with Hsp70 inhibition. IMPLICATIONS These data position amino acid abundance, GCN2, mTORC1, and autophagy as integrated therapeutic targets whose coordinated modulation regulates the survival of proteotoxic-resistant breast cancer cells.
Collapse
Affiliation(s)
- Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison M. Manuel
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
- Mass Spectrometry and Proteomics Core, The University of Utah, Salt Lake City, UT, USA
| | - Chaowei Shang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy G. Wendell
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Alfieri F, Caravagna G, Schaefer MH. Cancer genomes tolerate deleterious coding mutations through somatic copy number amplifications of wild-type regions. Nat Commun 2023; 14:3594. [PMID: 37328455 PMCID: PMC10276008 DOI: 10.1038/s41467-023-39313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023] Open
Abstract
Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations.
Collapse
Affiliation(s)
- Fabio Alfieri
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Giulio Caravagna
- Department of Mathematics and Geosciences, University of Trieste, Trieste, 34127, Italy
| | - Martin H Schaefer
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, 20139, Italy.
| |
Collapse
|
13
|
Ebstein F, Küry S, Most V, Rosenfelt C, Scott-Boyer MP, van Woerden GM, Besnard T, Papendorf JJ, Studencka-Turski M, Wang T, Hsieh TC, Golnik R, Baldridge D, Forster C, de Konink C, Teurlings SM, Vignard V, van Jaarsveld RH, Ades L, Cogné B, Mignot C, Deb W, Jongmans MC, Sessions Cole F, van den Boogaard MJH, Wambach JA, Wegner DJ, Yang S, Hannig V, Brault JA, Zadeh N, Bennetts B, Keren B, Gélineau AC, Powis Z, Towne M, Bachman K, Seeley A, Beck AE, Morrison J, Westman R, Averill K, Brunet T, Haasters J, Carter MT, Osmond M, Wheeler PG, Forzano F, Mohammed S, Trakadis Y, Accogli A, Harrison R, Guo Y, Hakonarson H, Rondeau S, Baujat G, Barcia G, Feichtinger RG, Mayr JA, Preisel M, Laumonnier F, Kallinich T, Knaus A, Isidor B, Krawitz P, Völker U, Hammer E, Droit A, Eichler EE, Elgersma Y, Hildebrand PW, Bolduc F, Krüger E, Bézieau S. PSMC3 proteasome subunit variants are associated with neurodevelopmental delay and type I interferon production. Sci Transl Med 2023; 15:eabo3189. [PMID: 37256937 PMCID: PMC10506367 DOI: 10.1126/scitranslmed.abo3189] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
A critical step in preserving protein homeostasis is the recognition, binding, unfolding, and translocation of protein substrates by six AAA-ATPase proteasome subunits (ATPase-associated with various cellular activities) termed PSMC1-6, which are required for degradation of proteins by 26S proteasomes. Here, we identified 15 de novo missense variants in the PSMC3 gene encoding the AAA-ATPase proteasome subunit PSMC3/Rpt5 in 23 unrelated heterozygous patients with an autosomal dominant form of neurodevelopmental delay and intellectual disability. Expression of PSMC3 variants in mouse neuronal cultures led to altered dendrite development, and deletion of the PSMC3 fly ortholog Rpt5 impaired reversal learning capabilities in fruit flies. Structural modeling as well as proteomic and transcriptomic analyses of T cells derived from patients with PSMC3 variants implicated the PSMC3 variants in proteasome dysfunction through disruption of substrate translocation, induction of proteotoxic stress, and alterations in proteins controlling developmental and innate immune programs. The proteostatic perturbations in T cells from patients with PSMC3 variants correlated with a dysregulation in type I interferon (IFN) signaling in these T cells, which could be blocked by inhibition of the intracellular stress sensor protein kinase R (PKR). These results suggest that proteotoxic stress activated PKR in patient-derived T cells, resulting in a type I IFN response. The potential relationship among proteosome dysfunction, type I IFN production, and neurodevelopment suggests new directions in our understanding of pathogenesis in some neurodevelopmental disorders.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Victoria Most
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Medizinische Fakultät, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Cory Rosenfelt
- Department of Pediatrics, University of Alberta, Edmonton, AB CT6G 1C9, Canada
| | | | - Geeske M. van Woerden
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Thomas Besnard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Jonas Johannes Papendorf
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Maja Studencka-Turski
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing 100191, China
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Richard Golnik
- Klinik für Pädiatrie I, Universitätsklinikum Halle (Saale), 06120 Halle (Saale)
| | - Dustin Baldridge
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | - Cara Forster
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Charlotte de Konink
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Selina M.W. Teurlings
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | | | - Lesley Ades
- Department of Clinical Genetics, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Disciplines of Genomic Medicine & Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2145, Australia
| | - Benjamin Cogné
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Cyril Mignot
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», 75013 Paris, France
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, 75013, Paris, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Marjolijn C.J. Jongmans
- Department of Genetics, University Medical Center Utrecht, 3508 AB, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - F. Sessions Cole
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | | | - Jennifer A. Wambach
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | - Daniel J. Wegner
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | - Sandra Yang
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Vickie Hannig
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer Ann Brault
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Neda Zadeh
- Genetics Center, Orange, CA 92868, USA; Division of Medical Genetics, Children’s Hospital of Orange County, Orange, CA 92868, USA
| | - Bruce Bennetts
- Disciplines of Genomic Medicine & Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2145, Australia
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW, 2145, Australia
| | - Boris Keren
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - Anne-Claire Gélineau
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - Zöe Powis
- Department of Clinical Research, Ambry Genetics, Aliso Viejo, CA 92656, USA
| | - Meghan Towne
- Department of Clinical Research, Ambry Genetics, Aliso Viejo, CA 92656, USA
| | | | - Andrea Seeley
- Genomic Medicine Institute, Geisinger, Danville, PA 17822, USA
| | - Anita E. Beck
- Department of Pediatrics, Division of Genetic Medicine, University of Washington & Seattle Children’s Hospital, Seattle, WA 98195-6320, USA
| | - Jennifer Morrison
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL 32806, USA
| | - Rachel Westman
- Division of Genetics, St. Luke’s Clinic, Boise, ID 83712, USA
| | - Kelly Averill
- Department of Pediatrics, Division of Pediatric Neurology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Theresa Brunet
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675 Munich, Germany
- Institute of Neurogenomics (ING), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Judith Haasters
- Klinikum der Universität München, Integriertes Sozial- pädiatrisches Zentrum, 80337 Munich, Germany
| | - Melissa T. Carter
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, ON K1H 8L1, Canada
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Matthew Osmond
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, ON K1H 8L1, Canada
| | - Patricia G. Wheeler
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL 32806, USA
| | - Francesca Forzano
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Shehla Mohammed
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Yannis Trakadis
- Division of Medical Genetics, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Andrea Accogli
- Division of Medical Genetics, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Rachel Harrison
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, City Hospital Campus, The Gables, Gate 3, Hucknall Road, Nottingham NG5 1PB, UK
| | - Yiran Guo
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Center for Data Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sophie Rondeau
- Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, 75743 Paris, France
| | - Geneviève Baujat
- Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, 75743 Paris, France
| | - Giulia Barcia
- Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, 75743 Paris, France
| | - René Günther Feichtinger
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Johannes Adalbert Mayr
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Martin Preisel
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Frédéric Laumonnier
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, 37032 Tours, France
| | - Tilmann Kallinich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin; 13353 Berlin, Germany
- Deutsches Rheumaforschungszentrum, An Institute of the Leibniz Association, Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Uwe Völker
- Universitätsmedizin Greifswald, Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Abteilung für Funktionelle Genomforschung, 17487 Greifswald, Germany
| | - Elke Hammer
- Universitätsmedizin Greifswald, Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Abteilung für Funktionelle Genomforschung, 17487 Greifswald, Germany
| | - Arnaud Droit
- Research Center of Quebec CHU-Université Laval, Québec, QC PQ G1E6W2, Canada
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Ype Elgersma
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Peter W. Hildebrand
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Medizinische Fakultät, Härtelstr. 16-18, 04107 Leipzig, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
| | - François Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB CT6G 1C9, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| |
Collapse
|
14
|
Song T, Yin F, Wang Z, Zhang H, Liu P, Guo Y, Tang Y, Zhang Z. Hsp70-Bim interaction facilitates mitophagy by recruiting parkin and TOMM20 into a complex. Cell Mol Biol Lett 2023; 28:46. [PMID: 37237369 DOI: 10.1186/s11658-023-00458-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND For cancer therapy, the identification of both selective autophagy targets and small molecules that specifically regulate autophagy is greatly needed. Heat shock protein 70 (Hsp70) is a recently discovered BH3 receptor that forms a protein‒protein interaction (PPI) with Bcl-2-interacting mediator of cell death (Bim). Herein, a specific inhibitor of the Hsp70-Bim PPI, S1g-2, and its analog S1, which is a Bcl-2-Bim disruptor, were used as chemical tools to explore the role of Hsp70-Bim PPI in regulating mitophagy. METHODS Co-immunoprecipitation and immunofluorescence assays were used to determine protein interactions and colocalization patterns. Organelle purification and immunodetection of LC3-II/LC3-I on mitochondria, endoplasmic reticulum (ER) and Golgi were applied to identify specific types of autophagy. Cell-based and in vitro ubiquitination studies were used to study the role of the Hsp70-Bim PPI in parkin-mediated ubiquitination of outer mitochondrial membrane 20 (TOMM20). RESULTS We found that after the establishment of their PPI, Hsp70 and Bim form a complex with parkin and TOMM20, which in turn facilitates parkin translocation to mitochondria, TOMM20 ubiquitination and mitophagic flux independent of Bax/Bak. Moreover, S1g-2 selectively inhibits stress-induced mitophagy without interfering with basal autophagy. CONCLUSIONS The findings highlight the dual protective function of the Hsp70-Bim PPI in regulating both mitophagy and apoptosis. S1g-2 is thus a newly discovered antitumor drug candidate that drives both mitophagy and cell death via apoptosis.
Collapse
Affiliation(s)
- Ting Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China.
| | - Fangkui Yin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Ziqian Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Hong Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Peng Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yafei Guo
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yao Tang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China.
| |
Collapse
|
15
|
Cervia LD, Shibue T, Borah AA, Gaeta B, He L, Leung L, Li N, Moyer SM, Shim BH, Dumont N, Gonzalez A, Bick NR, Kazachkova M, Dempster JM, Krill-Burger JM, Piccioni F, Udeshi ND, Olive ME, Carr SA, Root DE, McFarland JM, Vazquez F, Hahn WC. A Ubiquitination Cascade Regulating the Integrated Stress Response and Survival in Carcinomas. Cancer Discov 2023; 13:766-795. [PMID: 36576405 PMCID: PMC9975667 DOI: 10.1158/2159-8290.cd-22-1230] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Systematic identification of signaling pathways required for the fitness of cancer cells will facilitate the development of new cancer therapies. We used gene essentiality measurements in 1,086 cancer cell lines to identify selective coessentiality modules and found that a ubiquitin ligase complex composed of UBA6, BIRC6, KCMF1, and UBR4 is required for the survival of a subset of epithelial tumors that exhibit a high degree of aneuploidy. Suppressing BIRC6 in cell lines that are dependent on this complex led to a substantial reduction in cell fitness in vitro and potent tumor regression in vivo. Mechanistically, BIRC6 suppression resulted in selective activation of the integrated stress response (ISR) by stabilization of the heme-regulated inhibitor, a direct ubiquitination target of the UBA6/BIRC6/KCMF1/UBR4 complex. These observations uncover a novel ubiquitination cascade that regulates ISR and highlight the potential of ISR activation as a new therapeutic strategy. SIGNIFICANCE We describe the identification of a heretofore unrecognized ubiquitin ligase complex that prevents the aberrant activation of the ISR in a subset of cancer cells. This provides a novel insight on the regulation of ISR and exposes a therapeutic opportunity to selectively eliminate these cancer cells. See related commentary Leli and Koumenis, p. 535. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Lisa D. Cervia
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Tsukasa Shibue
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Ashir A. Borah
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Benjamin Gaeta
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Linh He
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Lisa Leung
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Naomi Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sydney M. Moyer
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Brian H. Shim
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nancy Dumont
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Nolan R. Bick
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | | | | | | | - Meagan E. Olive
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - David E. Root
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | - William C. Hahn
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Canonical and Noncanonical ER Stress-Mediated Autophagy Is a Bite the Bullet in View of Cancer Therapy. Cells 2022; 11:cells11233773. [PMID: 36497032 PMCID: PMC9738281 DOI: 10.3390/cells11233773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer cells adapt multiple mechanisms to counter intense stress on their way to growth. Tumor microenvironment stress leads to canonical and noncanonical endoplasmic stress (ER) responses, which mediate autophagy and are engaged during proteotoxic challenges to clear unfolded or misfolded proteins and damaged organelles to mitigate stress. In these conditions, autophagy functions as a cytoprotective mechanism in which malignant tumor cells reuse degraded materials to generate energy under adverse growing conditions. However, cellular protection by autophagy is thought to be complicated, contentious, and context-dependent; the stress response to autophagy is suggested to support tumorigenesis and drug resistance, which must be adequately addressed. This review describes significant findings that suggest accelerated autophagy in cancer, a novel obstacle for anticancer therapy, and discusses the UPR components that have been suggested to be untreatable. Thus, addressing the UPR or noncanonical ER stress components is the most effective approach to suppressing cytoprotective autophagy for better and more effective cancer treatment.
Collapse
|
17
|
Iuliano L, Dalla E, Picco R, Mallavarapu S, Minisini M, Malavasi E, Brancolini C. Proteotoxic stress-induced apoptosis in cancer cells: understanding the susceptibility and enhancing the potency. Cell Death Dis 2022; 8:407. [PMID: 36195608 PMCID: PMC9531228 DOI: 10.1038/s41420-022-01202-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
Leiomyosarcoma (LMS) is aggressive cancer with few therapeutic options. LMS cells are more sensitive to proteotoxic stress compared to normal smooth muscle cells. We used small compound 2c to induce proteotoxic stress and compare the transcriptomic adaptations of immortalized human uterine smooth muscle cells (HUtSMC) and LMS cells SK-UT-1. We found that the expression of the heat shock proteins (HSPs) gene family is upregulated with higher efficiency in normal cells. In contrast, the upregulation of BH3-only proteins is higher in LMS cells. HSF1, the master regulator of HSP transcription, is sequestered into transcriptionally incompetent nuclear foci only in LMS cells, which explains the lower HSP upregulation. We also found that several compounds can enhance the cell death response to proteotoxic stress. Specifically, when low doses were used, an inhibitor of salt-inducible kinases (SIKs) and the inhibitor of IRE1α, a key element of the unfolded protein response (UPR), support proteotoxic-induced cell death with strength in LMS cells and without effects on the survival of normal cells. Overall, our data provide an explanation for the higher susceptibility of LMS cells to proteotoxic stress and suggest a potential option for co-treatment strategies.
Collapse
Affiliation(s)
- Luca Iuliano
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Raffaella Picco
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Showmeya Mallavarapu
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Eleonora Malavasi
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy.
| |
Collapse
|
18
|
Knani I, Yanku Y, Gross-Cohen M, Ilan N, Vlodavsky I. Heparanase 2 (Hpa2) attenuates the growth of human sarcoma. Matrix Biol 2022; 113:22-38. [PMID: 36122821 DOI: 10.1016/j.matbio.2022.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
The pro-tumorigenic properties of heparanase are well documented and established. In contrast, the role of heparanase 2 (Hpa2), a close homolog of heparanase, in cancer is not entirely clear. In carcinomas, Hpa2 is thought to attenuate tumor growth, possibly by inhibiting heparanase enzymatic activity. Here, we examine the role of Hpa2 in sarcoma, a group of rare tumors of mesenchymal origin, accounting for approximately 1% of all malignant tumors. Consistently, we found that overexpression of Hpa2 attenuates tumor growth while Hpa2 gene silencing results in bigger tumors. Mechanistically, attenuation of tumor growth by Hpa2 was associated with increased tumor stress conditions, involving ER stress, hypoxia, and JNK phosphorylation, leading to increased apoptotic cell death. In addition, overexpression of Hpa2 induces the expression of the p53 family member, p63 which, in sarcoma, functions to attenuate tumor growth. Moreover, we show that Hpa2 profoundly reduces stem cell characteristics of the sarcoma cells (stemness), most evident by failure of Hpa2 cells to grow as spheroids typical of stem cells. Likewise, expression of CD44, a well-established stem cell marker, was prominently decreased in Hpa2 cells. CD44 is also a cell surface receptor for hyaluronic acid (HA), a nonsulfated glycosaminoglycan that is enriched in connective tissues. Reduced expression of CD44 by Hpa2 may thus represent impaired cross-talk between Hpa2 and the extracellular matrix. Clinically, we found that Hpa2 is expressed by leiomyosarcoma tumor biopsies. Interestingly, nuclear localization of Hpa2 was associated with low-stage tumors. This finding opens a new direction in Hpa2 research.
Collapse
Affiliation(s)
- Ibrahim Knani
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yifat Yanku
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Miriam Gross-Cohen
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
19
|
Nair R, Gupta P, Shanmugam M. Mitochondrial metabolic determinants of multiple myeloma growth, survival, and therapy efficacy. Front Oncol 2022; 12:1000106. [PMID: 36185202 PMCID: PMC9523312 DOI: 10.3389/fonc.2022.1000106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell dyscrasia characterized by the clonal proliferation of antibody producing plasma cells. Despite the use of next generation proteasome inhibitors (PI), immunomodulatory agents (IMiDs) and immunotherapy, the development of therapy refractory disease is common, with approximately 20% of MM patients succumbing to aggressive treatment-refractory disease within 2 years of diagnosis. A large emphasis is placed on understanding inter/intra-tumoral genetic, epigenetic and transcriptomic changes contributing to relapsed/refractory disease, however, the contribution of cellular metabolism and intrinsic/extrinsic metabolites to therapy sensitivity and resistance mechanisms is less well understood. Cancer cells depend on specific metabolites for bioenergetics, duplication of biomass and redox homeostasis for growth, proliferation, and survival. Cancer therapy, importantly, largely relies on targeting cellular growth, proliferation, and survival. Thus, understanding the metabolic changes intersecting with a drug's mechanism of action can inform us of methods to elicit deeper responses and prevent acquired resistance. Knowledge of the Warburg effect and elevated aerobic glycolysis in cancer cells, including MM, has allowed us to capitalize on this phenomenon for diagnostics and prognostics. The demonstration that mitochondria play critical roles in cancer development, progression, and therapy sensitivity despite the inherent preference of cancer cells to engage aerobic glycolysis has re-invigorated deeper inquiry into how mitochondrial metabolism regulates tumor biology and therapy efficacy. Mitochondria are the sole source for coupled respiration mediated ATP synthesis and a key source for the anabolic synthesis of amino acids and reducing equivalents. Beyond their core metabolic activities, mitochondria facilitate apoptotic cell death, impact the activation of the cytosolic integrated response to stress, and through nuclear and cytosolic retrograde crosstalk maintain cell fitness and survival. Here, we hope to shed light on key mitochondrial functions that shape MM development and therapy sensitivity.
Collapse
|
20
|
Parkhurst A, Wang SZ, Findlay TR, Malebranche KJ, Odabas A, Alt J, Maxwell MJ, Kaur H, Peer CJ, Figg WD, Warren KE, Slusher BS, Eberhart CG, Raabe EH, Rubens JA. Dual mTORC1/2 inhibition compromises cell defenses against exogenous stress potentiating Obatoclax-induced cytotoxicity in atypical teratoid/rhabdoid tumors. Cell Death Dis 2022; 13:410. [PMID: 35484114 PMCID: PMC9050713 DOI: 10.1038/s41419-022-04868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
AbstractAtypical teratoid/rhabdoid tumors (AT/RT) are the most common malignant brain tumors of infancy and have a dismal 4-year event-free survival (EFS) of 37%. We have previously shown that mTOR activation contributes to AT/RT’s aggressive growth and poor survival. Targeting the mTOR pathway with the dual mTORC1/2 inhibitor TAK-228 slows tumor growth and extends survival in mice bearing orthotopic xenografts. However, responses are primarily cytostatic with limited durability. The aim of this study is to understand the impact of mTOR inhibitors on AT/RT signaling pathways and design a rational combination therapy to drive a more durable response to this promising therapy. We performed RNASeq, gene expression studies, and protein analyses to identify pathways disrupted by TAK-228. We find that TAK-228 decreases the expression of the transcription factor NRF2 and compromises AT/RT cellular defenses against oxidative stress and apoptosis. The BH3 mimetic, Obatoclax, is a potent inducer of oxidative stress and apoptosis in AT/RT. These complementary mechanisms of action drive extensive synergies between TAK-228 and Obatoclax slowing AT/RT cell growth and inducing apoptosis and cell death. Combination therapy activates the integrative stress response as determined by increased expression of phosphorylated EIF2α, ATF4, and CHOP, and disrupts the protective NOXA.MCL-1.BIM axis, forcing stressed cells to undergo apoptosis. Combination therapy is well tolerated in mice bearing orthotopic xenografts of AT/RT, slows tumor growth, and extends median overall survival. This novel combination therapy could be added to standard upfront therapies or used as a salvage therapy for relapsed disease to improve outcomes in AT/RT.
Collapse
|
21
|
Lee DM, Seo MJ, Lee HJ, Jin HJ, Choi KS. ISRIB plus bortezomib triggers paraptosis in breast cancer cells via enhanced translation and subsequent proteotoxic stress. Biochem Biophys Res Commun 2022; 596:56-62. [PMID: 35114585 DOI: 10.1016/j.bbrc.2022.01.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/22/2022] [Indexed: 12/29/2022]
Abstract
Despite the success of proteasome inhibitors (PIs) in treating hematopoietic malignancies, including multiple myeloma (MM), their clinical efficacy is limited in solid tumors. In this study, we investigated the involvement of the integrated stress response (ISR), a central cellular adaptive program that responds to proteostatic defects by tuning protein synthesis rates, in determining the fates of cells treated with PI, bortezomib (Bz). We found that Bz induces ISR, and this can be reversed by ISRIB, a small molecule that restores eIF2B-mediated translation during ISR, in both Bz-sensitive MM cells and Bz-insensitive breast cancer cells. Interestingly, while ISRIB protected MM cells from Bz-induced apoptosis, it enhanced Bz sensitivity in breast cancer cells by inducing paraptosis, the cell death mode that is accompanied by dilation of the endoplasmic reticulum (ER) and mitochondria. Combined treatment with ISRIB and Bz may shift the fate of Bz-insensitive cancer cells toward paraptosis by inducing translational rescue, leading to irresolvable proteotoxic stress.
Collapse
Affiliation(s)
- Dong Min Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea
| | - Min Ji Seo
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea
| | - Hong Jae Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea
| | - Hyo Joon Jin
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea
| | - Kyeong Sook Choi
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
22
|
Rohde MM, Snyder CM, Sloop J, Solst SR, Donati GL, Spitz DR, Furdui CM, Singh R. The mechanism of cell death induced by silver nanoparticles is distinct from silver cations. Part Fibre Toxicol 2021; 18:37. [PMID: 34649580 PMCID: PMC8515661 DOI: 10.1186/s12989-021-00430-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/21/2021] [Indexed: 01/21/2023] Open
Abstract
Background Precisely how silver nanoparticles (AgNPs) kill mammalian cells still is not fully understood. It is not clear if AgNP-induced damage differs from silver cation (Ag+), nor is it known how AgNP damage is transmitted from cell membranes, including endosomes, to other organelles. Cells can differ in relative sensitivity to AgNPs or Ag+, which adds another layer of complexity to identifying specific mechanisms of action. Therefore, we determined if there were specific effects of AgNPs that differed from Ag+ in cells with high or low sensitivity to either toxicant. Methods Cells were exposed to intact AgNPs, Ag+, or defined mixtures of AgNPs with Ag+, and viability was assessed. The level of dissolved Ag+ in AgNP suspensions was determined using inductively coupled plasma mass spectrometry. Changes in reactive oxygen species following AgNP or Ag+ exposure were quantified, and treatment with catalase, an enzyme that catalyzes the decomposition of H2O2 to water and oxygen, was used to determine selectively the contribution of H2O2 to AgNP and Ag+ induced cell death. Lipid peroxides, formation of 4-hydroxynonenol protein adducts, protein thiol oxidation, protein aggregation, and activation of the integrated stress response after AgNP or Ag+ exposure were quantified. Lastly, cell membrane integrity and indications of apoptosis or necrosis in AgNP and Ag+ treated cells were examined by flow cytometry. Results We identified AgNPs with negligible Ag+ contamination. We found that SUM159 cells, which are a triple-negative breast cancer cell line, were more sensitive to AgNP exposure less sensitive to Ag+ compared to iMECs, an immortalized, breast epithelial cell line. This indicates that high sensitivity to AgNPs was not predictive of similar sensitivity to Ag+. Exposure to AgNPs increased protein thiol oxidation, misfolded proteins, and activation of the integrated stress response in AgNP sensitive SUM159 cells but not in iMEC cells. In contrast, Ag+ cause similar damage in Ag+ sensitive iMEC cells but not in SUM159 cells. Both Ag+ and AgNP exposure increased H2O2 levels; however, treatment with catalase rescued cells from Ag+ cytotoxicity but not from AgNPs. Instead, our data support a mechanism by which damage from AgNP exposure propagates through cells by generation of lipid peroxides, subsequent lipid peroxide mediated oxidation of proteins, and via generation of 4-hydroxynonenal (4-HNE) protein adducts. Conclusions There are distinct differences in the responses of cells to AgNPs and Ag+. Specifically, AgNPs drive cell death through lipid peroxidation leading to proteotoxicity and necrotic cell death, whereas Ag+ increases H2O2, which drives oxidative stress and apoptotic cell death. This work identifies a previously unknown mechanism by which AgNPs kill mammalian cells that is not dependent upon the contribution of Ag+ released in extracellular media. Understanding precisely which factors drive the toxicity of AgNPs is essential for biomedical applications such as cancer therapy, and of importance to identifying consequences of unintended exposures. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00430-1.
Collapse
Affiliation(s)
- Monica M Rohde
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA
| | - Christina M Snyder
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA
| | - John Sloop
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Shane R Solst
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston Salem, NC, 27157, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA. .,Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
23
|
Kumar S, Sánchez-Álvarez M, Lolo FN, Trionfetti F, Strippoli R, Cordani M. Autophagy and the Lysosomal System in Cancer. Cells 2021; 10:cells10102752. [PMID: 34685734 PMCID: PMC8534995 DOI: 10.3390/cells10102752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy and the lysosomal system, together referred to as the autophagolysosomal system, is a cellular quality control network which maintains cellular health and homeostasis by removing cellular waste including protein aggregates, damaged organelles, and invading pathogens. As such, the autophagolysosomal system has roles in a variety of pathophysiological disorders, including cancer, neurological disorders, immune- and inflammation-related diseases, and metabolic alterations, among others. The autophagolysosomal system is controlled by TFEB, a master transcriptional regulator driving the expression of multiple genes, including autophagoly sosomal components. Importantly, Reactive Oxygen Species (ROS) production and control are key aspects of the physiopathological roles of the autophagolysosomal system, and may hold a key for synergistic therapeutic interventions. In this study, we reviewed our current knowledge on the biology and physiopathology of the autophagolysosomal system, and its potential for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Correspondence: (S.K.); (R.S.)
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Fidel-Nicolás Lolo
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Raffaele Strippoli
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
- Correspondence: (S.K.); (R.S.)
| | | |
Collapse
|
24
|
Tian X, Zhang S, Zhou L, Seyhan AA, Hernandez Borrero L, Zhang Y, El-Deiry WS. Targeting the Integrated Stress Response in Cancer Therapy. Front Pharmacol 2021; 12:747837. [PMID: 34630117 PMCID: PMC8498116 DOI: 10.3389/fphar.2021.747837] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
The integrated stress response (ISR) is an evolutionarily conserved intra-cellular signaling network which is activated in response to intrinsic and extrinsic stresses. Various stresses are sensed by four specialized kinases, PKR-like ER kinase (PERK), general control non-derepressible 2 (GCN2), double-stranded RNA-dependent protein kinase (PKR) and heme-regulated eIF2α kinase (HRI) that converge on phosphorylation of serine 51 of eIF2α. eIF2α phosphorylation causes a global reduction of protein synthesis and triggers the translation of specific mRNAs, including activating transcription factor 4 (ATF4). Although the ISR promotes cell survival and homeostasis, when stress is severe or prolonged the ISR signaling will shift to regulate cellular apoptosis. We review the ISR signaling pathway, regulation and importance in cancer therapy.
Collapse
Affiliation(s)
- Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States.,Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States.,Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States.,Cancer Center at Brown University, Providence, RI, United States
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States.,Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States.,Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States.,Cancer Center at Brown University, Providence, RI, United States
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States.,Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States.,Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States.,Cancer Center at Brown University, Providence, RI, United States
| | - Attila A Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States.,Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States.,Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States.,Cancer Center at Brown University, Providence, RI, United States
| | - Liz Hernandez Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Yiqun Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States.,Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States.,Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States.,Cancer Center at Brown University, Providence, RI, United States.,Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
| |
Collapse
|
25
|
Jenkins EC, Chattopadhyay M, Germain D. Folding Mitochondrial-Mediated Cytosolic Proteostasis Into the Mitochondrial Unfolded Protein Response. Front Cell Dev Biol 2021; 9:715923. [PMID: 34631705 PMCID: PMC8495152 DOI: 10.3389/fcell.2021.715923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023] Open
Abstract
Several studies reported that mitochondrial stress induces cytosolic proteostasis. How mitochondrial stress activates proteostasis in the cytosol remains unclear. However, the cross-talk between the mitochondria and cytosolic proteostasis has far reaching implications for treatment of proteopathies including neurodegenerative diseases. This possibility appears within reach since selected drugs have begun to emerge as being able to stimulate mitochondrial-mediated cytosolic proteostasis. In this review, we focus on studies describing how mitochondrial stress activates proteostasis in the cytosol across multiple model organisms. A model is proposed linking mitochondrial-mediated regulation of cytosolic translation, folding capacity, ubiquitination, and proteasome degradation and autophagy as a multi layered control of cytosolic proteostasis that overlaps with the integrated stress response (ISR) and the mitochondrial unfolded protein response (UPRmt). By analogy to the conductor in an orchestra managing multiple instrumental sections into a dynamically integrated musical piece, the cross-talk between these signaling cascades places the mitochondria as a major conductor of cellular integrity.
Collapse
Affiliation(s)
- Edmund Charles Jenkins
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States
| | - Mrittika Chattopadhyay
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States
| | - Doris Germain
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States
| |
Collapse
|
26
|
Osteosarcoma in Children: Not Only Chemotherapy. Pharmaceuticals (Basel) 2021; 14:ph14090923. [PMID: 34577623 PMCID: PMC8471047 DOI: 10.3390/ph14090923] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is the most severe bone malignant tumor, responsible for altered osteoid deposition and with a high rate of metastasis. It is characterized by heterogeneity, chemoresistance and its interaction with bone microenvironment. The 5-year survival rate is about 67% for patients with localized OS, while it remains at 20% in case of metastases. The standard therapy for OS patients is represented by neoadjuvant chemotherapy, surgical resection, and adjuvant chemotherapy. The most used chemotherapy regimen for children is the combination of high-dose methotrexate, doxorubicin, and cisplatin. Considered that the necessary administration of high-dose chemotherapy is responsible for a lot of acute and chronic side effects, the identification of novel therapeutic strategies to ameliorate OS outcome and the patients' life expectancy is necessary. In this review we provide an overview on new possible innovative therapeutic strategies in OS.
Collapse
|
27
|
Vendramin R, Katopodi V, Cinque S, Konnova A, Knezevic Z, Adnane S, Verheyden Y, Karras P, Demesmaeker E, Bosisio FM, Kucera L, Rozman J, Gladwyn-Ng I, Rizzotto L, Dassi E, Millevoi S, Bechter O, Marine JC, Leucci E. Activation of the integrated stress response confers vulnerability to mitoribosome-targeting antibiotics in melanoma. J Exp Med 2021; 218:e20210571. [PMID: 34287642 PMCID: PMC8424468 DOI: 10.1084/jem.20210571] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
The ability to adapt to environmental stress, including therapeutic insult, contributes to tumor evolution and drug resistance. In suboptimal conditions, the integrated stress response (ISR) promotes survival by dampening cytosolic translation. We show that ISR-dependent survival also relies on a concomitant up-regulation of mitochondrial protein synthesis, a vulnerability that can be exploited using mitoribosome-targeting antibiotics. Accordingly, such agents sensitized to MAPK inhibition, thus preventing the development of resistance in BRAFV600E melanoma models. Additionally, this treatment compromised the growth of melanomas that exhibited elevated ISR activity and resistance to both immunotherapy and targeted therapy. In keeping with this, pharmacological inactivation of ISR, or silencing of ATF4, rescued the antitumoral response to the tetracyclines. Moreover, a melanoma patient exposed to doxycycline experienced complete and long-lasting response of a treatment-resistant lesion. Our study indicates that the repurposing of mitoribosome-targeting antibiotics offers a rational salvage strategy for targeted therapy in BRAF mutant melanoma and a therapeutic option for NRAS-driven and immunotherapy-resistant tumors.
Collapse
Affiliation(s)
- Roberto Vendramin
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Vicky Katopodi
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sonia Cinque
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Angelina Konnova
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Zorica Knezevic
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sara Adnane
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Yvessa Verheyden
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Oncology, Laboratory for Molecular Cancer Biology, Katholieke Universiteit Leuven, Belgium
| | - Ewout Demesmaeker
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Lukas Kucera
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jan Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | | | - Lara Rizzotto
- Trace, Leuven Cancer Institute, Katholieke Universiteit Leuven, Belgium
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Stefania Millevoi
- Cancer Research Centre of Toulouse, Institut national de la santé et de la recherche médicale Joint Research Unit 1037, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
- Laboratoire d’Excellence “TOUCAN,” Toulouse, France
| | - Oliver Bechter
- Department of General Medical Oncology, Leuven Cancer Institute, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Oncology, Laboratory for Molecular Cancer Biology, Katholieke Universiteit Leuven, Belgium
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
- Trace, Leuven Cancer Institute, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
28
|
Derisbourg MJ, Hartman MD, Denzel MS. Perspective: Modulating the integrated stress response to slow aging and ameliorate age-related pathology. NATURE AGING 2021; 1:760-768. [PMID: 35146440 PMCID: PMC7612338 DOI: 10.1038/s43587-021-00112-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy aging requires the coordination of numerous stress signaling pathways that converge on the protein homeostasis network. The Integrated Stress Response (ISR) is activated by diverse stimuli, leading to phosphorylation of the eukaryotic translation initiation factor elF2 in its α-subunit. Under replete conditions, elF2 orchestrates 5' cap-dependent mRNA translation and is thus responsible for general protein synthesis. elF2α phosphorylation, the key event of the ISR, reduces global mRNA translation while enhancing the expression of a signature set of stress response genes. Despite the critical role of protein quality control in healthy aging and in numerous longevity pathways, the role of the ISR in longevity remains largely unexplored. ISR activity increases with age, suggesting a potential link with the aging process. Although decreased protein biosynthesis, which occurs during ISR activation, have been linked to lifespan extension, recent data show that lifespan is limited by the ISR as its inhibition extends survival in nematodes and enhances cognitive function in aged mice. Here we survey how aging affects the ISR, the role of the ISR in modulating aging, and pharmacological interventions to tune the ISR. Finally, we will explore the ISR as a plausible target for clinical interventions in aging and age-related disease.
Collapse
Affiliation(s)
| | | | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- CECAD - Cluster of Excellence, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
29
|
Low Doses of Silver Nanoparticles Selectively Induce Lipid Peroxidation and Proteotoxic Stress in Mesenchymal Subtypes of Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13164217. [PMID: 34439373 PMCID: PMC8393662 DOI: 10.3390/cancers13164217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Molecular profiling of tumors shows that triple-negative breast cancer (TNBC) can be stratified into mesenchymal (claudin-low breast cancer; CLBC) and epithelial subtypes (basal-like breast cancer; BLBC). Subtypes differ in underlying genetics and in response to therapeutics. Several reports indicate that therapeutic strategies that induce lipid peroxidation or proteotoxicity may be particularly effective for various cancers with a mesenchymal phenotype such as CLBC, for which no specific treatment regimens exist and outcomes are poor. We hypothesized that silver nanoparticles (AgNPs) can induce proteotoxic stress and cause lipid peroxidation to a greater extent in CLBC than in BLBC. We found that AgNPs were lethal to CLBCs at doses that had little effect on BLBCs and were non-toxic to normal breast epithelial cells. Analysis of mRNA profiles indicated that sensitivity to AgNPs correlated with expression of multiple CLBC-associated genes. There was no correlation between sensitivity to AgNPs and sensitivity to silver cations, uptake of AgNPs, or proliferation rate, indicating that there are other molecular factors driving sensitivity to AgNPs. Mechanistically, we found that the differences in sensitivity of CLBC and BLBC cells to AgNPs were driven by peroxidation of lipids, protein oxidation and aggregation, and subsequent proteotoxic stress and apoptotic signaling, which were induced in AgNP-treated CLBC cells, but not in BLBC cells. This study shows AgNPs are a specific treatment for CLBC and indicates that stratification of TNBC subtypes may lead to improved outcomes for other therapeutics with similar mechanisms of action.
Collapse
|
30
|
Sannino S, Yates ME, Schurdak ME, Oesterreich S, Lee AV, Wipf P, Brodsky JL. Unique integrated stress response sensors regulate cancer cell susceptibility when Hsp70 activity is compromised. eLife 2021; 10:64977. [PMID: 34180400 PMCID: PMC8275131 DOI: 10.7554/elife.64977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Molecular chaperones, such as Hsp70, prevent proteotoxicity and maintain homeostasis. This is perhaps most evident in cancer cells, which overexpress Hsp70 and thrive even when harboring high levels of misfolded proteins. To define the response to proteotoxic challenges, we examined adaptive responses in breast cancer cells in the presence of an Hsp70 inhibitor. We discovered that the cells bin into distinct classes based on inhibitor sensitivity. Strikingly, the most resistant cells have higher autophagy levels, and autophagy was maximally activated only in resistant cells upon Hsp70 inhibition. In turn, resistance to compromised Hsp70 function required the integrated stress response transducer, GCN2, which is commonly associated with amino acid starvation. In contrast, sensitive cells succumbed to Hsp70 inhibition by activating PERK. These data reveal an unexpected route through which breast cancer cells adapt to proteotoxic insults and position GCN2 and autophagy as complementary mechanisms to ensure survival when proteostasis is compromised.
Collapse
Affiliation(s)
- Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Megan E Yates
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States.,Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, United States.,Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Mark E Schurdak
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States.,University of Pittsburgh Drug Discovery Institute, Pittsburgh, United States
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States.,Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States.,Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
31
|
Prokakis E, Dyas A, Grün R, Fritzsche S, Bedi U, Kazerouni ZB, Kosinsky RL, Johnsen SA, Wegwitz F. USP22 promotes HER2-driven mammary carcinoma aggressiveness by suppressing the unfolded protein response. Oncogene 2021; 40:4004-4018. [PMID: 34007022 PMCID: PMC8195738 DOI: 10.1038/s41388-021-01814-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/08/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
The Ubiquitin-Specific Protease 22 (USP22) is a deubiquitinating subunit of the mammalian SAGA transcriptional co-activating complex. USP22 was identified as a member of the so-called "death-from-cancer" signature predicting therapy failure in cancer patients. However, the importance and functional role of USP22 in different types and subtypes of cancer remain largely unknown. In the present study, we leveraged human cell lines and genetic mouse models to investigate the role of USP22 in HER2-driven breast cancer (HER2+-BC) and demonstrate for the first time that USP22 is required for the tumorigenic properties in murine and human HER2+-BC models. To get insight into the underlying mechanisms, we performed transcriptome-wide gene expression analyses and identified the Unfolded Protein Response (UPR) as a pathway deregulated upon USP22 loss. The UPR is normally induced upon extrinsic or intrinsic stresses that can promote cell survival and recovery if shortly activated or programmed cell death if activated for an extended period. Strikingly, we found that USP22 actively suppresses UPR induction in HER2+-BC cells by stabilizing the major endoplasmic reticulum (ER) chaperone HSPA5. Consistently, loss of USP22 renders tumor cells more sensitive to apoptosis and significantly increases the efficiency of therapies targeting the ER folding capacity. Together, our data suggest that therapeutic strategies targeting USP22 activity may sensitize tumor cells to UPR induction and could provide a novel, effective approach to treat HER2+-BC.
Collapse
Affiliation(s)
- Evangelos Prokakis
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Anna Dyas
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Regina Grün
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Sonja Fritzsche
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Upasana Bedi
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Zahra B Kazerouni
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Robyn L Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
32
|
Iuliano L, Drioli S, Pignochino Y, Cafiero CM, Minisini M, D'Este F, Picco R, Dalla E, Giordano G, Grignani G, Di Giorgio E, Benedetti F, Felluga F, Brancolini C. Enhancing Proteotoxic Stress in Leiomyosarcoma Cells Triggers Mitochondrial Dysfunctions, Cell Death, and Antitumor Activity in vivo. Mol Cancer Ther 2021; 20:1039-1051. [PMID: 33785653 DOI: 10.1158/1535-7163.mct-20-0521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/27/2020] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Leiomyosarcomas are rare and aggressive tumors characterized by a complex karyotype. Surgical resection with or without radiotherapy and chemotherapy is the standard curative treatment. Unfortunately, a high percentage of leiomyosarcomas recurs and metastasizes. In these cases, doxorubicin and ifosfamide represent the standard treatment but with low response rates. Here, we evaluated the induction of proteotoxic stress as a possible strategy to kill leiomyosarcoma cells in a therapeutic perspective. We show that aggressive leiomyosarcomas coexist with high levels of proteotoxic stress. As a consequence, we hypothesized that leiomyosarcoma cells are vulnerable to further increases of proteotoxic stress. The small compound 2c is a strong inducer of proteotoxic stress. In leiomyosarcoma cells, it triggers cell death coupled to a profound reorganization of the mitochondrial network. By using stimulated emission depletion microscopy, we have unveiled the existence of DIABLO/SMAC clusters that are modulated by 2c. Finally, we have engineered a new version of 2c linked to polyethylene glycol though a short peptide, named 2cPP. This new prodrug is specifically activated by proteases present in the tumor microenvironment. 2cPP shows a strong antitumor activity in vivo against leiomyosarcomas and no toxicity against normal cells.
Collapse
Affiliation(s)
- Luca Iuliano
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Sara Drioli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, c/o San Luigi Gonzaga Hospital, Orbassano, Torino, Italy.,Sarcoma Unit, Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Claudia Maria Cafiero
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Francesca D'Este
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Raffaella Picco
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Giorgia Giordano
- Sarcoma Unit, Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Giovanni Grignani
- Sarcoma Unit, Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Fabio Benedetti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | - Fulvia Felluga
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | | |
Collapse
|
33
|
Keenan J, Meleady P, O'Doherty C, Henry M, Clynes M, Horgan K, Murphy R, O'Sullivan F. Copper toxicity of inflection point in human intestinal cell line Caco-2 dissected: influence of temporal expression patterns. In Vitro Cell Dev Biol Anim 2021; 57:359-371. [PMID: 33559028 DOI: 10.1007/s11626-020-00540-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
We previously described a non-monotonic dose response curve at low copper concentrations where 3.125 μM CuSO4 (the early inflection point) was more toxic than 25 μM CuSO4 in Caco-2 cells. We employed global proteomics to investigate this observation. The altered expression levels of a small number of proteins displaying a temporal response may provide the best indication of the underlying mechanism; more well-known copper response proteins including the metal binding metallothioneins (MT1X, MT1F, MT2A) and antioxidant response proteins including Heme oxygenase were upregulated to a similar level in both copper concentrations and so are less likely to underpin this phenomenon.The temporal response proteins include Granulins, AN1-type zinc finger protein 2A (ZFAND2A), and the heat shock proteins (HSPA6 and HSPA1B). Granulins were decreased after 4 h only in 25 μM CuSO4 but from 24 h, were decreased in both copper concentrations to a similar level. Induction of ZFAND2A and increases in HSPA6 and HSPA1B were observed at 24 h only in 25 μM CuSO4 but were present at 48 h in both copper conditions. The early expression of ZFAND2A, HSPs, and higher levels of α-crystallin B (CRYAB) correlated with lower levels of misfolded proteins in 25 μM CuSO4 compared to 3.125 μM CuSO4 at 48 h. These results suggest that 3.125 μM CuSO4 at early time points was unable to activate the plethora of stress responses invoked by the higher copper concentration, paradoxically exposing the Caco-2 cells to higher levels of misfolded proteins and greater proteotoxic stress.
Collapse
Affiliation(s)
- Joanne Keenan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 09 W6Y4, Ireland.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 09 W6Y4, Ireland
| | - Charles O'Doherty
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 09 W6Y4, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 09 W6Y4, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 09 W6Y4, Ireland
| | | | | | - Finbarr O'Sullivan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 09 W6Y4, Ireland
| |
Collapse
|
34
|
Chu HS, Peterson C, Jun A, Foster J. Targeting the integrated stress response in ophthalmology. Curr Eye Res 2021; 46:1075-1088. [PMID: 33474991 DOI: 10.1080/02713683.2020.1867748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose: To summarize the Integrated Stress Response (ISR) in the context of ophthalmology, with special interest on the cornea and anterior segment. Results: The ISR is a powerful and conserved signaling pathway that allows for cells to respond to a diverse array of both intracellular and extracellular stressors. The pathway is classically responsible for coordination of the cellular response to amino acid starvation, ultraviolet light, heme dysregulation, viral infection, and unfolded protein. Under normal circumstances, it is considered pro-survival and a necessary mechanism through which protein translation is controlled. However, in cases of severe or prolonged stress the pathway can promote apoptosis, and loss of normal cellular phenotype. The activation of this pathway culminates in the global inhibition of cap-dependent protein translation and the canonical expression of the activating transcription factor 4 (ATF4). Conclusion:The eye is uniquely exposed to ISR responsive stressors due to its environmental exposure and relative isolation from the circulatory system which are necessary for its function. We will discuss how this pathway is critical for the proper function of the tissue, its role in development, as well as how targeting of the pathway could alleviate key aspects of diverse ophthalmic diseases.
Collapse
Affiliation(s)
- Hsiao-Sang Chu
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.,Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Cornelia Peterson
- Department of Molecular & Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, USA
| | - Albert Jun
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - James Foster
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
35
|
Smith RCL, Kanellos G, Vlahov N, Alexandrou C, Willis AE, Knight JRP, Sansom OJ. Translation initiation in cancer at a glance. J Cell Sci 2021; 134:jcs248476. [PMID: 33441326 DOI: 10.1242/jcs.248476] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell division, differentiation and function are largely dependent on accurate proteome composition and regulated gene expression. To control this, protein synthesis is an intricate process governed by upstream signalling pathways. Eukaryotic translation is a multistep process and can be separated into four distinct phases: initiation, elongation, termination and recycling of ribosomal subunits. Translation initiation, the focus of this article, is highly regulated to control the activity and/or function of eukaryotic initiation factors (eIFs) and permit recruitment of mRNAs to the ribosomes. In this Cell Science at a Glance and accompanying poster, we outline the mechanisms by which tumour cells alter the process of translation initiation and discuss how this benefits tumour formation, proliferation and metastasis.
Collapse
Affiliation(s)
- Rachael C L Smith
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, G61 1QH, UK
| | - Georgios Kanellos
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Nikola Vlahov
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QW, UK
| | - John R P Knight
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Owen J Sansom
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, G61 1QH, UK
| |
Collapse
|
36
|
Abstract
Therapeutic resistance continues to be an indominable foe in our ambition for curative cancer treatment. Recent insights into the molecular determinants of acquired treatment resistance in the clinical and experimental setting have challenged the widely held view of sequential genetic evolution as the primary cause of resistance and brought into sharp focus a range of non-genetic adaptive mechanisms. Notably, the genetic landscape of the tumour and the non-genetic mechanisms used to escape therapy are frequently linked. Remarkably, whereas some oncogenic mutations allow the cancer cells to rapidly adapt their transcriptional and/or metabolic programme to meet and survive the therapeutic pressure, other oncogenic drivers convey an inherent cellular plasticity to the cancer cell enabling lineage switching and/or the evasion of anticancer immunosurveillance. The prevalence and diverse array of non-genetic resistance mechanisms pose a new challenge to the field that requires innovative strategies to monitor and counteract these adaptive processes. In this Perspective we discuss the key principles of non-genetic therapy resistance in cancer. We provide a perspective on the emerging data from clinical studies and sophisticated cancer models that have studied various non-genetic resistance pathways and highlight promising therapeutic avenues that may be used to negate and/or counteract the non-genetic adaptive pathways.
Collapse
Affiliation(s)
- Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
- Center for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia.
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
- Center for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
37
|
Abstract
![]()
The biological responses to dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl
pharmacophore have been studied extensively. Despite their expected
general thiol reactivity, these compounds display considerable degrees
of tumor cell selectivity. Here we review in vitro and preclinical studies of dienone compounds including b-AP15, VLX1570,
RA-9, RA-190, EF24, HO-3867, and MCB-613. A common property of these
compounds is their targeting of the ubiquitin–proteasome system
(UPS), known to be essential for the viability of tumor cells. Gene
expression profiling experiments have shown induction of responses
characteristic of UPS inhibition, and experiments using cellular reporter
proteins have shown that proteasome inhibition is associated with
cell death. Other mechanisms of action such as reactivation of mutant
p53, stimulation of steroid receptor coactivators, and induction of
protein cross-linking have also been described. Although unsuitable
as biological probes due to widespread reactivity, dienone compounds
are cytotoxic to apoptosis-resistant tumor cells and show activity
in animal tumor models.
Collapse
Affiliation(s)
- Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stig Linder
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-58183 Linköping, Sweden.,Department of Oncology and Pathology, Karolinska Institute, SE-17176 Stockholm, Sweden
| |
Collapse
|
38
|
DENR promotes translation reinitiation via ribosome recycling to drive expression of oncogenes including ATF4. Nat Commun 2020; 11:4676. [PMID: 32938922 PMCID: PMC7494916 DOI: 10.1038/s41467-020-18452-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
Translation efficiency varies considerably between different mRNAs, thereby impacting protein expression. Translation of the stress response master-regulator ATF4 increases upon stress, but the molecular mechanisms are not well understood. We discover here that translation factors DENR, MCTS1 and eIF2D are required to induce ATF4 translation upon stress by promoting translation reinitiation in the ATF4 5'UTR. We find DENR and MCTS1 are only needed for reinitiation after upstream Open Reading Frames (uORFs) containing certain penultimate codons, perhaps because DENR•MCTS1 are needed to evict only certain tRNAs from post-termination 40S ribosomes. This provides a model for how DENR and MCTS1 promote translation reinitiation. Cancer cells, which are exposed to many stresses, require ATF4 for survival and proliferation. We find a strong correlation between DENR•MCTS1 expression and ATF4 activity across cancers. Furthermore, additional oncogenes including a-Raf, c-Raf and Cdk4 have long uORFs and are translated in a DENR•MCTS1 dependent manner.
Collapse
|
39
|
Proteotoxic Stress and Cell Death in Cancer Cells. Cancers (Basel) 2020; 12:cancers12092385. [PMID: 32842524 PMCID: PMC7563887 DOI: 10.3390/cancers12092385] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
To maintain proteostasis, cells must integrate information and activities that supervise protein synthesis, protein folding, conformational stability, and also protein degradation. Extrinsic and intrinsic conditions can both impact normal proteostasis, causing the appearance of proteotoxic stress. Initially, proteotoxic stress elicits adaptive responses aimed at restoring proteostasis, allowing cells to survive the stress condition. However, if the proteostasis restoration fails, a permanent and sustained proteotoxic stress can be deleterious, and cell death ensues. Many cancer cells convive with high levels of proteotoxic stress, and this condition could be exploited from a therapeutic perspective. Understanding the cell death pathways engaged by proteotoxic stress is instrumental to better hijack the proliferative fate of cancer cells.
Collapse
|
40
|
Bohlen J, Fenzl K, Kramer G, Bukau B, Teleman AA. Selective 40S Footprinting Reveals Cap-Tethered Ribosome Scanning in Human Cells. Mol Cell 2020; 79:561-574.e5. [DOI: 10.1016/j.molcel.2020.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/10/2020] [Accepted: 05/18/2020] [Indexed: 11/27/2022]
|
41
|
Pellegrini P, Selvaraju K, Faustini E, Mofers A, Zhang X, Ternerot J, Schubert A, Linder S, D′Arcy P. Induction of ER Stress in Acute Lymphoblastic Leukemia Cells by the Deubiquitinase Inhibitor VLX1570. Int J Mol Sci 2020; 21:ijms21134757. [PMID: 32635430 PMCID: PMC7369842 DOI: 10.3390/ijms21134757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
The proteasome is a validated target of cancer therapeutics. Inhibition of proteasome activity results in the activation of the unfolded protein response (UPR) characterized by phosphorylation of eukaryotic initiation factor 2α (eIF2α), global translational arrest, and increased expression of the proapoptotic CHOP (C/EBP homologous protein) protein. Defects in the UPR response has been reported to result in altered sensitivity of tumor cells to proteasome inhibitors. Here, we characterized the effects of the deubiquitinase (DUB) inhibitor VLX1570 on protein homeostasis, both at the level of the UPR and on protein translation, in acute lymphoblastic leukemia (ALL). Similar to the 20S inhibitor bortezomib, VLX1570 induced accumulation of polyubiquitinated proteins and increased expression of the chaperone Grp78/Bip in ALL cells. Both compounds induced cleavage of PARP (Poly (ADP-ribose) polymerase) in ALL cells, consistent with induction of apoptosis. However, and in contrast to bortezomib, VLX1570 treatment resulted in limited induction of the proapoptotic CHOP protein. Translational inhibition was observed by both bortezomib and VLX1570. We report that in distinction to bortezomib, suppression of translation by VXL1570 occurred at the level of elongation. Increased levels of Hsc70/Hsp70 proteins were observed on polysomes following exposure to VLX1570, possibly suggesting defects in nascent protein folding. Our findings demonstrate apoptosis induction in ALL cells that appears to be uncoupled from CHOP induction, and show that VLX1570 suppresses protein translation by a mechanism distinct from that of bortezomib.
Collapse
Affiliation(s)
- Paola Pellegrini
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Karthik Selvaraju
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Elena Faustini
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Arjan Mofers
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Xiaonan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden;
| | - Jens Ternerot
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Alice Schubert
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Stig Linder
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
- Department of Oncology-Pathology, Karolinska Institute, S-17176 Stockholm, Sweden
| | - Pádraig D′Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
- Correspondence:
| |
Collapse
|
42
|
Hamada Y, Furumoto Y, Izutani A, Taniuchi S, Miyake M, Oyadomari M, Teranishi K, Shimomura N, Oyadomari S. Nanosecond pulsed electric fields induce the integrated stress response via reactive oxygen species-mediated heme-regulated inhibitor (HRI) activation. PLoS One 2020; 15:e0229948. [PMID: 32155190 PMCID: PMC7064201 DOI: 10.1371/journal.pone.0229948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
The integrated stress response (ISR) is one of the most important cytoprotective mechanisms and is integrated by phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Four eIF2α kinases, heme-regulated inhibitor (HRI), double-stranded RNA-dependent protein kinase (PKR), PKR-like endoplasmic reticulum kinase (PERK), and general control nonderepressible 2 (GCN2), are activated in response to several stress conditions. We previously reported that nanosecond pulsed electric fields (nsPEFs) are a potential therapeutic tool for ISR activation. In this study, we examined which eIF2α kinase is activated by nsPEF treatment. To assess the responsible eIF2α kinase, we used previously established eIF2α kinase quadruple knockout (4KO) and single eIF2α kinase-rescued 4KO mouse embryonic fibroblast (MEF) cells. nsPEFs 70 ns in duration with 30 kV/cm electric fields caused eIF2α phosphorylation in wild-type (WT) MEF cells. On the other hand, nsPEF-induced eIF2α phosphorylation was completely abolished in 4KO MEF cells and was recovered by HRI overexpression. CM-H2DCFDA staining showed that nsPEFs generated reactive oxygen species (ROS), which activated HRI. nsPEF-induced eIF2α phosphorylation was blocked by treatment with the ROS scavenger N-acetyl-L-cysteine (NAC). Our results indicate that the eIF2α kinase HRI is responsible for nsPEF-induced ISR activation and is activated by nsPEF-generated ROS.
Collapse
Affiliation(s)
- Yoshimasa Hamada
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Yuji Furumoto
- Institute of Technology and Science, Tokushima University, Tokushima, Japan
| | - Akira Izutani
- Institute of Technology and Science, Tokushima University, Tokushima, Japan
| | - Shusuke Taniuchi
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Department of Molecular Physiology, Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masato Miyake
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Department of Molecular Physiology, Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Miho Oyadomari
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Kenji Teranishi
- Institute of Technology and Science, Tokushima University, Tokushima, Japan
| | - Naoyuki Shimomura
- Institute of Technology and Science, Tokushima University, Tokushima, Japan
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Department of Molecular Physiology, Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- * E-mail:
| |
Collapse
|
43
|
Akhter Y, Nabi J, Hamid H, Tabassum N, Pottoo FH, Sharma A. Protein Quality Control in Neurodegeneration and Neuroprotection. QUALITY CONTROL OF CELLULAR PROTEIN IN NEURODEGENERATIVE DISORDERS 2020. [DOI: 10.4018/978-1-7998-1317-0.ch001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteostasis is essential for regulating the integrity of the proteome. Disruption of proteostasis under some rigorous conditions leads to the aggregation and accumulation of misfolded toxic proteins, which plays a central role in the pathogenesis of protein conformational disorders. The protein quality control (PQC) system serves as a multi-level security system to shield cells from abnormal proteins. The intrinsic PQC systems maintaining proteostasis include the ubiquitin-proteasome system (UPS), chaperon-mediated autophagy (CMA), and autophagy-lysosome pathway (ALP) that serve to target misfolded proteins for unfolding, refolding, or degradation. Alterations of PQC systems in neurons have been implicated in the pathogenesis of various neurodegenerative disorders. This chapter provides an overview of PQC pathways to set a framework for discussion of the role of PQC in neurodegenerative disorders. Additionally, various pharmacological approaches targeting PQC are summarized.
Collapse
Affiliation(s)
- Yasmeena Akhter
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Jahangir Nabi
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Hinna Hamid
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Faheem Hyder Pottoo
- Department of Pharmaology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Aashish Sharma
- Centre for Research in Medical Devices (CURAM), National University of Ireland, Ireland & School of Medical and Allied Sciences, GD Goenka University, Gurgaon, India
| |
Collapse
|
44
|
McHugh A, Fernandes K, Chinner N, Ibrahim AFM, Garg AK, Boag G, Hepburn LA, Proby CM, Leigh IM, Saville MK. The Identification of Potential Therapeutic Targets for Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2019; 140:1154-1165.e5. [PMID: 31705877 PMCID: PMC7254059 DOI: 10.1016/j.jid.2019.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
We performed a small interfering RNA screen to identify targets for cutaneous squamous cell carcinoma (cSCC) therapy in the ubiquitin/ubiquitin-like system. We provide evidence for selective anti-cSCC activity of knockdown of the E3 ubiquitin ligase MARCH4, the ATPase p97/VCP, the deubiquitinating enzyme USP8, the cullin-RING ligase (CRL) 4 substrate receptor CDT2/DTL, and components of the anaphase-promoting complex/cyclosome (APC/C). Specifically attenuating CRL4CDT2 by CDT2 knockdown can be more potent in killing cSCC cells than targeting CRLs or CRL4s in general by RBX1 or DDB1 depletion. Suppression of the APC/C or forced APC/C activation by targeting its repressor EMI1 are both potential therapeutic approaches. We observed that cSCC cells can be selectively killed by small-molecule inhibitors of USP8 (DUBs-IN-3/compound 22c) and the NEDD8 E1 activating enzyme/CRLs (MLN4924/pevonedistat). A substantial proportion of cSCC cell lines are very highly MLN4924-sensitive. Pathways that respond to defects in proteostasis are involved in the anti-cSCC activity of p97 suppression. Targeting USP8 can reduce the expression of growth factor receptors that participate in cSCC development. EMI1 and CDT2 depletion can selectively cause DNA re-replication and DNA damage in cSCC cells.
Collapse
Affiliation(s)
- Angela McHugh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Kenneth Fernandes
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Nerime Chinner
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Adel F M Ibrahim
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Amit K Garg
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Garry Boag
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Lydia A Hepburn
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Charlotte M Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom; Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Irene M Leigh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom; Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mark K Saville
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
45
|
Ramkumar B, Dharaskar SP, Mounika G, Paithankar K, Sreedhar AS. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion 2019; 50:42-50. [PMID: 31669620 DOI: 10.1016/j.mito.2019.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022]
Abstract
The stress response forms the most ancient defense system in living cells. Heat shock proteins (Hsps) are highly conserved across species and play major roles in mounting the stress response. The emerging information now suggests that Hsp90 family of chaperones display additional cellular roles contributing to diseases like cancer. For this reason, pharmacological targeting of Hsp90 has emerged as a novel antitumor strategy. However, its mitochondrial homologue TRAP1 has not been implicated in cancer with conclusive mechanistic insights. Since understanding the mutational spectrum of cancer cells indicates the outcome of the disease as well as treatment response, we examined mutational spectrum of TRAP1. Our in silico analyses of TRAP1 SNPs and CNVs correlated with the aggressive cancer phenotypes, and are found to be predominant over Hsp90 itself. The increased CNVs have been correlated with increased expression of TRAP1 in metastatic cancer cells, increased ATP production, and decreased oxygen consumption rate of mitochondria. Examining TRAP1 knockdown as well as over expression in metastatic cancer cells furthered our understanding that TRAP1 likely to facilitate the altered energy metabolism in the functional compromise of mitochondrial OXPHOS. Interestingly, the increased ATP levels in the TRAP1 background are found to be independent of glucose oxidation. Our results suggest TRAP1 role in triggering the alternate energy metabolism in cancer cells. Since targeting tumor metabolism is considered as an alternate strategy to combat cancer, we propose pharmacological targeting of TRAP1 to target alternate energy metabolism.
Collapse
Affiliation(s)
- Balaji Ramkumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Shrikant P Dharaskar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India; Academy of Scientific & Innovation Research, Government of India, India
| | - Guntipally Mounika
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Khanderao Paithankar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Amere Subbarao Sreedhar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India.
| |
Collapse
|
46
|
Sánchez-Álvarez M, Strippoli R, Donadelli M, Bazhin AV, Cordani M. Sestrins as a Therapeutic Bridge between ROS and Autophagy in Cancer. Cancers (Basel) 2019; 11:cancers11101415. [PMID: 31546746 PMCID: PMC6827145 DOI: 10.3390/cancers11101415] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
The regulation of Reactive Oxygen Species (ROS) levels and the contribution therein from networks regulating cell metabolism, such as autophagy and the mTOR-dependent nutrient-sensing pathway, constitute major targets for selective therapeutic intervention against several types of tumors, due to their extensive rewiring in cancer cells as compared to healthy cells. Here, we discuss the sestrin family of proteins—homeostatic transducers of oxidative stress, and drivers of antioxidant and metabolic adaptation—as emerging targets for pharmacological intervention. These adaptive regulators lie at the intersection of those two priority nodes of interest in antitumor intervention—ROS control and the regulation of cell metabolism and autophagy—therefore, they hold the potential not only for the development of completely novel compounds, but also for leveraging on synergistic strategies with current options for tumor therapy and classification/stadiation to achieve personalized medicine.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid 28029, Spain.
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy.
- Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome 00161, Italy.
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona 37134, Italy.
| | - Alexandr V Bazhin
- Department of General, Visceral and Transplantation Surgery, Ludwig-Maximilians University, Munich 81377, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich 80366, Germany.
| | - Marco Cordani
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain..
| |
Collapse
|
47
|
What sustains the multidrug resistance phenotype beyond ABC efflux transporters? Looking beyond the tip of the iceberg. Drug Resist Updat 2019; 46:100643. [PMID: 31493711 DOI: 10.1016/j.drup.2019.100643] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Identification of multidrug (MDR) efflux transporters that belong to the ATP-Binding Cassette (ABC) superfamily, represented an important breakthrough for understanding cancer multidrug resistance (MDR) and its possible overcoming. However, recent data indicate that drug resistant cells have a complex intracellular physiology that involves constant changes in energetic and oxidative-reductive metabolic pathways, as well as in the molecular circuitries connecting mitochondria, endoplasmic reticulum (ER) and lysosomes. The aim of this review is to discuss the key molecular mechanisms of cellular reprogramming that induce and maintain MDR, beyond the presence of MDR efflux transporters. We specifically highlight how cancer cells characterized by high metabolic plasticity - i.e. cells able to shift the energy metabolism between glycolysis and oxidative phosphorylation, to survive both the normoxic and hypoxic conditions, to modify the cytosolic and mitochondrial oxidative-reductive metabolism, are more prone to adapt to exogenous stressors such as anti-cancer drugs and acquire a MDR phenotype. Similarly, we discuss how changes in mitochondria dynamics and mitophagy rates, changes in proteome stability ensuring non-oncogenic proteostatic mechanisms, changes in ubiquitin/proteasome- and autophagy/lysosome-related pathways, promote the cellular survival under stress conditions, along with the acquisition or maintenance of MDR. After dissecting the complex intracellular crosstalk that takes place during the development of MDR, we suggest that mapping the specific adaptation pathways underlying cell survival in response to stress and targeting these pathways with potent pharmacologic agents may be a new approach to enhance therapeutic efficacy against MDR tumors.
Collapse
|
48
|
Targeting Proteotoxic Stress in Cancer: A Review of the Role that Protein Quality Control Pathways Play in Oncogenesis. Cancers (Basel) 2019; 11:cancers11010066. [PMID: 30634515 PMCID: PMC6356294 DOI: 10.3390/cancers11010066] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/24/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Despite significant advances in cancer diagnostics and therapeutics the majority of cancer unfortunately remains incurable, which has led to continued research to better understand its exceptionally diverse biology. As a result of genomic instability, cancer cells typically have elevated proteotoxic stress. Recent appreciation of this functional link between the two secondary hallmarks of cancer: aneuploidy (oxidative stress) and proteotoxic stress, has therefore led to the development of new anticancer therapies targeting this emerging “Achilles heel” of malignancy. This review highlights the importance of managing proteotoxic stress for cancer cell survival and provides an overview of the integral role proteostasis pathways play in the maintenance of protein homeostasis. We further review the efforts undertaken to exploit proteotoxic stress in multiple myeloma (as an example of a hematologic malignancy) and triple negative breast cancer (as an example of a solid tumor), and give examples of: (1) FDA-approved therapies in routine clinical use; and (2) promising therapies currently in clinical trials. Finally, we provide new insights gleaned from the use of emerging technologies to disrupt the protein secretory pathway and repurpose E3 ligases to achieve targeted protein degradation.
Collapse
|
49
|
The Autophagy-Lysosomal Pathways and Their Emerging Roles in Modulating Proteostasis in Tumors. Cells 2018; 8:cells8010004. [PMID: 30577555 PMCID: PMC6356230 DOI: 10.3390/cells8010004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
In normal physiological condition, the maintenance of cellular proteostasis is a prerequisite for cell growth, functioning, adapting to changing micro-environments, and responding to extracellular stress. Cellular proteostasis is maintained by specific proteostasis networks (PNs) to prevent protein misfolding, aggregating, and accumulating in subcellular compartments. Commonly, the PNs are composed of protein synthesis, molecular chaperones, endoplasmic reticulum (ER), unfolded protein response (UPR), stress response pathways (SRPs), secretions, ubiquitin proteasome system (UPS), and autophagy-lysosomal pathways (ALPs). Although great efforts have been made to explore the underlying detailed mechanisms of proteostasis, there are many questions remain to explore, especially in proteostasis regulated by the ALPs. Proteostasis out-off-balance is correlated with various human diseases such as diabetes, stroke, inflammation, hypertension, pulmonary fibrosis, and Alzheimer’s disease. Enhanced regulation of PNs is observed in tumors, thereby indicating that proteostasis may play a pivotal role in tumorigenesis and cancer development. Recently, inhibitors targeting the UPS have shown to be failed in solid tumor treatment. However, there is growing evidence showing that the ALPs play important roles in regulation of proteostasis alone or with a crosstalk with other PNs in tumors. In this review, we provide insights into the proteostatic process and how it is regulated by the ALPs, such as macroautophagy, aggrephagy, chaperone-mediated autophagy, microautophagy, as well as mitophagy during tumor development.
Collapse
|
50
|
Heck CJS, Hamlin AN, Bumpus NN. Efavirenz and Efavirenz-like Compounds Activate Human, Murine, and Macaque Hepatic IRE1 α-XBP1. Mol Pharmacol 2018; 95:183-195. [PMID: 30442673 DOI: 10.1124/mol.118.113647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
Efavirenz (EFV), a widely used antiretroviral drug, is associated with idiosyncratic hepatotoxicity and dyslipidemia. Here we demonstrate that EFV stimulates the activation in primary hepatocytes of key cell stress regulators: inositol-requiring 1α (IRE1α) and X-box binding protein 1 (XBP1). Following EFV exposure, XBP1 splicing (indicating activation) was increased 35.7-fold in primary human hepatocytes. In parallel, XBP1 splicing and IRE1α phosphorylation (p-IRE1α, active IRE1α) were elevated 36.4-fold and 4.9-fold, respectively, in primary mouse hepatocytes. Of note, with EFV treatment, 47.2% of mouse hepatocytes were apoptotic; which was decreased to 23.9% in the presence of STF 083010, an inhibitor of XBP1 splicing. Experiments performed using pregnane X receptor (PXR)-null mouse hepatocytes revealed that EFV-mediated XBP1 splicing and hepatocyte death were not dependent on PXR, which is a nuclear receptor transcription factor that plays a crucial role in the cellular response to xenobiotics. Interestingly, incubation with the primary metabolite of EFV, 8-hydroxyefavirenz (8-OHEFV), only resulted in 10.3- and 2.9-fold increased XBP1 splicing in human and mouse hepatocytes and no change in levels of p-IRE1α in mouse hepatocytes. To further probe the structure-activity relationship of IRE1α-XBP1 activation by EFV, 16 EFV analogs were employed. Of these, an analog in which the EFV alkyne is replaced with an alkene and an analog in which the oxazinone oxygen is replaced by a carbon stimulated XBP1 splicing in human, mouse, and macaque hepatocytes. These data demonstrate that EFV and compounds sharing the EFV scaffold can activate IRE1α-XBP1 across human, mouse, and macaque species.
Collapse
Affiliation(s)
- Carley J S Heck
- Department of Pharmacology and Molecular Sciences (C.J.S.H., N.N.B.) and Department of Medicine, Division of Clinical Pharmacology (A.N.H., N.N.B.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Allyson N Hamlin
- Department of Pharmacology and Molecular Sciences (C.J.S.H., N.N.B.) and Department of Medicine, Division of Clinical Pharmacology (A.N.H., N.N.B.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences (C.J.S.H., N.N.B.) and Department of Medicine, Division of Clinical Pharmacology (A.N.H., N.N.B.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|