1
|
Feng H, Wang F, Li J, Wu Q, Cui Y, He L, Liu X, Liu Z, Qian D, Tong H. Tuning the Fe/Co ratio towards a bimetallic Prussian blue analogue for the ultrasensitive electrochemical sensing of 5-hydroxytryptamine. Talanta 2023; 254:124138. [PMID: 36463803 DOI: 10.1016/j.talanta.2022.124138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Lack of highly efficient, inexpensive, and easily available catalysts severely limits the practical applicability of electrochemically sensing assay towards 5-hydroxytryptamine (5-HT). Herein, four kinds of Fe-Co bimetallic Prussian blue analogues (FeCo-PBAs) with different molar ratios of Fe to Co were prepared using a simple coprecipitation method. Interestingly, Fe(III) in K3 [Fe(CN)6] can be reduced to Fe(II) by adding trisodium citrate dehydrate, which could offer a new clue to synthesize PBAs with Fe(II) core ions. With the optimizational FeCo-PBA synthesized at a 0.5/1 M ratio of Fe to Co as an electrocatalyst, the constructed sensor shows excellent comprehensive performance for the 5-HT assay with a high sensitivity of 0.856 μA μM-1 and an ultralow detection limit of 8.4 nM. Under the optimum conditions, linearity was obtained in the ranges of 0.1-10.0 μM and 10.0-200.0 μM and preferable recoveries ranged from 97.8% to 103.0% with relative standard deviation (RSD) < 4.0%. The integrated properties of FeCo-PBA can be comparable to previously reported electrocatalysts for the 5-HT assay including noble metal-based and expensive carbon (graphene and carbon nanotubes)-based electrocatalysts. The proposed sensor also exhibits outstanding selectivity, reproducibility, and practicality for real sample analyses. This work is the first report on the PBA-based sensor for the 5-HT assay, verifying the practicability of this high-performance sensor for the 5-HT assay.
Collapse
Affiliation(s)
- Hao Feng
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Fan Wang
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Junhua Li
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China; Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Qian Wu
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Ying Cui
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Lingzhi He
- School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, 421008, PR China; Institute of Chemical and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Xing Liu
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Zeng Liu
- Cangzhou Dahua Group Co., Ltd, Cangzhou, 061000, PR China
| | - Dong Qian
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Haixia Tong
- Institute of Chemical and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.
| |
Collapse
|
2
|
The Gut‒Breast Axis: Programming Health for Life. Nutrients 2021; 13:nu13020606. [PMID: 33673254 PMCID: PMC7917897 DOI: 10.3390/nu13020606] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
The gut is a pivotal organ in health and disease. The events that take place in the gut during early life contribute to the programming, shaping and tuning of distant organs, having lifelong consequences. In this context, the maternal gut plays a quintessence in programming the mammary gland to face the nutritional, microbiological, immunological, and neuroendocrine requirements of the growing infant. Subsequently, human colostrum and milk provides the infant with an impressive array of nutrients and bioactive components, including microbes, immune cells, and stem cells. Therefore, the axis linking the maternal gut, the breast, and the infant gut seems crucial for a correct infant growth and development. The aim of this article is not to perform a systematic review of the human milk components but to provide an insight of their extremely complex interactions, which render human milk a unique functional food and explain why this biological fluid still truly remains as a scientific enigma.
Collapse
|
3
|
Sedley L. Advances in Nutritional Epigenetics-A Fresh Perspective for an Old Idea. Lessons Learned, Limitations, and Future Directions. Epigenet Insights 2020; 13:2516865720981924. [PMID: 33415317 PMCID: PMC7750768 DOI: 10.1177/2516865720981924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Nutritional epigenetics is a rapidly expanding field of research, and the natural modulation of the genome is a non-invasive, sustainable, and personalized alternative to gene-editing for chronic disease management. Genetic differences and epigenetic inflexibility resulting in abnormal gene expression, differential or aberrant methylation patterns account for the vast majority of diseases. The expanding understanding of biological evolution and the environmental influence on epigenetics and natural selection requires relearning of once thought to be well-understood concepts. This research explores the potential for natural modulation by the less understood epigenetic modifications such as ubiquitination, nitrosylation, glycosylation, phosphorylation, and serotonylation concluding that the under-appreciated acetylation and mitochondrial dependant downstream epigenetic post-translational modifications may be the pinnacle of the epigenomic hierarchy, essential for optimal health, including sustainable cellular energy production. With an emphasis on lessons learned, this conceptional exploration provides a fresh perspective on methylation, demonstrating how increases in environmental methane drive an evolutionary down regulation of endogenous methyl groups synthesis and demonstrates how epigenetic mechanisms are cell-specific, making supplementation with methyl cofactors throughout differentiation unpredictable. Interference with the epigenomic hierarchy may result in epigenetic inflexibility, symptom relief and disease concomitantly and may be responsible for the increased incidence of neurological disease such as autism spectrum disorder.
Collapse
Affiliation(s)
- Lynda Sedley
- Bachelor of Health Science (Nutritional Medicine),
GC Biomedical Science (Genomics), The Research and Educational Institute of
Environmental and Nutritional Epigenetics, Queensland, Australia
| |
Collapse
|
4
|
Physiologic changes in serotonin concentrations in breast milk during lactation. Nutrition 2020; 79-80:110969. [PMID: 32947128 DOI: 10.1016/j.nut.2020.110969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/22/2020] [Accepted: 07/23/2020] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Serotonin (5-hydroxytryptamine; 5-HT) plays an important role in milk volume homeostasis in the mammary glands during lactation, and 5-HT in milk also may affect infant development. The aim of this study was to investigate changes in 5-HT concentration in breast milk according to the duration of lactation and evaluate whether the 5-HT concentration varied before and after nursing. METHODS Healthy nursing Japanese women who had a natural delivery or underwent a cesarean delivery at Iwate Medical University Hospital were included in this study. RESULTS The mean 5-HT concentration in milk was obtained from multiparous mothers 6 to 7 d after delivery (colostrum) and was significantly higher compared with primiparous mothers (24.3 ± 2.63 versus 18.5 ± 2.60 ng/mL). Additionally, mean 5-HT concentration increased with increasing lactation duration in primiparous women (colostrum: 18.5 ± 2.60; 1 mo postdelivery: 19.8 ± 2.46; 3 mo postdelivery: 22.7 ± 2.55 ng/mL); in particular, the mean 5-HT concentration in breast milk 3 mo after delivery was significantly higher than in colostrum. The mean 5-HT concentrations in breast milk in primiparous mothers immediately before nursing, 1 to 2 h after nursing, and immediately before the next nursing event were 23.6 ± 1.48, 22.82 ± 1.65, and 21.84 ± 1.31 ng/mL, respectively; mean 5-HT concentrations in multiparous women were 25.4 ± 1.65, 23.6 ± 2.20, or 22.4 ± 2.09 ng/mL, respectively. There was no significant difference in 5-HT concentrations at each time point between the groups. CONCLUSION This information may be useful in determining the role of 5-HT in breast milk on infant development and growth.
Collapse
|
5
|
Chiba T, Maeda T, Kudo K. [Endogenous Serotonin and Milk Production Regulation in the Mammary Gland]. YAKUGAKU ZASSHI 2018; 138:829-836. [PMID: 29863055 DOI: 10.1248/yakushi.18-00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intrinsic serotonin (5-hydroxytryptamine; 5-HT) synthesized within the mammary epithelium has an important physiological role in milk volume homeostasis in many species including mice, cows, and humans. During lactation, mammary epithelial cells activate 5-HT synthesis by tryptophan hydroxylase 1 (TPH1). TPH1 catalyzes the rate-limiting step in 5-HT biosynthesis within mammary glands. 5-HT synthesized in mammary glands is released into both the apical (milk) and basolateral spaces by a vesicular monoamine transporter. 5-HT released into milk is incorporated by the apical membrane-expressed serotonin reuptake transporter and degraded by the monoamine oxidase A enzyme. Suckling maintains 5-HT at low levels in milk. When the mammary gland becomes filled with milk, 5-HT provides a negative feedback signal that suppresses further milk synthesis in the mammary epithelium. Our research, using human mammary epithelial MCF-12A cells, shows that the expression of β-casein, a differentiation marker, is suppressed via 5-HT-mediated inhibition of signal transducer and activator of transcription 5. Additionally, our results show that reduced β-casein expression in MCF-12A cells is associated with 5-HT7 receptor expression. Furthermore, we show that 5-HT7 receptor-mediated suppression of β-casein expression is involved in the activation of protein kinase A and protein-tyrosine phosphatase 1B. Thus, this mechanism might be associated with the feedback signals by 5-HT within the mammary epithelium. Hence, further research that builds on our findings should include the elucidation of the physiological roles of 5-HT present in milk synthesized by mammary epithelial cells in vivo and its effects on nursing infants.
Collapse
Affiliation(s)
- Takeshi Chiba
- Department of Pharmaceutics and Clinical Practice, School of Pharmacy, Iwate Medical University.,Department of Pharmacy, Iwate Medical University Hospital
| | - Tomoji Maeda
- Department of Pharmacotherapy, Nihon Pharmaceutical University
| | - Kenzo Kudo
- Department of Pharmaceutics and Clinical Practice, School of Pharmacy, Iwate Medical University.,Department of Pharmacy, Iwate Medical University Hospital
| |
Collapse
|