1
|
Penna BR, Gomes-Neto F, Anobom CD, Valente AP. Structural and dynamics characterization of the Zika virus NS2B using nuclear magnetic resonance and RosettaMP: A challenge for transmembrane protein studies. Int J Biol Macromol 2024; 280:136074. [PMID: 39341314 DOI: 10.1016/j.ijbiomac.2024.136074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Zika virus (ZIKV) is an emergent flavivirus that represents a global public health concern due to its association with severe neurological disorders. NS2B is a multifunctional viral membrane protein primarily used to regulate viral protease activity and is crucial for virus replication, making it an appealing target for antiviral drugs. This study presents the structural elucidation of full-length ZIKV NS2B in sodium dodecyl sulfate (SDS) micelles using solution nuclear magnetic resonance experimental data and RosettaMP. The protein structure has four transmembrane α-helices, two amphipathic α-helices, and a β-hairpin in the hydrophilic region. NS2B presented secondary and tertiary stability in different concentrations of SDS. Furthermore, we studied the dynamics of NS2B in SDS micelles through relaxation parameters and paramagnetic relaxation enhancement experiments. The findings were consistent with the structural calculations. Our work will be essential in understanding the role of NS2B in viral replication and screening for inhibitors against ZIKV.
Collapse
Affiliation(s)
- Beatriz R Penna
- Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Cristiane D Anobom
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Valente
- Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Wu X, Zhang L, Liu C, Cheng Q, Zhao W, Chen P, Qin Y, Chen M. The NS2B-PP1α-eIF2α axis: Inhibiting stress granule formation and Boosting Zika virus replication. PLoS Pathog 2024; 20:e1012355. [PMID: 38935808 PMCID: PMC11236161 DOI: 10.1371/journal.ppat.1012355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/10/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Stress granules (SGs), formed by untranslated messenger ribonucleoproteins (mRNPs) during cellular stress in eukaryotes, have been linked to flavivirus interference without clear understanding. This study reveals the role of Zika virus (ZIKV) NS2B as a scaffold protein mediating interaction between protein phosphatase 1α (PP1α) and eukaryotic initiation factor 2α (eIF2α). This interaction promotes eIF2α dephosphorylation by PP1α, inhibiting SG formation. The NS2B-PP1α complex exhibits remarkable stability, resisting ubiquitin-induced degradation and amplifying eIF2α dephosphorylation, thus promoting ZIKV replication. In contrast, the NS2BV35A mutant, interacting exclusively with eIF2α, fails to inhibit SG formation, resulting in reduced viral replication and diminished impact on brain organoid growth. These findings reveal PP1α's dual role in ZIKV infection, inducing interferon production as an antiviral factor and suppressing SG formation as a viral promoter. Moreover, we found that NS2B also serves as a versatile mechanism employed by flaviviruses to counter host antiviral defenses, primarily by broadly inhibiting SG formation. This research advances our comprehension of the complex interplay in flavivirus-host interactions, offering potential for innovative therapeutic strategies against flavivirus infections.
Collapse
Affiliation(s)
- Xiaoyan Wu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Linliang Zhang
- College of Life Sciences, Hubei University, Wuhan, China
| | - Cong Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Cheng
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Wen Zhao
- Tissue Engineering and Organ Manufacturing (TEOM) lab, Department of Biomedical Engineering, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Pu Chen
- Tissue Engineering and Organ Manufacturing (TEOM) lab, Department of Biomedical Engineering, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Hubei University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Hubei University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
3
|
Kumar A, Kumar P, Mishra PM, Giri R. Investigating the folding dynamics of NS2B protein of Zika virus. Virology 2023; 584:24-36. [PMID: 37210794 DOI: 10.1016/j.virol.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
NS2B protein of the Zika virus acts as a co-factor for NS3 protease and also involves in remodeling NS3 protease structure. Therefore, we investigated the overall dynamics of NS2B protein. We find surprising similarities between selected flavivirus NS2B model structures predicted from Alphafold2. Further, the simulated ZIKV NS2B protein structure shows a disordered cytosolic domain (residues 45-95) as a part of a full-length protein. Since only the cytosolic domain of NS2B is sufficient for the protease activity, we also investigated the conformational dynamics of only ZIKV NS2B cytosolic domain (residues 49-95) in the presence of TFE, SDS, Ficoll, and PEG using simulation and spectroscopy. The presence of TFE induces α-helix in NS2B cytosolic domain (residues 49-95). On the other hand, the presence of SDS, ficoll, and PEG does not induce secondary structural change. This dynamics study could have implications for some unknown folds of the NS2B protein.
Collapse
Affiliation(s)
- Ankur Kumar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, 175005, HP, India
| | - Prateek Kumar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, 175005, HP, India
| | - Pushpendra Mani Mishra
- School of Chemical Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, 175005, HP, India
| | - Rajanish Giri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, 175005, HP, India.
| |
Collapse
|
4
|
Dixit H, Upadhyay V, Kulharia M, Verma SK. The putative metal-binding proteome of the Coronaviridae family. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2023; 15:6969429. [PMID: 36610727 DOI: 10.1093/mtomcs/mfad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023]
Abstract
Metalloproteins are well-known for playing various physicochemical processes in all life forms, including viruses. Some life-threatening viruses (such as some members of the Coronaviridae family of viruses) are emerged and remerged frequently and are rapidly transmitted throughout the globe. This study aims to identify and characterize the metal-binding proteins (MBPs) of the Coronaviridae family of viruses and further provides insight into the MBP's role in sustaining and propagating viruses inside a host cell and in the outer environment. In this study, the available proteome of the Coronaviridae family was exploited. Identified potential MBPs were analyzed for their functional domains, structural aspects, and subcellular localization. We also demonstrate phylogenetic aspects of all predicted MBPs among other Coronaviridae family members to understand the evolutionary trend among their respective hosts. A total of 256 proteins from 51 different species of coronaviruses are predicted as MBPs. These MBPs perform various key roles in the replication and survival of viruses within the host cell. Cysteine, aspartic acid, threonine, and glutamine are key amino acid residues interacting with respective metal ions. Our observations also indicate that the metalloproteins of this family of viruses circulated and evolved in different hosts, which supports the zoonotic nature of coronaviruses. The comprehensive information on MBPs of the Coronaviridae family may be further helpful in designing novel therapeutic metalloprotein targets. Moreover, the study of viral MBPs can also help to understand the roles of MBPs in virus pathogenesis and virus-host interactions.
Collapse
Affiliation(s)
- Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra176206, India
| | - Vipin Upadhyay
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra176206, India
| | - Mahesh Kulharia
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra176206, India
| | - Shailender Kumar Verma
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra176206, India.,Department of Environmental Studies, University of Delhi, Delhi110007, India
| |
Collapse
|
5
|
Kumar A, Kumar D, Jose J, Giri R, Mysorekar IU. Drugs to limit Zika virus infection and implication for maternal-fetal health. FRONTIERS IN VIROLOGY 2022; 2. [PMID: 37064602 PMCID: PMC10104533 DOI: 10.3389/fviro.2022.928599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the placenta has robust defense mechanisms that protect the fetus from a viral infection, some viruses can manipulate or evade these mechanisms and disrupt physiology or cross the placental barrier. It is well established that the Zika virus is capable of vertical transmission from mother to fetus and can cause malformation of the fetal central nervous system (i.e., microcephaly), as well as Guillain-Barre syndrome in adults. This review seeks to gather and assess the contributions of translational research associated with Zika virus infection, including maternal-fetal vertical transmission of the virus. Nearly 200 inhibitors that have been evaluated in vivo and/or in vitro for their therapeutic properties against the Zika virus are summarized in this review. We also review the status of current vaccine candidates. Our main objective is to provide clinically relevant information that can guide future research directions and strategies for optimized treatment and preventive care of infections caused by Zika virus or similar pathogens.
Collapse
Affiliation(s)
- Ankur Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, State College, United States
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- CORRESPONDENCE Indira U. Mysorekar,
| |
Collapse
|
6
|
Phylodynamics and Coat Protein Analysis of Babaco Mosaic Virus in Ecuador. PLANTS 2022; 11:plants11131646. [PMID: 35807598 PMCID: PMC9268947 DOI: 10.3390/plants11131646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Babaco is a fast-growing herbaceous shrub with great commercial potential because of the organoleptic properties of its fruit. Babaco mosaic virus (BabMV) is a potexvirus in the family Alphaflexiviridae affecting babaco in all the provinces that produce this crop in Ecuador. BabMV was recently described but it has been affecting babaco for decades and, since many potexviruses are serologically indistinguishable, it may have been previously misidentified as papaya mosaic virus. Based on the coat protein (CP) gene, we aimed to study the distribution and epidemiological patterns of BabMV in babaco and chamburo over the years and to model its three-dimensional structure. Sequences of the CP were obtained from thirty-six isolates from plants collected in the main babaco-producing provinces of Ecuador between 2016 and 2021. The evolution rate of BabMV was estimated at 1.21 × 10−3 nucleotide substitutions site−1 year−1 and a time of origin of the most recent common ancestor around 1958.80. From molecular dynamics simulations, compared to other proteins of BabMV—RDRP, TGB1, and Alkb domain—the CP exhibited a higher flexibility with the C and N terminals as the most flexible regions. The reconstructed viral distribution provides dispersion patterns which have implications for control approaches of BabMV.
Collapse
|
7
|
Dabrowska A, Milewska A, Ner-Kluza J, Suder P, Pyrc K. Mass Spectrometry versus Conventional Techniques of Protein Detection: Zika Virus NS3 Protease Activity towards Cellular Proteins. Molecules 2021; 26:molecules26123732. [PMID: 34207340 PMCID: PMC8234618 DOI: 10.3390/molecules26123732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
Mass spectrometry (MS) used in proteomic approaches is able to detect hundreds of proteins in a single assay. Although undeniable high analytical power of MS, data acquired sometimes lead to confusing results, especially during a search of very selective, unique interactions in complex biological matrices. Here, we would like to show an example of such confusing data, providing an extensive discussion on the observed phenomenon. Our investigations focus on the interaction between the Zika virus NS3 protease, which is essential for virus replication. This enzyme is known for helping to remodel the microenvironment of the infected cells. Several reports show that this protease can process cellular substrates and thereby modify cellular pathways that are important for the virus. Herein, we explored some of the targets of NS3, clearly shown by proteomic techniques, as processed during infection. Unfortunately, we could not confirm the biological relevance of protein targets for viral infections detected by MS. Thus, although mass spectrometry is highly sensitive and useful in many instances, also being able to show directions where cell/virus interaction occurs, we believe that deep recognition of their biological role is essential to receive complete insight into the investigated process.
Collapse
Affiliation(s)
- Agnieszka Dabrowska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; (A.D.); (A.M.)
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Aleksandra Milewska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; (A.D.); (A.M.)
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Joanna Ner-Kluza
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
| | - Piotr Suder
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
- Correspondence: (P.S.); (K.P.); Tel.: +48-12-617-50-83 (P.S.); +48-12-664-61-21 (K.P.)
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; (A.D.); (A.M.)
- Correspondence: (P.S.); (K.P.); Tel.: +48-12-617-50-83 (P.S.); +48-12-664-61-21 (K.P.)
| |
Collapse
|
8
|
Oña Chuquimarca S, Ayala-Ruano S, Goossens J, Pauwels L, Goossens A, Leon-Reyes A, Ángel Méndez M. The Molecular Basis of JAZ-MYC Coupling, a Protein-Protein Interface Essential for Plant Response to Stressors. FRONTIERS IN PLANT SCIENCE 2020; 11:1139. [PMID: 32973821 PMCID: PMC7468482 DOI: 10.3389/fpls.2020.01139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 05/29/2023]
Abstract
The jasmonic acid (JA) signaling pathway is one of the primary mechanisms that allow plants to respond to a variety of biotic and abiotic stressors. Within this pathway, the JAZ repressor proteins and the basic helix-loop-helix (bHLH) transcription factor MYC3 play a critical role. JA is a volatile organic compound with an essential role in plant immunity. The increase in the concentration of JA leads to the decoupling of the JAZ repressor proteins and the bHLH transcription factor MYC3 causing the induction of genes of interest. The primary goal of this study was to identify the molecular basis of JAZ-MYC coupling. For this purpose, we modeled and validated 12 JAZ-MYC3 3D in silico structures and developed a molecular dynamics/machine learning pipeline to obtain two outcomes. First, we calculated the average free binding energy of JAZ-MYC3 complexes, which was predicted to be -10.94 +/-2.67 kJ/mol. Second, we predicted which ones should be the interface residues that make the predominant contribution to the free energy of binding (molecular hotspots). The predicted protein hotspots matched a conserved linear motif SL••FL•••R, which may have a crucial role during MYC3 recognition of JAZ proteins. As a proof of concept, we tested, both in silico and in vitro, the importance of this motif on PEAPOD (PPD) proteins, which also belong to the TIFY protein family, like the JAZ proteins, but cannot bind to MYC3. By mutating these proteins to match the SL••FL•••R motif, we could force PPDs to bind the MYC3 transcription factor. Taken together, modeling protein-protein interactions and using machine learning will help to find essential motifs and molecular mechanisms in the JA pathway.
Collapse
Affiliation(s)
- Samara Oña Chuquimarca
- Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sebastián Ayala-Ruano
- Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Jonas Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Antonio Leon-Reyes
- Laboratorio de Biotecnología Agrícola y de Alimentos, Ingeniería en Agronomía, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Campus Cumbayá, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Investigaciones Biológicas y Ambientales BIÓSFERA, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Miguel Ángel Méndez
- Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito USFQ, Quito, Ecuador
| |
Collapse
|
9
|
Martins IC, Santos NC. Intrinsically disordered protein domains in flavivirus infection. Arch Biochem Biophys 2020; 683:108298. [PMID: 32045581 DOI: 10.1016/j.abb.2020.108298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022]
Abstract
Intrinsically disordered protein regions are at the core of biological processes and involved in key protein-ligand interactions. The Flavivirus proteins, of viruses of great biomedical importance such as Zika and dengue viruses, exemplify this. Several proteins of these viruses have disordered regions that are of the utmost importance for biological activity. Disordered proteins can adopt several conformations, each able to interact with and/or bind to different ligands. In fact, such interactions can help stabilize a particular fold. Moreover, by being promiscuous in the number of target molecules they can bind to, these protein regions increase the number of functions that their small proteome (10 proteins) can achieve. A folding energy waterfall better describes the protein folding landscape of these proteins. A disordered protein can be thought as rolling down the folding energy cascade, in order "to fall, fold and function". This is the case of many viral protein regions, as seen in the flaviviruses proteome. Given their small size, flaviviruses are a good model system for understanding the role of intrinsically disordered protein regions in viral function. Finally, studying these viruses disordered protein regions will certainly contribute to the development of therapeutic approaches against such promising (yet challenging) targets.
Collapse
Affiliation(s)
- Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
10
|
Yadav R, Selvaraj C, Aarthy M, Kumar P, Kumar A, Singh SK, Giri R. Investigating into the molecular interactions of flavonoids targeting NS2B-NS3 protease from ZIKA virus through in-silico approaches. J Biomol Struct Dyn 2020; 39:272-284. [PMID: 31920173 DOI: 10.1080/07391102.2019.1709546] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zika virus (ZIKV), belongs to the flavivirus genus and Flaviviridae family that associated with serious diseased conditions like microcephaly and other neurological disorders (Guillan-Barré syndrome). As there is no vaccine or therapies available against ZIKV to date. Hence, it is an unmet need to find potential drug candidates and target sites against Zika virus infection. NS2B-NS3 protease making an attractive target for therapeutic intervention in ZIKV infections because of its critical role in hydrolysis of a single polyprotein encoded by Zika virus. Recently, there are some experimental evidence about the flavonoids as Zika virus NS2B-NS3 protease inhibitors. However, molecular interaction between protease complex and inhibitors at atomic levels has not been explored. Here, we have taken the experimentally validated thirty-eight flavonoids inhibitors against NS2B-NS3 protease to examine the molecular interaction using molecular docking and molecular dynamics simulations. We found out few flavonoids such as EGCG and its two derivatives, isoquercetin, rutin and sanggenon O showing interaction with catalytic triad (His51, Asp75, and Ser135) of the active site of NS2B-NS3 protease and found to be stable throughout the simulation. Therefore it is evident that interaction with the catalytic triad playing a vital role in the inhibition of the enzyme activity as a result inhibition of the virus propagation. However these compounds can be explored further for understanding the mechanism of action of these compounds targeting NS2B-NS3 protease for inhibition of Zika virus.
Collapse
Affiliation(s)
- Rakhi Yadav
- School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - Chandrabose Selvaraj
- School of Basic Science, Indian Institute of Technology Mandi, Mandi, India.,Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab, Alagappa University, Karaikudi, India
| | - Murali Aarthy
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab, Alagappa University, Karaikudi, India
| | - Prateek Kumar
- School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - Ankur Kumar
- School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab, Alagappa University, Karaikudi, India
| | - Rajanish Giri
- School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| |
Collapse
|
11
|
Molecular Recognition Features in Zika Virus Proteome. J Mol Biol 2018; 430:2372-2388. [DOI: 10.1016/j.jmb.2017.10.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 12/23/2022]
|
12
|
New Targets for Zika Virus Determined by Human-Viral Interactomic: A Bioinformatics Approach. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1734151. [PMID: 29379794 PMCID: PMC5742907 DOI: 10.1155/2017/1734151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 02/08/2023]
Abstract
Identifying ZIKV factors interfering with human host pathways represents a major challenge in understanding ZIKV tropism and pathogenesis. The integration of proteomic, gene expression and Protein-Protein Interactions (PPIs) established between ZIKV and human host proteins predicted by the OralInt algorithm identified 1898 interactions with medium or high score (≥0.7). Targets implicated in vesicular traffic and docking were identified. New receptors involved in endocytosis pathways as ZIKV entry targets, using both clathrin-dependent (17 receptors) and independent (10 receptors) pathways, are described. New targets used by the ZIKV to undermine the host's antiviral immune response are proposed based on predicted interactions established between the virus and host cell receptors and/or proteins with an effector or signaling role in the immune response such as IFN receptors and TLR. Complement and cytokines are proposed as extracellular potential interacting partners of the secreted form of NS1 ZIKV protein. Altogether, in this article, 18 new human targets for structural and nonstructural ZIKV proteins are proposed. These results are of great relevance for the understanding of viral pathogenesis and consequently the development of preventive (vaccines) and therapeutic targets for ZIKV infection management.
Collapse
|
13
|
Marcello A, Pantano S. Interdisciplinary approaches to the study of flavivirus. Biochem Biophys Res Commun 2017; 492:531-532. [PMID: 28851652 DOI: 10.1016/j.bbrc.2017.08.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Alessandro Marcello
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
| |
Collapse
|