1
|
Douka S, Papamoschou V, Raimo M, Mastrobattista E, Caiazzo M. Harnessing the Power of NK Cell Receptor Engineering as a New Prospect in Cancer Immunotherapy. Pharmaceutics 2024; 16:1143. [PMID: 39339180 PMCID: PMC11434712 DOI: 10.3390/pharmaceutics16091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Natural killer (NK) cells have recently gained popularity as an alternative for cancer immunotherapy. Adoptive cell transfer employing NK cells offers a safer therapeutic option compared to T-cell-based therapies, due to their significantly lower toxicity and the availability of diverse autologous and allogeneic NK cell sources. However, several challenges are associated with NK cell therapies, including limited in vivo persistence, the immunosuppressive and hostile tumor microenvironment (TME), and the lack of effective treatments for solid tumors. To address these limitations, the modification of NK cells to stably produce cytokines has been proposed as a strategy to enhance their persistence and proliferation. Additionally, the overexpression of activating receptors and the blockade of inhibitory receptors can restore the NK cell functions hindered by the TME. To further improve tumor infiltration and the elimination of solid tumors, innovative approaches focusing on the enhancement of NK cell chemotaxis through the overexpression of chemotactic receptors have been introduced. This review highlights the latest advancements in preclinical and clinical studies investigating the engineering of activating, inhibitory, and chemotactic NK cell receptors; discusses recent progress in cytokine manipulation; and explores the potential of combining the chimeric antigen receptor (CAR) technology with NK cell receptors engineering.
Collapse
Affiliation(s)
- Stefania Douka
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Vasilis Papamoschou
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Monica Raimo
- Glycostem Therapeutics B.V., Kloosterstraat 9, 5349 AB Oss, The Netherlands;
| | - Enrico Mastrobattista
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Massimiliano Caiazzo
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
2
|
Yahsi B, Palaz F, Dincer P. Applications of CRISPR Epigenome Editors in Tumor Immunology and Autoimmunity. ACS Synth Biol 2024; 13:413-427. [PMID: 38298016 DOI: 10.1021/acssynbio.3c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Over the past decade, CRISPR-Cas systems have become indispensable tools for genetic engineering and have been used in clinical trials for various diseases. Beyond genome editing, CRISPR-Cas systems can also be used for performing programmable epigenetic modifications. Recent efforts in enhancing CRISPR-based epigenome modifiers have yielded potent tools enabling targeted DNA methylation/demethylation capable of sustaining epigenetic memory through numerous cell divisions. Moreover, it has been understood that during chronic inflammatory states, including cancer, T cells encounter a state called T cell exhaustion that involves elevated inhibitory receptors (e.g., LAG-3, TIM3, PD-1, CD39) and reduced effector T cell-related protein levels (IFN-γ, granzyme B, and perforin). Importantly, epigenetic dysregulation has been identified as one of the key drivers of T cell exhaustion, and it remains one of the biggest obstacles in the field of immunotherapy and decreases the efficiency of chimeric antigen receptor T (CAR-T) cell therapy. Similarly, autoimmune diseases exhibit epigenetically dysfunctional regulatory T (Treg) cells. For instance, FOXP3 intronic regions, known as conserved noncoding sequences, display hypomethylation in healthy states but hypermethylation in pathological contexts. Therefore, the reversal of epigenetic dysregulation in cancer and autoimmune diseases using CRISPR-based epigenome modifiers has important therapeutic implications. In this review, we outline the progressive refinement of CRISPR-based epigenome modifiers and explore their potential therapeutic applications in tumor immunology and autoimmunity.
Collapse
Affiliation(s)
- Berkay Yahsi
- Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Pervin Dincer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
3
|
Arroyo-Olarte R, Mejía-Muñoz A, León-Cabrera S. Expanded Alternatives of CRISPR-Cas9 Applications in Immunotherapy of Colorectal Cancer. Mol Diagn Ther 2024; 28:69-86. [PMID: 37907826 PMCID: PMC10786962 DOI: 10.1007/s40291-023-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Immunotherapy for colorectal cancer (CRC) is limited to patients with advanced disease who have already undergone first-line chemotherapy and whose tumors exhibit microsatellite instability. Novel technical strategies are required to enhance therapeutic options and achieve a more robust immunological response. Therefore, exploring gene analysis and manipulation at the molecular level can further accelerate the development of advanced technologies to address these challenges. The emergence of advanced genome editing technology, particularly of clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) 9, holds promise in expanding the boundaries of cancer immunotherapy. In this manuscript, we provide a comprehensive review of the applications and perspectives of CRISPR technology in improving the design, generation, and efficiency of current immunotherapies, focusing on solid tumors such as colorectal cancer, where these approaches have not been as successful as in hematological conditions.
Collapse
Affiliation(s)
- Rubén Arroyo-Olarte
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo. De México, México
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Edo. De México, México
| | - Aranza Mejía-Muñoz
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo. De México, México
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Edo. De México, México
| | - Sonia León-Cabrera
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo. De México, México.
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Edo. De México, México.
| |
Collapse
|
4
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Moawad AA, Alwanian WM, Almansour NM, Rahmani AH, Khan AA. Innovative Strategies of Reprogramming Immune System Cells by Targeting CRISPR/Cas9-Based Genome-Editing Tools: A New Era of Cancer Management. Int J Nanomedicine 2023; 18:5531-5559. [PMID: 37795042 PMCID: PMC10547015 DOI: 10.2147/ijn.s424872] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023] Open
Abstract
The recent developments in the study of clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) system have revolutionized the art of genome-editing and its applications for cellular differentiation and immune response behavior. This technology has further helped in understanding the mysteries of cancer progression and possible designing of novel antitumor immunotherapies. CRISPR/Cas9-based genome-editing is now often used to engineer universal T-cells, equipped with recombinant T-cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, this technology is used in cytokine stimulation, antibody designing, natural killer (NK) cell transfer, and to overcome immune checkpoints. The innovative potential of CRISPR/Cas9 in preparing the building blocks of adoptive cell transfer (ACT) immunotherapy has opened a new window of antitumor immunotherapy and some of them have gained FDA approval. The manipulation of immunogenetic regulators has opened a new interface for designing, implementation and interpretation of CRISPR/Cas9-based screening in immuno-oncology. Several cancers like lymphoma, melanoma, lung, and liver malignancies have been treated with this strategy, once thought to be impossible. The safe and efficient delivery of CRISPR/Cas9 system within the immune cells for the genome-editing strategy is a challenging task which needs to be sorted out for efficient immunotherapy. Several targeting approaches like virus-mediated, electroporation, microinjection and nanoformulation-based methods have been used, but each procedure offers some limitations. Here, we elaborate the recent updates of cancer management through immunotherapy in partnership with CRISPR/Cas9 technology. Further, some innovative methods of targeting this genome-editing system within the immune system cells for reprogramming them, as a novel strategy of anticancer immunotherapy is elaborated. In addition, future prospects and clinical trials are also discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Amira A Moawad
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
5
|
Liu Z, Shi M, Ren Y, Xu H, Weng S, Ning W, Ge X, Liu L, Guo C, Duo M, Li L, Li J, Han X. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol Cancer 2023; 22:35. [PMID: 36797756 PMCID: PMC9933290 DOI: 10.1186/s12943-023-01738-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence and mortality of cancer are the major health issue worldwide. Apart from the treatments developed to date, the unsatisfactory therapeutic effects of cancers have not been addressed by broadening the toolbox. The advent of immunotherapy has ushered in a new era in the treatments of solid tumors, but remains limited and requires breaking adverse effects. Meanwhile, the development of advanced technologies can be further boosted by gene analysis and manipulation at the molecular level. The advent of cutting-edge genome editing technology, especially clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), has demonstrated its potential to break the limits of immunotherapy in cancers. In this review, the mechanism of CRISPR-Cas9-mediated genome editing and a powerful CRISPR toolbox are introduced. Furthermore, we focus on reviewing the impact of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy (knockout or knockin). Finally, we discuss the CRISPR-Cas9-based genome-wide screening for target identification, emphasis the potential of spatial CRISPR genomics, and present the comprehensive application and challenges in basic research, translational medicine and clinics of CRISPR-Cas9.
Collapse
Affiliation(s)
- Zaoqu Liu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Interventional Institute of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 Henan China
| | - Meixin Shi
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yuqing Ren
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Hui Xu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Siyuan Weng
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wenjing Ning
- grid.207374.50000 0001 2189 3846Department of Emergency Center, Zhengzhou University People’s Hospital, Zhengzhou, 450003 Henan China
| | - Xiaoyong Ge
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Long Liu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chunguang Guo
- grid.412633.10000 0004 1799 0733Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Mengjie Duo
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lifeng Li
- grid.412633.10000 0004 1799 0733Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
6
|
Gunduz M, Ataca Atilla P, Atilla E. New Orders to an Old Soldier: Optimizing NK Cells for Adoptive Immunotherapy in Hematology. Biomedicines 2021; 9:biomedicines9091201. [PMID: 34572387 PMCID: PMC8466804 DOI: 10.3390/biomedicines9091201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
NK (Natural Killer) cell-mediated adoptive immunotherapy has gained attention in hematology due to the progressing knowledge of NK cell receptor structure, biology and function. Today, challenges related to NK cell expansion and persistence in vivo as well as low cytotoxicity have been mostly overcome by pioneering trials that focused on harnessing NK cell functions. Recent technological advancements in gene delivery, gene editing and chimeric antigen receptors (CARs) have made it possible to generate genetically modified NK cells that enhance the anti-tumor efficacy and represent suitable “off-the-shelf” products with fewer side effects. In this review, we highlight recent advances in NK cell biology along with current approaches for potentiating NK cell proliferation and activity, redirecting NK cells using CARs and optimizing the procedure to manufacture clinical-grade NK and CAR NK cells for adoptive immunotherapy.
Collapse
Affiliation(s)
- Mehmet Gunduz
- Department of Hematology, Biruni University, Istanbul 34010, Turkey;
| | - Pinar Ataca Atilla
- Interdisciplinary Stem Cells and Regenerative Medicine Ph.D Program, Stem Cell Institute, Ankara University, Ankara 06520, Turkey;
| | - Erden Atilla
- Department of Hematology, Mersin State Hospital, Korukent District, 96015 St., Toroslar 33240, Turkey
- Correspondence: ; Tel.: +9-05-058-213-131
| |
Collapse
|
7
|
Zhi L, Su X, Yin M, Zhang Z, Lu H, Niu Z, Guo C, Zhu W, Zhang X. Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and challenges. Cell Immunol 2021; 369:104436. [PMID: 34500148 DOI: 10.1016/j.cellimm.2021.104436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022]
Abstract
Immunotherapy has become one of the most promising strategies in cancer therapies. Among the therapeutic alternatives, genetically engineered NK/T cell therapies have emerged as powerful and innovative therapeutic modalities for cancer patients with precise targeting and impressive efficacy. Nonetheless, this approach still faces multiple challenges, such as immunosuppressive tumor microenvironment, exhaustion of immune effector cells in tumors, off-target effects manufacturing complexity, and poor infiltration of effector cells, all of which need to be overcome for further utilization to cancers. Recently, CRISPR/Cas9 genome editing technology, with the goal of enhancing the efficacy and increasing the availability of engineered effector cell therapies, has shown considerable potential in the novel strategies and options to overcome these limitations. Here we review the current progress of the applications of CRISPR in cancer immunotherapy. Furthermore, we discuss issues related to the NK/T cell applications, gene delivery methods, efficiency, challenges, and implications of CRISPR/Cas9.
Collapse
Affiliation(s)
- Lingtong Zhi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Xin Su
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Meichen Yin
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Zikang Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Hui Lu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Zhiyuan Niu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Changjiang Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Wuling Zhu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| | - Xuan Zhang
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| |
Collapse
|
8
|
Alves E, McLeish E, Blancafort P, Coudert JD, Gaudieri S. Manipulating the NKG2D Receptor-Ligand Axis Using CRISPR: Novel Technologies for Improved Host Immunity. Front Immunol 2021; 12:712722. [PMID: 34456921 PMCID: PMC8397441 DOI: 10.3389/fimmu.2021.712722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
The activating immune receptor natural killer group member D (NKG2D) and its cognate ligands represent a fundamental surveillance system of cellular distress, damage or transformation. Signaling through the NKG2D receptor-ligand axis is critical for early detection of viral infection or oncogenic transformation and the presence of functional NKG2D ligands (NKG2D-L) is associated with tumor rejection and viral clearance. Many viruses and tumors have developed mechanisms to evade NKG2D recognition via transcriptional, post-transcriptional or post-translational interference with NKG2D-L, supporting the concept that circumventing immune evasion of the NKG2D receptor-ligand axis may be an attractive therapeutic avenue for antiviral therapy or cancer immunotherapy. To date, the complexity of the NKG2D receptor-ligand axis and the lack of specificity of current NKG2D-targeting therapies has not allowed for the precise manipulation required to optimally harness NKG2D-mediated immunity. However, with the discovery of clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins, novel opportunities have arisen in the realm of locus-specific gene editing and regulation. Here, we give a brief overview of the NKG2D receptor-ligand axis in humans and discuss the levels at which NKG2D-L are regulated and dysregulated during viral infection and oncogenesis. Moreover, we explore the potential for CRISPR-based technologies to provide novel therapeutic avenues to improve and maximize NKG2D-mediated immunity.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Emily McLeish
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Pilar Blancafort
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA, Australia
- The Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jerome D. Coudert
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
9
|
Afolabi LO, Afolabi MO, Sani MM, Okunowo WO, Yan D, Chen L, Zhang Y, Wan X. Exploiting the CRISPR-Cas9 gene-editing system for human cancers and immunotherapy. Clin Transl Immunology 2021; 10:e1286. [PMID: 34188916 PMCID: PMC8219901 DOI: 10.1002/cti2.1286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
The discovery of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) technology has brought advances in the genetic manipulation of eukaryotic cells, which has revolutionised cancer research and treatment options. It is increasingly being used in cancer immunotherapy, including adoptive T and natural killer (NK) cell transfer, secretion of antibodies, cytokine stimulation and overcoming immune checkpoints. CRISPR-Cas9 technology is used in autologous T cells and NK cells to express various innovative antigen designs and combinations of chimeric antigen receptors (CARs) targeted at specific antigens for haematological and solid tumors. Additionally, advanced engineering in immune cells to enhance their sensing circuits with sophisticated functionality is now possible. Intensive research on the CRISPR-Cas9 system has provided scientists with the ability to overcome the hostile tumor microenvironment and generate more products for future clinical use, especially off-the-shelf, universal cellular products, bringing exciting milestones for immunotherapy. This review discussed the application and challenges of CRISPR technology in cancer research and immunotherapy, its advances and prospects for promoting new cell-based therapeutic beyond immune oncology.
Collapse
Affiliation(s)
- Lukman O Afolabi
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
- Department of BiochemistryFaculty of ScienceFederal University DutseDutseNigeria
| | - Mariam O Afolabi
- Open FIESTA CenterTsinghua UniversityShenzhenChina
- State Key Laboratory of Chemical OncogenomicsGraduate School at ShenzhenTsinghua UniversityShenzhenChina
| | - Musbahu M Sani
- Department of BiochemistryFaculty of ScienceFederal University DutseDutseNigeria
| | - Wahab O Okunowo
- Department of BiochemistryCollege of MedicineUniversity of LagosLagosNigeria
| | - Dehong Yan
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Liang Chen
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaou Zhang
- Open FIESTA CenterTsinghua UniversityShenzhenChina
- State Key Laboratory of Chemical OncogenomicsGraduate School at ShenzhenTsinghua UniversityShenzhenChina
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Xiaochun Wan
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Alves E, Taifour S, Dolcetti R, Chee J, Nowak AK, Gaudieri S, Blancafort P. Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing. Mol Ther Methods Clin Dev 2021; 21:592-606. [PMID: 34095343 PMCID: PMC8142043 DOI: 10.1016/j.omtm.2021.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Precise clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genetic and epigenetic manipulation of the immune response has become a promising immunotherapeutic approach toward combating tumorigenesis and tumor progression. CRISPR-based immunologic reprograming in cancer therapy comprises the locus-specific enhancement of host immunity, the improvement of tumor immunogenicity, and the suppression of tumor immunoevasion. To date, the ex vivo re-engineering of immune cells directed to inhibit the expression of immune checkpoints or to express synthetic immune receptors (chimeric antigen receptor therapy) has shown success in some settings, such as in the treatment of melanoma, lymphoma, liver, and lung cancer. However, advancements in nuclease-deactivated CRISPR-associated nuclease-9 (dCas9)-mediated transcriptional activation or repression and Cas13-directed gene suppression present novel avenues for the development of tumor immunotherapies. In this review, the basis for development, mechanism of action, and outcomes from recently published Cas9-based clinical trial (genetic editing) and dCas9/Cas13-based pre-clinical (epigenetic editing) data are discussed. Lastly, we review cancer immunotherapy-specific considerations and barriers surrounding use of these approaches in the clinic.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Shahama Taifour
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Riccardo Dolcetti
- Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Sir Peter MacCallum Centre for Cancer Immunotherapy, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, The University of Western Australia, Perth, WA 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pilar Blancafort
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- The Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Mangal JL, Handlos JL, Esrafili A, Inamdar S, Mcmillian S, Wankhede M, Gottardi R, Acharya AP. Engineering Metabolism of Chimeric Antigen Receptor (CAR) Cells for Developing Efficient Immunotherapies. Cancers (Basel) 2021; 13:1123. [PMID: 33807867 PMCID: PMC7962004 DOI: 10.3390/cancers13051123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell-based therapies have shown tremendous advancement in clinical and pre-clinical studies for the treatment of hematological malignancies, such as the refractory of pre-B cell acute lymphoblastic leukemia (B-ALL), chronic lymphocytic leukemia (CLL), and large B cell lymphoma (LBCL). However, CAR T cell therapy for solid tumors has not been successful clinically. Although, some research efforts, such as combining CARs with immune checkpoint inhibitor-based therapy, have been used to expand the application of CAR T cells for the treatment of solid tumors. Importantly, further understanding of the coordination of nutrient and energy supplies needed for CAR T cell expansion and function, especially in the tumor microenvironment (TME), is greatly needed. In addition to CAR T cells, there is great interest in utilizing other types of CAR immune cells, such as CAR NK and CAR macrophages that can infiltrate solid tumors. However, the metabolic competition in the TME between cancer cells and immune cells remains a challenge. Bioengineering technologies, such as metabolic engineering, can make a substantial contribution when developing CAR cells to have an ability to overcome nutrient-paucity in the solid TME. This review introduces technologies that have been used to generate metabolically fit CAR-immune cells as a treatment for hematological malignancies and solid tumors, and briefly discusses the challenges to treat solid tumors with CAR-immune cells.
Collapse
Affiliation(s)
- Joslyn L. Mangal
- Biological Design Graduate Program, School for Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA;
| | - Jamie L. Handlos
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Arezoo Esrafili
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Sahil Inamdar
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Sidnee Mcmillian
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Mamta Wankhede
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Riccardo Gottardi
- Department of Pediatrics, Division of Pulmonary Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Fondazione Ri.MED, 90133 Palermo, Italy
| | - Abhinav P. Acharya
- Biological Design Graduate Program, School for Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA;
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
- Department of Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Tempe, AZ 85281, USA
| |
Collapse
|
12
|
Sekiba K, Otsuka M, Seimiya T, Tanaka E, Funato K, Miyakawa Y, Koike K. The fatty-acid amide hydrolase inhibitor URB597 inhibits MICA/B shedding. Sci Rep 2020; 10:15556. [PMID: 32968163 PMCID: PMC7512021 DOI: 10.1038/s41598-020-72688-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/31/2020] [Indexed: 01/21/2023] Open
Abstract
MICA/B proteins are expressed on the surface of various types of stressed cells, including cancer cells. Cytotoxic lymphocytes expressing natural killer group 2D (NKG2D) receptor recognize MICA/B and eliminate the cells. However, cancer cells evade such immune recognition by inducing proteolytic shedding of MICA/B proteins. Therefore, preventing the shedding of MICA/B proteins could enhance antitumor immunity. Here, by screening a protease inhibitor library, we found that the fatty-acid amide hydrolase (FAAH) inhibitor, URB597, suppresses the shedding of MICA/B. URB597 significantly reduced the soluble MICA level in culture medium and increased the MICA level on the surface of cancer cells. The effect was indirect, being mediated by increased expression of tissue inhibitor of metalloproteinases 3 (TIMP3). Knockdown of TIMP3 expression reversed the effect of URB597, confirming that TIMP3 is required for the MICA shedding inhibition by URB597. In contrast, FAAH overexpression reduced TIMP3 expression and the cell-surface MICA level and increased the soluble MICA level. These results suggest that inhibition of FAAH could prevent human cancer cell evasion of immune-mediated clearance.
Collapse
Affiliation(s)
- Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuyoshi Funato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yu Miyakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
13
|
Afolabi LO, Adeshakin AO, Sani MM, Bi J, Wan X. Genetic reprogramming for NK cell cancer immunotherapy with CRISPR/Cas9. Immunology 2019; 158:63-69. [PMID: 31315144 PMCID: PMC6742769 DOI: 10.1111/imm.13094] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/23/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Natural killer cells are potent cytotoxic lymphocytes specialized in recognizing and eliminating transformed cells, and in orchestrating adaptive anti-tumour immunity. However, NK cells are usually functionally exhausted in the tumour microenvironment. Strategies such as checkpoint blockades are under investigation to overcome NK cell exhaustion in order to boost anti-tumour immunity. The discovery and development of the CRISPR/Cas9 technology offer a flexible and efficient gene-editing capability in modulating various pathways that mediate NK cell exhaustion, and in arming NK cells with novel chimeric antigen receptors to specifically target tumour cells. Despite the high efficiency in its gene-editing capability, difficulty in the delivery of the CRISPR/Cas9 system remains a major bottleneck for its therapeutic applications, particularly for NK cells. The current review discusses feasible approaches to deliver the CRISPR/Cas9 systems, as well as potential strategies in gene-editing for NK cell immunotherapy for cancers.
Collapse
Affiliation(s)
- Lukman O. Afolabi
- Shenzhen Laboratory of Antibody EngineeringInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
- Department of BiochemistryFaculty of ScienceFederal University DutseDutseJigawa StateNigeria
| | - Adeleye O. Adeshakin
- Shenzhen Laboratory of Antibody EngineeringInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Musbahu M. Sani
- Department of BiochemistryFaculty of ScienceFederal University DutseDutseJigawa StateNigeria
| | - Jiacheng Bi
- Shenzhen Laboratory of Antibody EngineeringInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xiaochun Wan
- Shenzhen Laboratory of Antibody EngineeringInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
14
|
Shankar S, Sreekumar A, Prasad D, Das AV, Pillai MR. Genome editing of oncogenes with ZFNs and TALENs: caveats in nuclease design. Cancer Cell Int 2018; 18:169. [PMID: 30386178 PMCID: PMC6198504 DOI: 10.1186/s12935-018-0666-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/17/2018] [Indexed: 01/18/2023] Open
Abstract
Background Gene knockout technologies involving programmable nucleases have been used to create knockouts in several applications. Gene editing using Zinc-finger nucleases (ZFNs), Transcription activator like effectors (TALEs) and CRISPR/Cas systems has been used to create changes in the genome in order to make it non-functional. In the present study, we have looked into the possibility of using six fingered CompoZr ZFN pair to target the E6 gene of HPV 16 genome. Methods HPV 16+ve cell lines; SiHa and CaSki were used for experiments. CompoZr ZFNs targeting E6 gene were designed and constructed by Sigma-Aldrich. TALENs targeting E6 and E7 genes were made using TALEN assembly kit. Gene editing was monitored by T7E1 mismatch nuclease and Nuclease resistance assays. Levels of E6 and E7 were further analyzed by RT-PCR, western blot as well as immunoflourescence analyses. To check if there is any interference due to methylation, cell lines were treated with sodium butyrate, and Nocodazole. Results Although ZFN editing activity in yeast based MEL-I assay was high, it yielded very low activity in tumor cell lines; only 6% editing in CaSki and negligible activity in SiHa cell lines. Though editing efficiency was better in CaSki, no significant reduction in E6 protein levels was observed in immunocytochemical analysis. Further, in silico analysis of DNA binding prediction revealed that some of the ZFN modules bound to sequence that did not match the target sequence. Hence, alternate ZFN pairs for E6 and E7 were not synthesized since no further active sites could be identified by in silico analyses. Then we designed TALENs to target E6 and E7 gene. TALENs designed to target E7 gene led to reduction of E7 levels in CaSki and SiHa cervical cancer cell lines. However, TALEN designed to target E6 gene did not yield any editing activity. Conclusions Our study highlights that designed nucleases intended to obtain bulk effect should have a reasonable editing activity which reflects phenotypically as well. Nucleases with low editing efficiency, intended for generation of knockout cell lines nucleases could be obtained by single cell cloning. This could serve as a criterion for designing ZFNs and TALENs. Electronic supplementary material The online version of this article (10.1186/s12935-018-0666-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sumitra Shankar
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ahalya Sreekumar
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Deepti Prasad
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ani V Das
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | |
Collapse
|