1
|
Faini AC, Arruga F, Pinon M, Bracciamà V, Vallone FE, Mioli F, Sorbini M, Migliorero M, Gambella A, Carota D, Giraudo I, Cassoni P, Catalano S, Romagnoli R, Amoroso A, Calvo PL, Vaisitti T, Deaglio S. Genomic and Transcriptomic Profile of HNF1A-Mutated Liver Adenomas Highlights Molecular Signature and Potential Therapeutic Implications. Int J Mol Sci 2024; 25:10483. [PMID: 39408812 PMCID: PMC11477380 DOI: 10.3390/ijms251910483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Hepatocellular adenomas (HAs) are tumors that can develop under different conditions, including in patients harboring a germline mutation in HNF1A. However, little is known about the pathogenesis of such disease. This work aims to better define what mechanisms lie under the development of this condition. Six HAs were sampled from the liver of a 17-year-old male affected by diabetes and multiple hepatic adenomatosis harboring the heterozygous pathogenic germline variant c.815G>A, p.(Arg272His) in HNF1A, which has a dominant negative effect. All HAs were molecularly characterized. Four of them were shown to harbor a second somatic HNF1A variant and one had a mutation in the ARID1A gene, while no additional somatic changes were found in the remaining HA and normal parenchyma. A transcriptomic profile of the same HA samples was also performed. HNF1A biallelic mutations were associated with the up-regulation of several pathways including the tricarboxylic acid cycle, the metabolism of fatty acids, and mTOR signaling while angiogenesis, endothelial and vascular proliferation, cell migration/adhesion, and immune response were down-regulated. Contrariwise, in the tumor harboring the ARID1A variant, angiogenesis was up-modulated while fatty acid metabolism was down-modulated. Histological analyses confirmed the molecular data. Independently of the second mutation, energetic processes and cholesterol metabolism were up-modulated, while the immune response was down-modulated. This work provides a complete molecular signature of HNF1A-associated HAs, analyzing the association between specific HNF1A variants and the development of HA while identifying potential new therapeutic targets for non-surgical treatment.
Collapse
Affiliation(s)
- Angelo Corso Faini
- Immunogenetics and Transplant Biology Service, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126 Turin, Italy; (F.A.); (V.B.); (F.M.); (M.S.); (A.A.); (T.V.); (S.D.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (F.E.V.); (M.M.)
| | - Francesca Arruga
- Immunogenetics and Transplant Biology Service, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126 Turin, Italy; (F.A.); (V.B.); (F.M.); (M.S.); (A.A.); (T.V.); (S.D.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (F.E.V.); (M.M.)
| | - Michele Pinon
- Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126 Turin, Italy; (M.P.); (I.G.); (P.L.C.)
| | - Valeria Bracciamà
- Immunogenetics and Transplant Biology Service, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126 Turin, Italy; (F.A.); (V.B.); (F.M.); (M.S.); (A.A.); (T.V.); (S.D.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (F.E.V.); (M.M.)
| | | | - Fiorenza Mioli
- Immunogenetics and Transplant Biology Service, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126 Turin, Italy; (F.A.); (V.B.); (F.M.); (M.S.); (A.A.); (T.V.); (S.D.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (F.E.V.); (M.M.)
| | - Monica Sorbini
- Immunogenetics and Transplant Biology Service, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126 Turin, Italy; (F.A.); (V.B.); (F.M.); (M.S.); (A.A.); (T.V.); (S.D.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (F.E.V.); (M.M.)
| | - Martina Migliorero
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (F.E.V.); (M.M.)
| | - Alessandro Gambella
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.G.); (D.C.); (P.C.)
- Division of Liver and Transplant Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Damiano Carota
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.G.); (D.C.); (P.C.)
| | - Isaac Giraudo
- Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126 Turin, Italy; (M.P.); (I.G.); (P.L.C.)
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.G.); (D.C.); (P.C.)
| | - Silvia Catalano
- General Surgery 2U, Liver Transplantation Center, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126 Turin, Italy; (S.C.); (R.R.)
| | - Renato Romagnoli
- General Surgery 2U, Liver Transplantation Center, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126 Turin, Italy; (S.C.); (R.R.)
| | - Antonio Amoroso
- Immunogenetics and Transplant Biology Service, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126 Turin, Italy; (F.A.); (V.B.); (F.M.); (M.S.); (A.A.); (T.V.); (S.D.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (F.E.V.); (M.M.)
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126 Turin, Italy; (M.P.); (I.G.); (P.L.C.)
| | - Tiziana Vaisitti
- Immunogenetics and Transplant Biology Service, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126 Turin, Italy; (F.A.); (V.B.); (F.M.); (M.S.); (A.A.); (T.V.); (S.D.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (F.E.V.); (M.M.)
| | - Silvia Deaglio
- Immunogenetics and Transplant Biology Service, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126 Turin, Italy; (F.A.); (V.B.); (F.M.); (M.S.); (A.A.); (T.V.); (S.D.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (F.E.V.); (M.M.)
| |
Collapse
|
2
|
Wang M, Shu H, Xie J, Huang Y, Wang K, Feng R, Yu X, Guan J, Feng W, Liu M. An intron mutation of HNF1A causes abnormal splicing and impairs its activity as a transcription factor. Mol Cell Endocrinol 2022; 545:111575. [PMID: 35081418 DOI: 10.1016/j.mce.2022.111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/21/2022]
Abstract
Mutations in HNF1A are associated with Maturity Onset Diabetes of the Young type 3 (MODY3) and most of them are in the coding region. Herein, we identified an intron mutation at the 6th nucleotide upstream of the end of intron 7 of HNF1A, named IVS7-6G > A, in a patient with early-onset diabetes. The "minigene" assay showed that IVS7-6G > A produced two aberrant mRNA variants translating into two truncated proteins: L502S fs* and G437A fs*, both affecting HNF1A transactivation domain (TAD). To determine functional consequences of IVS7-6G > A mutation, we made plasmids encoding truncated HNF1A containing different portions of HNF1A TAD and found that the TAD of HNF1A is important not only for its regulatory activities, but also for its nuclearization, and the residues 282-501 was more essential than 502-631. Our data suggested IVS7-6G > A impaired HNF1A splicing and may contribute to the pathogenesis of MODY3.
Collapse
Affiliation(s)
- Min Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Hua Shu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Jing Xie
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Yadi Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Kunling Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Renrui Feng
- Division of Laboratory Animal, Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin, 300020, China.
| | - Xiaomeng Yu
- Division of Laboratory Animal, Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin, 300020, China.
| | - Jun Guan
- Department of Technique, RSR TJ Biotech Co., Ltd, J-312, 6 Haitai Development Road, Haitai Green Area, Huayuan Industrial Park, Binhai Hi-tech Zone, Tianjin, 300384, China.
| | - Wenli Feng
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
3
|
Haque E, Teeli AS, Winiarczyk D, Taguchi M, Sakuraba S, Kono H, Leszczyński P, Pierzchała M, Taniguchi H. HNF1A POU Domain Mutations Found in Japanese Liver Cancer Patients Cause Downregulation of HNF4A Promoter Activity with Possible Disruption in Transcription Networks. Genes (Basel) 2022; 13:genes13030413. [PMID: 35327967 PMCID: PMC8949677 DOI: 10.3390/genes13030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte nuclear factor 1A (HNF1A) is the master regulator of liver homeostasis and organogenesis and regulates many aspects of hepatocyte functions. It acts as a tumor suppressor in the liver, evidenced by the increased proliferation in HNF1A knockout (KO) hepatocytes. Hence, we postulated that any loss-of-function variation in the gene structure or composition (mutation) could trigger dysfunction, including disrupted transcriptional networks in liver cells. From the International Cancer Genome Consortium (ICGC) database of cancer genomes, we identified several HNF1A mutations located in the functional Pit-Oct-Unc (POU) domain. In our biochemical analysis, we found that the HNF1A POU-domain mutations Y122C, R229Q and V259F suppressed HNF4A promoter activity and disrupted the binding of HNF1A to its target HNF4A promoter without any effect on the nuclear localization. Our results suggest that the decreased transcriptional activity of HNF1A mutants is due to impaired DNA binding. Through structural simulation analysis, we found that a V259F mutation was likely to affect DNA interaction by inducing large conformational changes in the N-terminal region of HNF1A. The results suggest that POU-domain mutations of HNF1A downregulate HNF4A gene expression. Therefore, to mimic the HNF1A mutation phenotype in transcription networks, we performed siRNA-mediated knockdown (KD) of HNF4A. Through RNA-Seq data analysis for the HNF4A KD, we found 748 differentially expressed genes (DEGs), of which 311 genes were downregulated (e.g., HNF1A, ApoB and SOAT2) and 437 genes were upregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed that the DEGs were involved in several signaling pathways (e.g., lipid and cholesterol metabolic pathways). Protein–protein network analysis suggested that the downregulated genes were related to lipid and cholesterol metabolism pathways, which are implicated in hepatocellular carcinoma (HCC) development. Our study demonstrates that mutations of HNF1A in the POU domain result in the downregulation of HNF1A target genes, including HNF4A, and this may trigger HCC development through the disruption of HNF4A–HNF1A transcriptional networks.
Collapse
Affiliation(s)
- Effi Haque
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Dawid Winiarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Masahiko Taguchi
- Molecular Modeling and Simulation Group, National Institutes for Quantum Science and Technology, Kizugawa 619-0215, Japan; (M.T.); (S.S.); (H.K.)
| | - Shun Sakuraba
- Molecular Modeling and Simulation Group, National Institutes for Quantum Science and Technology, Kizugawa 619-0215, Japan; (M.T.); (S.S.); (H.K.)
| | - Hidetoshi Kono
- Molecular Modeling and Simulation Group, National Institutes for Quantum Science and Technology, Kizugawa 619-0215, Japan; (M.T.); (S.S.); (H.K.)
| | - Paweł Leszczyński
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
- Correspondence: ; Tel.: +48-22-736-70-95
| |
Collapse
|
4
|
Teeli AS, Łuczyńska K, Haque E, Gayas MA, Winiarczyk D, Taniguchi H. Disruption of Tumor Suppressors HNF4α/HNF1α Causes Tumorigenesis in Liver. Cancers (Basel) 2021; 13:cancers13215357. [PMID: 34771521 PMCID: PMC8582545 DOI: 10.3390/cancers13215357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
The hepatocyte nuclear factor-4α (HNF4α) and hepatocyte nuclear factor-1α (HNF1α) are transcription factors that influence the development and maintenance of homeostasis in a variety of tissues, including the liver. As such, disruptions in their transcriptional networks can herald a number of pathologies, such as tumorigenesis. Largely considered tumor suppressants in liver cancer, these transcription factors regulate key events of inflammation, epithelial-mesenchymal transition, metabolic reprogramming, and the differentiation status of the cell. High-throughput analysis of cancer cell genomes has identified a number of hotspot mutations in HNF1α and HNF4α in liver cancer. Such results also showcase HNF1α and HNF4α as important therapeutic targets helping us step into the era of personalized medicine. In this review, we update current findings on the roles of HNF1α and HNF4α in liver cancer development and progression. It covers the molecular mechanisms of HNF1α and HNF4α dysregulation and also highlights the potential of HNF4α as a therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Kamila Łuczyńska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Mohmmad Abrar Gayas
- Department of Surgery and Radiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Jammu 19000, India;
| | - Dawid Winiarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
- Correspondence:
| |
Collapse
|
5
|
Zhang E, Huang X, He J. Integrated bioinformatic analysis of HNF1A in human cancers. J Int Med Res 2021; 49:300060521997326. [PMID: 33752475 PMCID: PMC7995467 DOI: 10.1177/0300060521997326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Cancer is a threat to human health, and many molecules are involved in the transformation of malignant cells. Hepatocyte nuclear factor 1A (HNF1A) is an important transcription factor that regulates multiple biological processes. Our research focused on elucidating the expression and function of HNF1A in cancer through bioinformatic analysis. METHODS UALCAN, Kaplan-Meier plotter, COSMIC, Tumor IMmune Estimation Resource, and Cancer Regulome were used to obtain relevant data for HNF1A. RESULTS HNF1A was abnormally expressed in multiple cancers, and its expression was associated with differences in overall survival in patients with cancer. HNF1A mutations widely exist in tumors and interact with different genes involved in various processes. Additionally, we found that HNF1A was associated with the infiltration of immune cells, and it affected the prognostic value of these cells in some cancers. CONCLUSIONS HNF1A plays a crucial role in cancer, and it may represent a biomarker and target for future cancer immunotherapy.
Collapse
Affiliation(s)
- Enfan Zhang
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, China
| | - Xi Huang
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, China
| | - Jingsong He
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, China
| |
Collapse
|
6
|
Wang X, Hassan W, Zhao J, Bakht S, Nie Y, Wang Y, Pang Q, Huang Z. The impact of hepatocyte nuclear factor-1α on liver malignancies and cell stemness with metabolic consequences. Stem Cell Res Ther 2019; 10:315. [PMID: 31685031 PMCID: PMC6829964 DOI: 10.1186/s13287-019-1438-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 01/18/2023] Open
Abstract
Hepatocyte nuclear factor-1 alpha (HNF-1α) is a transcription factor expressed predominantly in the liver among other organs. Structurally, it contains POU-homeodomain that binds to DNA and form proteins that help in maintaining cellular homeostasis, controlling metabolism, and differentiating cell lineages. Scientific research over the period of three decades has reported it as an important player in various liver malignancies such as hepatocellular cancers (HCCs), hepatocellular adenoma (HA), and a more specific HNF-1α-inactivated human hepatocellular adenoma (H-HCAs). Abundant clinical and rodent data have noted the downregulation of HNF-1α in parallel with liver malignancies. It is also interesting to notice that the co-occurrence of mutated HNF-1α expression and hepatic carcinomas transpires typically along with metabolic repercussion. Moreover, scientific data implies that HNF-1α exerts its effects on cell stemness and hence can indirectly impact liver malignancies and metabolic functioning. The effects of HNF-1α on cell stemness present a future opportunity to explore a possible and potential breakthrough. Although the mechanism through which inactivated HNF-1α leads to hepatic malignancies remain largely obscure, several key signal molecules or pathways, including TNF-α, SHP-1, CDH17, SIRT, and MIA-2, have been reported to take part in the regulations of HNF-1α. It can be concluded from the present scientific data that HNF-1α has a great potential to serve as a target for liver malignancies and cell stemness.
Collapse
Affiliation(s)
- Xue Wang
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore campus, Lahore, Pakistan
| | - Jing Zhao
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Sahar Bakht
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yunjuan Nie
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Wang
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Qingfeng Pang
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu province, China
| | - Zhaohui Huang
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China. .,Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
| |
Collapse
|
7
|
Lu Y, Xu D, Peng J, Luo Z, Chen C, Chen Y, Chen H, Zheng M, Yin P, Wang Z. HNF1A inhibition induces the resistance of pancreatic cancer cells to gemcitabine by targeting ABCB1. EBioMedicine 2019; 44:403-418. [PMID: 31103629 PMCID: PMC6606897 DOI: 10.1016/j.ebiom.2019.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis, and gemcitabine-based chemotherapy remains an effective option for the majority of PDAC patients. Hepatocyte nuclear factor 1α (HNF1A) is a tumor-suppressor in PDAC, but its role in gemcitabine chemoresistance of PDAC has not been clarified. METHODS The function of HNF1A in gemcitabine was detected by overexpression and knockdown of HNF1A in vitro and in vitro. The regulatory network between HNF1A and ABCB1 was further demonstrated by luciferase assays, deletion/mutation reporter construct assays and CHIP assays. FINDINGS Here, we found that HNF1A expression is significantly associated with gemcitabine sensitivity in PDAC cell lines. Moreover, we identified that HNF1A overexpression enhanced gemcitabine sensitivity of PDAC both in vitro and in vitro, while inhibition of HNF1A had the opposite effect. Furthermore, by inhibiting and overexpressing HNF1A, we revealed that HNF1A regulates the expression of MDR genes (ABCB1 and ABCC1) in PDAC cells. Mechanistically, we demonstrated that HNF1A regulates ABCB1 expression through binding to its specific promoter region and suppressing its transcription levels. Finally, the survival analyses revealed the clinical value of HNF1A in stratification of gemcitabine sensitive pancreatic cancer patients. INTERPRETATION Our study paved the road for finding novel treatment combinations using conventional cytotoxic agents with functional restoration of the HNF1A protein, individualized treatment through HNF1A staining and improvement of the prognosis of PDAC patients. FUND: National Natural Science Foundations of China and National Natural Science Foundation of Guangdong Province.
Collapse
Affiliation(s)
- Yanan Lu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - Dongni Xu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jintao Peng
- Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhaofan Luo
- Department of Clinical Laboratory, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Chujie Chen
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Yuqing Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huimou Chen
- Department of Respiratory Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Minghui Zheng
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - Peihong Yin
- Department of Nephrology, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
8
|
Yu M, Pan L, Sang C, Mu Q, Zheng L, Luo G, Xu N. Apolipoprotein M could inhibit growth and metastasis of SMMC7721 cells via vitamin D receptor signaling. Cancer Manag Res 2019; 11:3691-3701. [PMID: 31190977 PMCID: PMC6525829 DOI: 10.2147/cmar.s202799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high mortality-to-incidence ratios. Apolipoprotein M (ApoM), a member of the apolipoprotein family, is mainly synthesized in the liver, whereas its role in HCC has not been elucidated. Here, we examined the effect of ApoM on the biological behavior of HCC cells and the possible mechanisms. Methods: We used CRISPR/Cas9 technology to knock out ApoM in SMMC7721 cells. Differentially expressed genes before and after ApoM knockout (KO) were analyzed by GeneChip microarrays and confirmed by qRT-PCR. Cell assays of proliferation, apoptosis, migration and invasion were performed in SMMC7721 cells, and the expression of epithelial-mesenchymal transition (EMT) markers was performed by western blot. And we performed functional recovery experiments by overexpressing vitamin D receptor (VDR) in SMMC7721. Results: The ApoM-KO SMMC7721 cell line was successfully constructed using the CRISPR/Cas9 technology. Our results showed that silencing ApoM suppressed apoptosis and promoted proliferation, migration, invasion and EMT of SMMC7721 cells. The microarray data revealed that a total of 1,868 differentially expressed genes were identified, including VDR. The qRT-PCR and western blot verification results demonstrated that knocking out ApoM could significantly reduce the expression of VDR. The functional recovery experiments indicated that VDR overexpression could offset the inhibition of cell apoptosis and the promotion of cell proliferation, migration, invasion and EMT caused by knocking out ApoM in SMMC7721 cells. Conclusion: ApoM could function as a tumor suppressor to inhibit the growth and metastasis of SMMC7721 cells via VDR signaling in HCC.
Collapse
Affiliation(s)
- Miaomei Yu
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China
| | - Lili Pan
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China
| | - Chen Sang
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China
| | - Qinfeng Mu
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China
| | - Lu Zheng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China
| | - Guanghua Luo
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China
| | - Ning Xu
- Section of Clinical Chemistry and Pharmacology, Institute of Laboratory Medicine, Lunds University, Lund S‑22185, Sweden
| |
Collapse
|