1
|
Corre M, Lebreton A. Regulation of cold-inducible RNA-binding protein (CIRBP) in response to cellular stresses. Biochimie 2024; 217:3-9. [PMID: 37037339 DOI: 10.1016/j.biochi.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Cold-inducible RNA-Binding Protein (CIRBP) is a general stress-response factor in vertebrates harboring two domains: an RNA-recognition motif and a regulatory domain rich in RG/RGG motifs. CIRBP has been described to bind mRNAs upon various stress conditions (cold, infections, UV, hypoxia …) and regulate their stability and translation. The proteins encoded by its targets are involved in key stress-responsive cellular pathways including apoptosis, inflammation, cell proliferation or translation, thus allowing their coordination. Due to its role in regulating central cellular functions, the expression of CIRBP is tightly controlled. We review here current understanding of the multiple mechanistic layers affecting CIRBP expression and function. Beyond transcriptional regulation by cold-responsive elements and the use of alternative promoters and transcription start sites, CIRBP undergoes various alternative splicing (AS) events which, depending on conditions, modulate the stability of CIRBP transcripts and/or impact the sequence of the encoded polypeptide. Typically, whilst CIRBP expression is induced in the context of hypothermia or viral infection, AS events preferentially address alternative isoforms towards mRNA degradation pathways in response to heat stress or to bacterial-secreted pore forming toxins. Post-translational modifications of CIRBP, mostly in its RGG domain, also condition CIRBP subcellular localization and access to its targets, thereby promoting or inhibiting their expression. For instance, phosphorylation and methylation events gate CIRBP nuclear to cytoplasmic translocation and control its recruitment to stress granules. Considering the therapeutic potential of modulating the expression and function of this central player in stress responses, a fine understanding of CIRBP regulation mechanisms deserves further attention.
Collapse
Affiliation(s)
- Morgane Corre
- Institut de biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Alice Lebreton
- Institut de biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France; INRAE, Micalis Institute, 78350, Jouy-en-Josas, France.
| |
Collapse
|
2
|
Amalia SN, Baral H, Fujiwara C, Uchiyama A, Inoue Y, Yamazaki S, Ishikawa M, Kosaka K, Sekiguchi A, Yokoyama Y, Ogino S, Torii R, Hosoi M, Shibasaki K, Motegi SI. TRPV4 Regulates the Development of Psoriasis by Controlling Adenosine Triphosphate Expression in Keratinocytes and the Neuroimmune System. J Invest Dermatol 2023; 143:2356-2365.e5. [PMID: 37263487 DOI: 10.1016/j.jid.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023]
Abstract
TRPV4 is a calcium ion channel that is widely expressed in various cells. It is also involved in physiological and pathological processes. However, the role of TRPV4 in psoriasis remains unknown. We aimed to investigate the role of TRPV4 in psoriasis using human psoriasis skin samples and an imiquimod-induced psoriasis-like mouse model. Keratinocytes in human psoriasis skin had high TRPV4 expression. Trpv4-knockout mice had less severe dermatitis than wild-type mice in the imiquimod-induced mouse model. Knockout mice had significantly reduced epidermal thickness and a low number of infiltrated CD3+ T cells and CD68+ macrophages on the basis of histopathological studies and decreased mRNA expression of Il17a, Il17f, and Il23, as detected through qPCR. Furthermore, knockout mice had a significantly low expression of neuropeptides and the neuron marker PGP9.5. Adenosine triphosphate release was significantly suppressed by TRPV4 knockdown in both human and mouse keratinocytes in vitro. Finally, treatment with TRPV4 antagonist was significantly effective in preventing the progression of psoriasis-like dermatitis. In conclusion, TRPV4 mediates the expression of keratinocyte-derived adenosine triphosphate and increases the secretion of neuropeptides, resulting in the activation and amplification of IL-23/Th17 responses. Hence, TRPV4 can serve as a novel therapeutic target in psoriasis.
Collapse
Affiliation(s)
- Syahla Nisaa Amalia
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hritu Baral
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chisako Fujiwara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Yuta Inoue
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sahori Yamazaki
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mai Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Keiji Kosaka
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Torii
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mari Hosoi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koji Shibasaki
- Laboratory of Neurochemistry, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
3
|
Spankovich C, Walters BJ. Mild Therapeutic Hypothermia and Putative Mechanisms of Hair Cell Survival in the Cochlea. Antioxid Redox Signal 2021; 36:1203-1214. [PMID: 34619988 PMCID: PMC9221161 DOI: 10.1089/ars.2021.0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022]
Abstract
Significance: Sensorineural hearing loss has significant implications for quality of life and risk for comorbidities such as cognitive decline. Noise and ototoxic drugs represent two common risk factors for acquired hearing loss that are potentially preventable. Recent Advances: Numerous otoprotection strategies have been postulated over the past four decades with primary targets of upstream redox pathways. More recently, the application of mild therapeutic hypothermia (TH) has shown promise for otoprotection for multiple forms of acquired hearing loss. Critical Issues: Systemic antioxidant therapy may have limited application for certain ototoxic drugs with a therapeutic effect on redox pathways and diminished efficacy of the primary drug's therapeutic function (e.g., cisplatin for tumors). Future Directions: Mild TH likely targets multiple mechanisms, contributing to otoprotection, including slowed metabolics, reduced oxidative stress, and involvement of cold shock proteins. Further work is needed to identify the mechanisms of mild TH at play for various forms of acquired hearing loss.
Collapse
Affiliation(s)
- Christopher Spankovich
- Department of Otolaryngology-Head and Neck Surgery and University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Bradley J. Walters
- Department of Otolaryngology-Head and Neck Surgery and University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
4
|
Expression regulation of cold-inducible protein RBM3 by FAK/Src signaling for neuroprotection against rotenone under mild hypothermia. Biochem Biophys Res Commun 2020; 534:240-247. [PMID: 33272569 DOI: 10.1016/j.bbrc.2020.11.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
Mild hypothermia is a well-established technique for alleviating neurological injuries in clinical surgery. RNA-binding protein motif 3 (RBM3) has been identified as a crucial factor in mediating hypothermic neuroprotection, providing its induction as a promising strategy for mimicking therapeutic hypothermia. However, little is known about molecular control of RBM3 and signaling pathways affected by hypothermia. In the present study, human SH-SY5Y neuroblastoma cells were used as a neural cell model. Screening of signaling pathways showed that cold exposure led to inactivation of ERK and AMPK pathways, and activation of FAK and PLCγ pathways, with activities of p38, JNK and AKT pathways moderately changed. Next, various small molecule inhibitors specific to these signaling pathways were applied. Interestingly, only FAK-specific inhibitor exhibited a significant inhibitory effect on hypothermia-induced RBM3 gene transcription and protein expression. Likewise, FAK silencing using siRNA technique significantly abrogated the induction of RBM3 by hypothermia. Moreover, FAK inhibition accounted for an inactivation of Src, a known kinase downstream of FAK. Next, either the silencing of Src by siRNA or its inactivation by a chemical inhibitor, strongly blocked the induction of RBM3 by cooling. Notably, in HEK293 and PC12 cells, FAK/Src activation was also shown to be indispensable for hypothermia-stimulated RBM3 expression. Lastly, the CCK8 and Western blot assays showed that both FAK/Src inacitivation and their knockdown substantially abrogate the neuroprotective effects of mild hypothermia against rotenone in SH-SY5Y cells. These data suggest that FAK/Src signaling axis regulates the transcription of Rbm3 gene and mediates neuroprotective effects of mild hypothermia.
Collapse
|
5
|
The Expression of Cold-Inducible RNA-Binding Protein mRNA in Sow Genital Tract Is Modulated by Natural Mating, But Not by Seminal Plasma. Int J Mol Sci 2020; 21:ijms21155333. [PMID: 32727091 PMCID: PMC7432381 DOI: 10.3390/ijms21155333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The RNA-binding proteins (RBPs), some of them induced by transient receptor potential (TRP) ion channels, are crucial regulators of RNA function that can contribute to reproductive pathogenesis, including inflammation and immune dysfunction. This study aimed to reveal the influence of spermatozoa, seminal plasma, or natural mating on mRNA expression of RBPs and TRP ion channels in different segments of the internal genital tract of oestrous, preovulatory sows. Particularly, we focused on mRNA expression changes of the cold-inducible proteins (CIPs) and related TRP channels. Pre-ovulatory sows were naturally mated (NM) or cervically infused with semen (Semen-AI) or sperm-free seminal plasma either from the entire ejaculate (SP-TOTAL) or the sperm-rich fraction (SP-AI). Samples (cervix to infundibulum) were collected by laparotomy under general anaesthesia for transcriptomic analysis (GeneChip® Porcine Gene 1.0 ST Array) 24 h after treatments. The NM treatment induced most of the mRNA expression changes, compared to Semen-AI, SP-AI, and SP-TOTAL treatments including unique significative changes in CIRBP, RBM11, RBM15B, RBMS1, TRPC1, TRPC4, TRPC7, and TRPM8. The findings on the differential mRNA expression on RBPs and TRP ion channels, especially to CIPs and related TRP ion channels, suggest that spermatozoa and seminal plasma differentially modulated both protein families during the preovulatory phase, probably related to a still unknown early signalling mechanism in the sow reproductive tract.
Collapse
|
6
|
Host Calcium Channels and Pumps in Viral Infections. Cells 2019; 9:cells9010094. [PMID: 31905994 PMCID: PMC7016755 DOI: 10.3390/cells9010094] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 11/29/2022] Open
Abstract
Ca2+ is essential for virus entry, viral gene replication, virion maturation, and release. The alteration of host cells Ca2+ homeostasis is one of the strategies that viruses use to modulate host cells signal transduction mechanisms in their favor. Host calcium-permeable channels and pumps (including voltage-gated calcium channels, store-operated channels, receptor-operated channels, transient receptor potential ion channels, and Ca2+-ATPase) mediate Ca2+ across the plasma membrane or subcellular organelles, modulating intracellular free Ca2+. Therefore, these Ca2+ channels or pumps present important aspects of viral pathogenesis and virus–host interaction. It has been reported that viruses hijack host calcium channels or pumps, disturbing the cellular homeostatic balance of Ca2+. Such a disturbance benefits virus lifecycles while inducing host cells’ morbidity. Evidence has emerged that pharmacologically targeting the calcium channel or calcium release from the endoplasmic reticulum (ER) can obstruct virus lifecycles. Impeding virus-induced abnormal intracellular Ca2+ homeostasis is becoming a useful strategy in the development of potent antiviral drugs. In this present review, the recent identified cellular calcium channels and pumps as targets for virus attack are emphasized.
Collapse
|
7
|
Aziz M, Brenner M, Wang P. Extracellular CIRP (eCIRP) and inflammation. J Leukoc Biol 2019; 106:133-146. [PMID: 30645013 PMCID: PMC6597266 DOI: 10.1002/jlb.3mir1118-443r] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 12/22/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) was discovered 2 decades ago while studying the mechanism of cold stress adaptation in mammals. Since then, the role of intracellular CIRP (iCIRP) as a stress-response protein has been extensively studied. Recently, extracellular CIRP (eCIRP) was discovered to also have an important role, acting as a damage-associated molecular pattern, raising critical implications for the pathobiology of inflammatory diseases. During hemorrhagic shock and sepsis, inflammation triggers the translocation of CIRP from the nucleus to the cytosol and its release to the extracellular space. eCIRP then induces inflammatory responses in macrophages, neutrophils, lymphocytes, and dendritic cells. eCIRP also induces endoplasmic reticulum stress and pyroptosis in endothelial cells by activating the NF-κB and inflammasome pathways, and necroptosis in macrophages via mitochondrial DNA damage. eCIRP works through the TLR4-MD2 receptors. Studies with CIRP-/- mice reveal protection against inflammation, implicating eCIRP to be a novel drug target. Anti-CIRP Ab or CIRP-derived small peptide may have effective therapeutic potentials in sepsis, acute lung injury, and organ ischemia/reperfusion injuries. The current review focuses on the pathobiology of eCIRP by emphasizing on signal transduction machineries, leading to discovering novel therapeutic interventions targeting eCIRP in various inflammatory diseases.
Collapse
Affiliation(s)
- Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset,
NY
| |
Collapse
|
8
|
Andrews MT. Molecular interactions underpinning the phenotype of hibernation in mammals. J Exp Biol 2019; 222:222/2/jeb160606. [DOI: 10.1242/jeb.160606] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT
Mammals maintain a constant warm body temperature, facilitating a wide variety of metabolic reactions. Mammals that hibernate have the ability to slow their metabolism, which in turn reduces their body temperature and leads to a state of hypothermic torpor. For this metabolic rate reduction to occur on a whole-body scale, molecular interactions that change the physiology of cells, tissues and organs are required, resulting in a major departure from normal mammalian homeostasis. The aim of this Review is to cover recent advances in the molecular biology of mammalian hibernation, including the role of small molecules, seasonal changes in gene expression, cold-inducible RNA-binding proteins, the somatosensory system and emerging information on hibernating primates. To underscore the importance of differential gene expression across the hibernation cycle, mRNA levels for 14,261 ground squirrel genes during periods of activity and torpor are made available for several tissues via an interactive transcriptome browser. This Review also addresses recent findings on molecular interactions responsible for multi-day survival of near-freezing body temperatures, single-digit heart rates and a slowed metabolism that greatly reduces oxygen consumption. A better understanding of how natural hibernators survive these physiological extremes is beginning to lead to innovations in human medicine.
Collapse
Affiliation(s)
- Matthew T. Andrews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
9
|
Hirai A, Aung NY, Ohe R, Nishida A, Kato T, Meng H, Ishizawa K, Fujii J, Yamakawa M. Expression of TRPM8 in human reactive lymphoid tissues and mature B-cell neoplasms. Oncol Lett 2018; 16:5930-5938. [PMID: 30344743 PMCID: PMC6176370 DOI: 10.3892/ol.2018.9386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a member of the transient receptor potential superfamily of Ca2+ channels. The aim of the present study was to clarify TRPM8 expression in reactive lymphoid tissues and mature B-cell neoplasms. Reactive and neoplastic lymphoid tissues were used to evaluate TRPM8 expression by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). TRPM8+ cells were frequently detected in the follicular light zone and marginal zone of reactive lymphoid tissues. Double immunostaining revealed that TRPM8+ cells co-expressed cluster of differentiation (CD) 38, CD79a, CD138, interferon regulatory factor 4/melanoma associated antigen (mutated) 1, B cell CLL/lymphoma 6 and transmembrane activator and CAML interactor. TRPM8+ neoplastic cells were frequently detected in plasma cell myeloma. The positive band of TRPM8 mRNA was confirmed by RT-PCR in cases of myeloma. The present study is, to the best of our knowledge, the first to demonstrate the expression of TRPM8 in reactive lymphoid tissues and mature B-cell neoplasms, revealing that TRPM8 is frequently expressed in pre-plasmablasts, plasmablasts, plasma cells and mature B-cell lymphomas that are likely to differentiate into plasma cells.
Collapse
Affiliation(s)
- Akinori Hirai
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Naing Ye Aung
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Rintaro Ohe
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Akiko Nishida
- Division of Pathology, Nihonkai General Hospital, Sakata, Yamagata 998-8501, Japan
| | - Tomoya Kato
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Hongxue Meng
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Kenichi Ishizawa
- Third Department of Internal Medicine, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Mitsunori Yamakawa
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| |
Collapse
|