1
|
Singh A, Majee P, Mishra L, Prajapat SK, Sharma TK, Kalia M, Kumar A. Role of RNA G-Quadruplexes in the Japanese Encephalitis Virus Genome and Their Recognition as Prospective Antiviral Targets. ACS Infect Dis 2024. [PMID: 39436355 DOI: 10.1021/acsinfecdis.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
G-quadruplexes (GQs) have been primarily studied in the context of cancer and neurodegenerative pathologies. However, recent research has shifted focus to their existence and functional roles in viral genomes, revealing GQ-regulated key pathways in various human pathogenic viruses. While GQ structures have been reported in the genomes of emerging and re-emerging viruses, RNA viruses have been understudied compared to DNA viruses, including notable examples such as human immunodeficiency virus-1, hepatitis C virus, Ebola virus, Nipah virus, Zika virus, and SARS-CoV-2. The flavivirus family, comprising the Japanese encephalitis virus (JEV), poses a significant global threat due to recurring outbreaks yet lacks approved antivirals. In this study, we identified and characterized eight putative G-quadruplex-forming motifs within essential genes involved in genome replication, assembly, and internalization in the host cell, conserved across different JEV isolates. The formation and stability of these motifs were validated through a multitude of biophysical and cell-based assays. The interaction and binding affinity of these motifs with the known GQ-binding ligand BRACO-19 were supported by biophysical assays, confirming the capability of these motifs to form GQ structures. Notably, BRACO-19 also exerted antiviral properties through reduction of viral replication and infectious virus titers as well as inhibition of viral protein expression, as evaluated by the cell-based assays. This comprehensive molecular characterization of G-quadruplex structures within the JEV genome highlights their potential as promising antiviral targets for intervention strategies against JEV infection through GQ-specific ligands.
Collapse
Affiliation(s)
- Aakriti Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| | - Prativa Majee
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| | - Laxmi Mishra
- Virology Research Group, Regional Centre for Biotechnology, Faridabad 121001, India
| | | | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar 382355, India
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, Faridabad 121001, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| |
Collapse
|
2
|
Celona B, Salomonsson SE, Wu H, Dang B, Kratochvil HT, Clelland CD, DeGrado WF, Black BL. Zfp106 binds to G-quadruplex RNAs and inhibits RAN translation and formation of RNA foci caused by G4C2 repeats. Proc Natl Acad Sci U S A 2024; 121:e2220020121. [PMID: 39042693 PMCID: PMC11295049 DOI: 10.1073/pnas.2220020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Expansion of intronic GGGGCC repeats in the C9orf72 gene causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Transcription of the expanded repeats results in the formation of RNA-containing nuclear foci and altered RNA metabolism. In addition, repeat-associated non-AUG (RAN) translation of the expanded GGGGCC-repeat sequence results in the production of highly toxic dipeptide-repeat (DPR) proteins. GGGGCC repeat-containing transcripts form G-quadruplexes, which are associated with formation of RNA foci and RAN translation. Zfp106, an RNA-binding protein essential for motor neuron survival in mice, suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Here, we show that Zfp106 inhibits formation of RNA foci and significantly reduces RAN translation caused by GGGGCC repeats in cultured mammalian cells, and we demonstrate that Zfp106 coexpression reduces the levels of DPRs in C9orf72 patient-derived cells. Further, we show that Zfp106 binds to RNA G-quadruplexes and causes a conformational change in the G-quadruplex structure formed by GGGGCC repeats. Together, these data demonstrate that Zfp106 suppresses the formation of RNA foci and DPRs caused by GGGGCC repeats and suggest that the G-quadruplex RNA-binding function of Zfp106 contributes to its suppression of GGGGCC repeat-mediated cytotoxicity.
Collapse
Affiliation(s)
- Barbara Celona
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
| | - Sally E. Salomonsson
- Weill Institute for Neurosciences, University of California, San Francisco, CA94143
- Memory & Aging Center, Department of Neurology, University of California, San Francisco, CA94143
| | - Haifan Wu
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Bobo Dang
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Huong T. Kratochvil
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Claire D. Clelland
- Weill Institute for Neurosciences, University of California, San Francisco, CA94143
- Memory & Aging Center, Department of Neurology, University of California, San Francisco, CA94143
| | - William F. DeGrado
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
| |
Collapse
|
3
|
Peng Y, Tu Q, Han Y, Gao L, Fu J. Incidence of different pressure patterns of spinal cerebellar ataxia (SCA) and analysis of imaging and genetic diagnosis. Biomed Signal Process Control 2024; 93:106115. [DOI: 10.1016/j.bspc.2024.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Peng Y, Tu Q, Han Y, Gao L, Wan C. Incidence of different pressure patterns of spinal cerebellar ataxia and analysis of imaging and genetic diagnosis. Open Life Sci 2023; 18:20220762. [PMID: 38152578 PMCID: PMC10751992 DOI: 10.1515/biol-2022-0762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 12/29/2023] Open
Abstract
Neurologists have a difficult time identifying sporadic cerebellar ataxia. Multiple system atrophy of the cerebellar type (MSA-C), spontaneous late cortical cerebellar atrophy, and prolonged alcohol use are a few possible causes. In a group of people with sporadic cerebellar ataxia that was not MSA-C, an autosomal-dominant spinocerebellar ataxia (SCA) mutation was recently discovered. Chinese single-hospital cohort will be used in this study to genetic screen for SCA-related genes. One hundred forty individuals with CA were monitored over 8 years. Thirty-one individuals had familial CA, 109 patients had sporadic CA, 73 had MSA-C, and 36 had non-MSA-C sporadic CA. In 28 of the 31 non-MSA-C sporadic patients who requested the test, we carried out gene analysis, including SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, SCA31, and dentatorubro-pallidoluysian atrophy (DRPLA). The control group consisted of family members of the patients. In 57% of the instances with spontaneous CA that were not MSA-C, gene abnormalities were discovered. The most frequent exception among individuals with sporadic CA was SCA6 (36%), followed by monsters in SCA1, 2, 3, 8, and DRPLA. In contrast, 75% of the patients with familial CA had gene abnormalities, the most frequent of which was SCA6 abnormality. The age of 69 vs 59 was higher, and the CAG repeat length was a minor age of 23 vs 25 in the former instances compared to the last one among individuals with SCA6 anomalies that were sporadic as opposed to familial cases. In sporadic CA, autosomal-dominant mutations in SCA genes, notably in SCA6, are common. Although the cause of the increased incidence of SCA6 mutations is unknown, it may be related to a greater age of onset and varied penetrance of SCA6 mutations.
Collapse
Affiliation(s)
- Yufen Peng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qi Tu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yao Han
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Liang Gao
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Chenyi Wan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
5
|
Rodriguez J, Domínguez A, Aviñó A, Borgonovo G, Eritja R, Mazzini S, Gargallo R. Exploring the stabilizing effect on the i-motif of neighboring structural motifs and drugs. Int J Biol Macromol 2023; 242:124794. [PMID: 37182626 DOI: 10.1016/j.ijbiomac.2023.124794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Cytosine-rich DNA sequences may fold into a structure known as i-motif, with potential in vivo modulation of gene expression. The stability of the i-motif is residual at neutral pH values. To increase it, the addition of neighboring moieties, such as Watson-Crick stabilized loops, tetrads, or non-canonical base pairs have been proposed. Taking a recently described i-motif structure as a model, the relative effect of these structural moieties, as well as several DNA ligands, on the stabilization of the i-motif has been studied. To this end, not only the original sequence but different mutants were considered. Spectroscopic techniques, PAGE, and multivariate data analysis methods have been used to model the folding/unfolding equilibria induced by changes of pH, temperature, and the presence of ligands. The results have shown that the duplex is the moiety that is responsible of the stabilization of the i-motif structure at neutral pH. The T:T base pair, on the contrary, shows little stabilization of the i-motif. From several selected DNA-binding ligands, the G-quadruplex ligand BA41 is shown to interact with the duplex moiety, whereas non-specific interaction and little stabilization has been observed within the i-motif.
Collapse
Affiliation(s)
- Judit Rodriguez
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, Marti i Franqués 1-11, E-08028 Barcelona, Spain
| | - Arnau Domínguez
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan (Università degli Studi di Milano), Milan, Italy
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan (Università degli Studi di Milano), Milan, Italy
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, Marti i Franqués 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|
6
|
Alniss HY, Chu C, Ramadan WS, Msallam YA, Srinivasulu V, El-Awady R, Macgregor RB, Al-Tel TH. Interaction of an anticancer benzopyrane derivative with DNA: Biophysical, biochemical, and molecular modeling studies. Biochim Biophys Acta Gen Subj 2023; 1867:130347. [PMID: 36958685 DOI: 10.1016/j.bbagen.2023.130347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND SIMR1281 is a potent anticancer lead candidate with multi- target activity against several proteins; however, its mechanism of action at the molecular level is not fully understood. Revealing the mechanism and the origin of multitarget activity is important for the rational identification and optimization of multitarget drugs. METHODS We have used a variety of biophysical (circular dichroism, isothermal titration calorimetry, viscosity, and UV DNA melting), biochemical (topoisomerase I & II assays) and computational (molecular docking and MD simulations) methods to study the interaction of SIMR1281 with duplex DNA structures. RESULTS The biophysical results revealed that SIMR1281 binds to dsDNA via an intercalation-binding mode with an average binding constant of 3.1 × 106 M-1. This binding mode was confirmed by the topoisomerases' inhibition assays and molecular modeling simulations, which showed the intercalation of the benzopyrane moiety between DNA base pairs, while the remaining moieties (thiazole and phenyl rings) sit in the minor groove and interact with the flanking base pairs adjacent to the intercalation site. CONCLUSIONS The DNA binding characteristics of SIMR1281, which can disrupt/inhibit DNA function as confirmed by the topoisomerases' inhibition assays, indicate that the observed multi-target activity might originate from ligand intervention at nucleic acids level rather than due to direct interactions with multiple biological targets at the protein level. GENERAL SIGNIFICANCE The findings of this study could be helpful to guide future optimization of benzopyrane-based ligands for therapeutic purposes.
Collapse
Affiliation(s)
- Hasan Y Alniss
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
| | - Chen Chu
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Wafaa S Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Yousef A Msallam
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Robert B Macgregor
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Taleb H Al-Tel
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
7
|
Gene Therapy in Amyotrophic Lateral Sclerosis. Cells 2022; 11:cells11132066. [PMID: 35805149 PMCID: PMC9265980 DOI: 10.3390/cells11132066] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022] Open
Abstract
Since the discovery of Cu/Zn superoxide dismutase (SOD1) gene mutation, in 1993, as the first genetic abnormality in amyotrophic lateral sclerosis (ALS), over 50 genes have been identified as either cause or modifier in ALS and ALS/frontotemporal dementia (FTD) spectrum disease. Mutations in C9orf72, SOD1, TAR DNA binding protein 43 (TARDBP), and fused in sarcoma (FUS) genes are the four most common ones. During the last three decades, tremendous effort has been made worldwide to reveal biological pathways underlying the pathogenesis of these gene mutations in ALS/FTD. Accordingly, targeting etiologic genes (i.e., gene therapies) to suppress their toxic effects have been investigated widely. It includes four major strategies: (i) removal or inhibition of abnormal transcribed RNA using microRNA or antisense oligonucleotides (ASOs), (ii) degradation of abnormal mRNA using RNA interference (RNAi), (iii) decrease or inhibition of mutant proteins (e.g., using antibodies against misfolded proteins), and (iv) DNA genome editing with methods such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas). The promising results of these studies have led to the application of some of these strategies into ALS clinical trials, especially for C9orf72 and SOD1. In this paper, we will overview advances in gene therapy in ALS/FTD, focusing on C9orf72, SOD1, TARDBP, and FUS genes.
Collapse
|
8
|
Frasson I, Pirota V, Richter SN, Doria F. Multimeric G-quadruplexes: A review on their biological roles and targeting. Int J Biol Macromol 2022; 204:89-102. [PMID: 35124022 DOI: 10.1016/j.ijbiomac.2022.01.197] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
In human cells, nucleic acids adopt several non-canonical structures that regulate key cellular processes. Among them, G-quadruplexes (G4s) are stable structures that form in guanine-rich regions in vitro and in cells. G4 folded/unfolded state shapes numerous cellular processes, including genome replication, transcription, and translation. Moreover, G4 folding is involved in genomic instability. G4s have been described to multimerize, forming high-order structures in both DNA and/or RNA strands. Multimeric G4s can be formed by adjacent intramolecular G4s joined by stacking interactions or connected by short loops. Multimeric G4s can also originate from the assembly of guanines embedded on independent DNA or RNA strands. Notably, crucial regions of the human genome, such as the 3'-terminal overhang of the telomeric DNA as well as the open reading frame of genes involved in the preservation of neuron viability in the human central and peripheral nervous system are prone to form multimeric G4s. The biological importance of such structures has been recently described, with multimeric G4s playing potentially protective or deleterious effects in the pathogenic cascade of various diseases. Here, we portray the multifaceted scenario of multimeric G4s, in terms of structural properties, biological roles, and targeting strategies.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy; G4-INTERACT, USERN, v. le Taramelli 10, 27100 Pavia, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy.
| | - Filippo Doria
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy.
| |
Collapse
|
9
|
Lopez S, He F. Spinocerebellar Ataxia 36: From Mutations Toward Therapies. Front Genet 2022; 13:837690. [PMID: 35309140 PMCID: PMC8931325 DOI: 10.3389/fgene.2022.837690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia 36 (SCA36) is a type of repeat expansion-related neurodegenerative disorder identified a decade ago. Like other SCAs, the symptoms of SCA36 include the loss of coordination like gait ataxia and eye movement problems, but motor neuron-related symptoms like muscular atrophy are also present in those patients. The disease is caused by a GGCCTG hexanucleotide repeat expansion in the gene Nop56, and the demographic incidence map showed that this disease was more common among the ethnic groups of Japanese and Spanish descendants. Although the exact mechanisms are still under investigation, the present evidence supports that the expanded repeats may undergo repeat expansion-related non-AUG-initiated translation, and these dipeptide repeat products could be one of the important ways to lead to pathogenesis. Such studies may help develop potential treatments for this disease.
Collapse
|
10
|
Piperine analogs arrest c-myc gene leading to downregulation of transcription for targeting cancer. Sci Rep 2021; 11:22909. [PMID: 34824301 PMCID: PMC8617303 DOI: 10.1038/s41598-021-01529-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022] Open
Abstract
G-quadruplex (G4) structures are considered a promising therapeutic target in cancer. Since Ayurveda, Piperine has been known for its medicinal properties. Piperine shows anticancer properties by stabilizing the G4 motif present upstream of the c-myc gene. This gene belongs to a group of proto-oncogenes, and its aberrant transcription drives tumorigenesis. The transcriptional regulation of the c-myc gene is an interesting approach for anticancer drug design. The present study employed a chemical similarity approach to identify Piperine similar compounds and analyzed their interaction with cancer-associated G-quadruplex motifs. Among all Piperine analogs, PIP-2 exhibited strong selectivity, specificity, and affinity towards c-myc G4 DNA as elaborated through biophysical studies such as fluorescence emission, isothermal calorimetry, and circular dichroism. Moreover, our biophysical observations are supported by molecular dynamics analysis and cellular-based studies. Our study showed that PIP-2 showed higher toxicity against the A549 lung cancer cell line but lower toxicity towards normal HEK 293 cells, indicating increased efficacy of the drug at the cellular level. Biological evaluation assays such as TFP reporter assay, quantitative real-time PCR (qRT- PCR), and western blotting suggest that the Piperine analog-2 (PIP-2) stabilizes the G-quadruplex motif located at the promoter site of c-myc oncogene and downregulates its expression. In conclusion, Piperine analog PIP-2 may be used as anticancer therapeutics as it affects the c-myc oncogene expression via G-quadruplex mediated mechanism.
Collapse
|
11
|
The porphyrin TMPyP4 inhibits elongation during the noncanonical translation of the FTLD/ALS-associated GGGGCC repeat in the C9orf72 gene. J Biol Chem 2021; 297:101120. [PMID: 34450161 PMCID: PMC8446798 DOI: 10.1016/j.jbc.2021.101120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
GGGGCC (G4C2) repeat expansion in the C9orf72 gene has been shown to cause frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Dipeptide repeat proteins produced through repeat-associated non-AUG (RAN) translation are recognized as potential drivers for neurodegeneration. Therefore, selective inhibition of RAN translation could be a therapeutic avenue to treat these neurodegenerative diseases. It was previously known that the porphyrin TMPyP4 binds to G4C2 repeat RNA. However, the consequences of this interaction have not been well characterized. Here, we confirmed that TMPyP4 inhibits C9orf72 G4C2 repeat translation in cellular and in in vitro translation systems. An artificial insertion of an AUG codon failed to cancel the translation inhibition, suggesting that TMPyP4 acts downstream of non-AUG translation initiation. Polysome profiling assays also revealed polysome retention on G4C2 repeat RNA, along with inhibition of translation, indicating that elongating ribosomes stall on G4C2 repeat RNA. Urea-resistant interaction between G4C2 repeat RNA and TMPyP4 likely contributes to this ribosome stalling and thus to selective inhibition of RAN translation. Taken together, our data reveal a novel mode of action of TMPyP4 as an inhibitor of G4C2 repeat translation elongation.
Collapse
|
12
|
Santos T, Salgado GF, Cabrita EJ, Cruz C. G-Quadruplexes and Their Ligands: Biophysical Methods to Unravel G-Quadruplex/Ligand Interactions. Pharmaceuticals (Basel) 2021; 14:769. [PMID: 34451866 PMCID: PMC8401999 DOI: 10.3390/ph14080769] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilmar F. Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 33607 Pessac, France;
| | - Eurico J. Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
13
|
Mitteaux J, Lejault P, Wojciechowski F, Joubert A, Boudon J, Desbois N, Gros CP, Hudson RHE, Boulé JB, Granzhan A, Monchaud D. Identifying G-Quadruplex-DNA-Disrupting Small Molecules. J Am Chem Soc 2021; 143:12567-12577. [PMID: 34346684 DOI: 10.1021/jacs.1c04426] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The quest for small molecules that strongly bind to G-quadruplex-DNA (G4), so-called G4 ligands, has invigorated the G4 research field from its very inception. Massive efforts have been invested to discover or rationally design G4 ligands, evaluate their G4-interacting properties in vitro through a series of now widely accepted and routinely implemented assays, and use them as innovative chemical biology tools to interrogate cellular networks that might involve G4s. In sharp contrast, only uncoordinated efforts aimed at developing small molecules that destabilize G4s have been invested to date, even though it is now recognized that such molecular tools would have tremendous application in neurobiology as many genetic and age-related diseases are caused by an overrepresentation of G4s. Herein, we report on our efforts to develop in vitro assays to reliably identify molecules able to destabilize G4s. This workflow comprises the newly designed G4-unfold assay, adapted from the G4-helicase assay implemented with Pif1, as well as a series of biophysical and biochemical techniques classically used to study G4/ligand interactions (CD, UV-vis, PAGE, and FRET-melting), and a qPCR stop assay, adapted from a Taq-based protocol recently used to identify G4s in the genomic DNA of Schizosaccharomyces pombe. This unique, multipronged approach leads to the characterization of a phenylpyrrolocytosine (PhpC)-based G-clamp analog as a prototype of G4-disrupting small molecule whose properties are validated through many different and complementary in vitro evaluations.
Collapse
Affiliation(s)
- Jérémie Mitteaux
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Pauline Lejault
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Filip Wojciechowski
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Alexandra Joubert
- Genome Structure and Instability Laboratory, CNRS UMR 7196, INSERM U1154, National Museum of Natural History, Alliance Sorbonne Université, 75005 Paris, France
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, ICB CNRS UMR 6303, UBFC, 21078 Dijon, France
| | - Nicolas Desbois
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Claude P Gros
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Jean-Baptiste Boulé
- Genome Structure and Instability Laboratory, CNRS UMR 7196, INSERM U1154, National Museum of Natural History, Alliance Sorbonne Université, 75005 Paris, France
| | - Anton Granzhan
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France.,Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - David Monchaud
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| |
Collapse
|
14
|
Pandya N, Jain N, Kumar A. Interaction analysis of anti-cancer drug Methotrexate with bcl-2 promoter stabilization and its transcription regulation. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Hirayanagi K, Ozaki H, Tsukagoshi S, Furuta N, Ikeda Y. Porphyrins ameliorate spinocerebellar ataxia type 36 GGCCTG repeat expansion-mediated cytotoxicity. Neurosci Res 2021; 171:92-102. [PMID: 33705846 DOI: 10.1016/j.neures.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 11/15/2022]
Abstract
Spinocerebellar ataxia type 36 (SCA36) is a noncoding repeat expansion disorder caused by an expanded GGCCTG hexanucleotide repeat (HNR) in the first intron of the nucleolar protein 56 (NOP56) gene. Another disease-causing HNR expansion derived from C9orf72-linked GGGGCC repeats that form G-quadruplexes (GQs) affects genetic stability, RNA splicing, and mRNA localization within neurites. The porphyrin derivative TMPyP4 was shown to ameliorate RNA toxicity caused by GGGGCC HNR expansion by binding and distorting RNA GQ structures. SCA36 GGCCTG HNRs can potentially form RNA GQs; therefore, we investigated whether several porphyrin derivatives could reduce RNA toxicity in SCA36 cell models. Among these, sodium copper chlorophyllin and hemin chloride, which have already been used in clinical practice, reduced SCA36 GGCCTG expansion-mediated cytotoxicity and improved cell viability. These data suggest that porphyrins are potential therapeutic candidates against SCA36 pathogenesis.
Collapse
Affiliation(s)
- Kimitoshi Hirayanagi
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hiroaki Ozaki
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, Maebashi, Gunma, 371-8510, Japan
| | - Setsuki Tsukagoshi
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Natsumi Furuta
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
16
|
Lejault P, Mitteaux J, Sperti FR, Monchaud D. How to untie G-quadruplex knots and why? Cell Chem Biol 2021; 28:436-455. [PMID: 33596431 DOI: 10.1016/j.chembiol.2021.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
For over two decades, the prime objective of the chemical biology community studying G-quadruplexes (G4s) has been to use chemicals to interact with and stabilize G4s in cells to obtain mechanistic interpretations. This strategy has been undoubtedly successful, as demonstrated by recent advances. However, these insights have also led to a fundamental rethinking of G4-targeting strategies: due to the prevalence of G4s in the human genome, transcriptome, and ncRNAome (collectively referred to as the G4ome), and their involvement in human diseases, should we continue developing G4-stabilizing ligands or should we invest in designing molecular tools to unfold G4s? Here, we first focus on how, when, and where G4s fold in cells; then, we describe the enzymatic systems that have evolved to counteract G4 folding and how they have been used as tools to manipulate G4s in cells; finally, we present strategies currently being implemented to devise new molecular G4 unwinding agents.
Collapse
Affiliation(s)
- Pauline Lejault
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France.
| |
Collapse
|
17
|
Majee P, Pattnaik A, Sahoo BR, Shankar U, Pattnaik AK, Kumar A, Nayak D. Inhibition of Zika virus replication by G-quadruplex-binding ligands. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:691-701. [PMID: 33575115 PMCID: PMC7851496 DOI: 10.1016/j.omtn.2020.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/30/2020] [Indexed: 01/05/2023]
Abstract
Zika virus (ZIKV), a mosquito-transmitted Flavivirus, emerged in the last decade causing serious diseases and affecting human health globally. Currently, no licensed vaccines or antivirals are available to combat ZIKV, although several vaccine candidates are in the pipeline. In recent years, the presence of non-canonical G-quadruplex (GQ) secondary structures in viral genomes has ignited significant attention as potential targets for antiviral strategy. In this study, we identified several novel conserved potential GQ structures by analyzing published ZIKV genome sequences using an in-house algorithm. Biophysical and biochemical analysis of the RNA sequences containing these potential GQ sequences suggested the existence of such structures in the ZIKV genomes. Studies with known GQ structure-binding and -stabilizing ligands such as Braco-19 and TMPyP4 provided support for this contention. The presence of these ligands in cell culture media led to significant inhibition of infectious ZIKV yield, as well as reduced viral genome replication and viral protein production. Overall, our results, for the first time, show that ZIKV replication can be inhibited by GQ structure-binding and -stabilizing compounds and suggest a new strategy against ZIKV infection mitigation and control.
Collapse
Affiliation(s)
- Prativa Majee
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453552, India
| | - Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bikash R Sahoo
- School of Veterinary Medicine and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453552, India
| | - Asit K Pattnaik
- School of Veterinary Medicine and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453552, India
| | - Debasis Nayak
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453552, India
| |
Collapse
|
18
|
Gagliardi D, Costamagna G, Taiana M, Andreoli L, Biella F, Bersani M, Bresolin N, Comi GP, Corti S. Insights into disease mechanisms and potential therapeutics for C9orf72-related amyotrophic lateral sclerosis/frontotemporal dementia. Ageing Res Rev 2020; 64:101172. [PMID: 32971256 DOI: 10.1016/j.arr.2020.101172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
In 2011, a hexanucleotide repeat expansion (HRE) in the noncoding region of C9orf72 was associated with the most frequent genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The main pathogenic mechanisms in C9-ALS/FTD are haploinsufficiency of the C9orf72 protein and gain of function toxicity from bidirectionally-transcribed repeat-containing RNAs and dipeptide repeat proteins (DPRs) resulting from non-canonical RNA translation. Additionally, abnormalities in different downstream cellular mechanisms, such as nucleocytoplasmic transport and autophagy, play a role in pathogenesis. Substantial research efforts using in vitro and in vivo models have provided valuable insights into the contribution of each mechanism in disease pathogenesis. However, conflicting evidence exists, and a unifying theory still lacks. Here, we provide an overview of the recently published literature on clinical, neuropathological and molecular features of C9-ALS/FTD. We highlight the supposed neuronal role of C9orf72 and the HRE pathogenic cascade, mainly focusing on the contribution of RNA foci and DPRs to neurodegeneration and discussing the several downstream mechanisms. We summarize the emerging biochemical and neuroimaging biomarkers, as well as the potential therapeutic approaches. Despite promising results, a specific disease-modifying treatment is still not available to date and greater insights into disease mechanisms may help in this direction.
Collapse
Affiliation(s)
- Delia Gagliardi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Gianluca Costamagna
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Michela Taiana
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Luca Andreoli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Fabio Biella
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Margherita Bersani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
19
|
Pandya N, Khan E, Jain N, Satham L, Singh R, Makde RD, Mishra A, Kumar A. Curcumin analogs exhibit anti-cancer activity by selectively targeting G-quadruplex forming c-myc promoter sequence. Biochimie 2020; 180:205-221. [PMID: 33188859 DOI: 10.1016/j.biochi.2020.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/10/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022]
Abstract
Curcumin exhibits a broad spectrum of beneficial health properties that include anti-tumor and anti-cancer activities. The down-regulation of c-myc transcription via stabilizing the G-quadruplex structure formed at the promoter region of the human c-myc gene allows the repression in cancer growth. Small molecules can bind and stabilize this structure to provide an exciting and promising strategy for anti-cancer therapeutics. Herein, we investigated the interaction of Curcumin and its synthetic analogs with G-quadruplex DNA formed at the c-myc promoter by using various biophysical and biochemical assays. Further, its cytotoxic effect and mechanistic insights were explored in various cancer cell lines as well as in multicellular tumor spheroid (MCTS) model. The MCTS possesses almost similar microenvironment as avascular tumors, and micro-metastases can be used as a suitable model for the small molecule-based therapeutics development. Our study provides an expanded overview of the anti-cancer effect of a new Curcumin analog via targeting G-quadruplex structures formed at the promoter region of the human c-myc gene.
Collapse
Affiliation(s)
- Nirali Pandya
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Eshan Khan
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Lakshminarayana Satham
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Rahul Singh
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ravindra D Makde
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342011, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| |
Collapse
|
20
|
Simko EAJ, Liu H, Zhang T, Velasquez A, Teli S, Haeusler AR, Wang J. G-quadruplexes offer a conserved structural motif for NONO recruitment to NEAT1 architectural lncRNA. Nucleic Acids Res 2020; 48:7421-7438. [PMID: 32496517 PMCID: PMC7367201 DOI: 10.1093/nar/gkaa475] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
The long non-coding RNA NEAT1 serves as a scaffold for the assembly of paraspeckles, membraneless nuclear organelles involved in gene regulation. Paraspeckle assembly requires NEAT1 recruitment of the RNA-binding protein NONO, however the NEAT1 elements responsible for recruitment are unknown. Herein we present evidence that previously unrecognized structural features of NEAT1 serve an important role in these interactions. Led by the initial observation that NONO preferentially binds the G-quadruplex conformation of G-rich C9orf72 repeat RNA, we find that G-quadruplex motifs are abundant and conserved features of NEAT1. Furthermore, we determine that NONO binds NEAT1 G-quadruplexes with structural specificity and provide evidence that G-quadruplex motifs mediate NONO-NEAT1 association, with NONO binding sites on NEAT1 corresponding largely to G-quadruplex motifs, and treatment with a G-quadruplex-disrupting small molecule causing dissociation of native NONO-NEAT1 complexes. Together, these findings position G-quadruplexes as a primary candidate for the NONO-recruiting elements of NEAT1 and provide a framework for further investigation into the role of G-quadruplexes in paraspeckle formation and function.
Collapse
Affiliation(s)
- Eric A J Simko
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Honghe Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adan Velasquez
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shraddha Teli
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aaron R Haeusler
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
St Martin JL, Wang L, Kaprielian Z. Toxicity in ALS: TDP-43 modifiers and C9orf72. Neurosci Lett 2019; 716:134621. [PMID: 31726180 DOI: 10.1016/j.neulet.2019.134621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating and fatal neurodegenerative disease affecting approximately 30,000 individuals in the United States. The average age of onset is 55 years and progression of the disease is rapid with most patients dying of respiratory failure within 3-5 years. Currently available therapeutics have modest effects on patient survival, underscoring the immediate need for more effective medicines. Recent technological advances in next generation sequencing have led to a substantial uptick in the discovery of genes linked to ALS. Since 90 % of ALS cases are sporadic, risk genes identified in familial cases provide invaluable insights into the molecular pathogenesis of the disease. Most notably, TDP-43-expressing neuronal inclusions and C9orf72 mutations have emerged as the key pathological and genetic hallmarks, respectively, of ALS. In this review, we will discuss recent advances in modifiers of TDP-43 toxicity, with an emphasis on Ataxin-2, one of the most well-characterized TDP-43 modifiers. An understanding of Ataxin-2 function and related biological pathways could provide a framework for the discovery of other novel modifiers of TDP-43. We will also describe the pathogenic mechanisms underlying C9orf72 toxicity and how these impact the disease process. Finally, we will explore emerging therapeutic strategies for dampening TDP-43 and C9orf72 toxicity and, ultimately, slowing or halting the progression of ALS.
Collapse
Affiliation(s)
| | - Lina Wang
- Amgen, Neuroscience Discovery, Cambridge, MA, United States
| | - Zaven Kaprielian
- Dementia Discovery Foundation US Discovery, Boston, United States.
| |
Collapse
|
22
|
Alniss HY, Witzel II, Semreen MH, Panda PK, Mishra YK, Ahuja R, Parkinson JA. Investigation of the Factors That Dictate the Preferred Orientation of Lexitropsins in the Minor Groove of DNA. J Med Chem 2019; 62:10423-10440. [DOI: 10.1021/acs.jmedchem.9b01534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hasan Y. Alniss
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Ini-Isabée Witzel
- Core Technology Platform, New York University of Abu Dhabi, P.O. Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Mohammad H. Semreen
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala Sweden
| | - Yogendra Kumar Mishra
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Rajeev Ahuja
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala Sweden
- Department of Materials and Engineering, Royal Institute of Technology (KTH), SE-10044 Stockholm Sweden
| | - John A. Parkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
23
|
Abstract
The discovery that repeat expansions in the C9orf72 gene are a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has revolutionized our understanding of these diseases. Substantial headway has been made in characterizing C9orf72-mediated disease and unravelling its underlying aetiopathogenesis. Three main disease mechanisms have been proposed: loss of function of the C9orf72 protein and toxic gain of function from C9orf72 repeat RNA or from dipeptide repeat proteins produced by repeat-associated non-ATG translation. Several downstream processes across a range of cellular functions have also been implicated. In this article, we review the pathological and mechanistic features of C9orf72-associated FTD and ALS (collectively termed C9FTD/ALS), the model systems used to study these conditions, and the probable initiators of downstream disease mechanisms. We suggest that a combination of upstream mechanisms involving both loss and gain of function and downstream cellular pathways involving both cell-autonomous and non-cell-autonomous effects contributes to disease progression.
Collapse
Affiliation(s)
- Rubika Balendra
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, London, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK. .,UK Dementia Research Institute at UCL, UCL Institute of Neurology, London, UK.
| |
Collapse
|
24
|
Sengupta A, Ganguly A, Chowdhury S. Promise of G-Quadruplex Structure Binding Ligands as Epigenetic Modifiers with Anti-Cancer Effects. Molecules 2019; 24:E582. [PMID: 30736345 PMCID: PMC6384772 DOI: 10.3390/molecules24030582] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
Evidences from more than three decades of work support the function of non-duplex DNA structures called G-quadruplex (G4) in important processes like transcription and replication. In addition, G4 structures have been studied in connection with DNA base modifications and chromatin/nucleosome arrangements. Recent work, interestingly, shows promise of G4 structures, through interaction with G4 structure-interacting proteins, in epigenetics-in both DNA and histone modification. Epigenetic changes are found to be intricately associated with initiation as well as progression of cancer. Multiple oncogenes have been reported to harbor the G4 structure at regulatory regions. In this context, G4 structure-binding ligands attain significance as molecules with potential to modify the epigenetic state of chromatin. Here, using examples from recent studies we discuss the emerging role of G4 structures in epigenetic modifications and, therefore, the promise of G4 structure-binding ligands in epigenetic therapy.
Collapse
Affiliation(s)
- Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
| | - Akansha Ganguly
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
- GNR Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| |
Collapse
|
25
|
Zamiri B, Mirceta M, Abu-Ghazalah R, Wold MS, Pearson CE, Macgregor RB. Stress-induced acidification may contribute to formation of unusual structures in C9orf72-repeats. Biochim Biophys Acta Gen Subj 2018; 1862:1482-1491. [PMID: 29550431 DOI: 10.1016/j.bbagen.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/22/2018] [Accepted: 03/04/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Expansion of the C9orf72 hexanucleotide repeat (GGGGCC)n·(GGCCCC)n is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both strands of the C9orf72 repeat have been shown to form unusual DNA and RNA structures that are thought to be involved in mutagenesis and/or pathogenesis. We previously showed that the C-rich DNA strands from the C9orf72 repeat can form four-stranded quadruplexes at neutral pH. The cytosine residues become protonated under slightly acidic pH (pH 4.5-6.2), facilitating the formation of intercalated i-motif structures. METHODS Using CD spectroscopy, UV melting, and gel electrophoresis, we demonstrate a pH-induced structural transition of the C-rich DNA strand of the C9orf72 repeat at pHs reported to exist in living cells under stress, including during neurodegeneration and cancer. RESULTS We show that the repeats with lengths of 4, 6, and 8 units, form intercalated quadruplex i-motifs at low pH (pH < 5) and monomolecular hairpins and monomolecular quadruplexes under neutral-basic conditions (pH ≥ 8). Furthermore, we show that the human replication protein A (RPA) binds to the G-rich and C-rich DNA strands under acidic conditions, suggesting that it can bind to i-motif structures. CONCLUSIONS In the proper sequence context, i-motif structures can form at pH values found in some cells in vivo. GENERAL SIGNIFICANCE DNA conformational plasticity exists over broad range of solution conditions.
Collapse
Affiliation(s)
- Bita Zamiri
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Mila Mirceta
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Rashid Abu-Ghazalah
- W. Booth School of Engineering Technology Practice and Technology, McMaster University, Hamilton, Ontario L8S 0A3, Canada
| | - Marc S Wold
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Robert B Macgregor
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|