1
|
Masiero C, Aresi C, Forlino A, Tonelli F. Zebrafish Models for Skeletal and Extraskeletal Osteogenesis Imperfecta Features: Unveiling Pathophysiology and Paving the Way for Drug Discovery. Calcif Tissue Int 2024:10.1007/s00223-024-01282-5. [PMID: 39320469 DOI: 10.1007/s00223-024-01282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
In the last decades, the easy genetic manipulation, the external fertilization, the high percentage of homology with human genes and the reduced husbandry costs compared to rodents, made zebrafish a valid model for studying human diseases and for developing new therapeutical strategies. Since zebrafish shares with mammals the same bone cells and ossification types, it became widely used to dissect mechanisms and possible new therapeutic approaches in the field of common and rare bone diseases, such as osteoporosis and osteogenesis imperfecta (OI), respectively. OI is a heritable skeletal disorder caused by defects in gene encoding collagen I or proteins/enzymes necessary for collagen I synthesis and secretion. Nevertheless, OI patients can be also characterized by extraskeletal manifestations such as dentinogenesis imperfecta, muscle weakness, cardiac valve and pulmonary abnormalities and skin laxity. In this review, we provide an overview of the available zebrafish models for both dominant and recessive forms of OI. An updated description of all the main similarities and differences between zebrafish and mammal skeleton, muscle, heart and skin, will be also discussed. Finally, a list of high- and low-throughput techniques available to exploit both larvae and adult OI zebrafish models as unique tools for the discovery of new therapeutic approaches will be presented.
Collapse
Affiliation(s)
- Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Carla Aresi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy.
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| |
Collapse
|
2
|
Ulhaq ZS, You MS, Yabe T, Takada S, Chen JK, Ogino Y, Jiang YJ, Tse WKF. Fgf8 contributes to the pathogenesis of Nager syndrome. Int J Biol Macromol 2024; 280:135692. [PMID: 39288852 DOI: 10.1016/j.ijbiomac.2024.135692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Nager syndrome (NS, OMIM 154400) is a rare disease characterized by craniofacial and limb malformations due to variants in the gene encoding splicing factor 3B subunit 4 (SF3B4). Although various noncanonical functions of SF3B4 unrelated to splicing have been previously described, limited studies elucidate molecular mechanisms underlying NS pathogenesis. Here we showed that sf3b4-deficient fish displayed craniofacial and segmentation defects associated with suppression of fgf8 levels, which perturbed FGF signaling and neural crest cell (NCC) expression. Our finding also pointed out that oxidative stress-induced apoptosis was prominently detected in sf3b4-deficient fish and may further exaggerate the bone remodeling process. Notably, injection of exogenous FGF8 significantly rescued the demonstrated defects in sf3b4-deficient fish, which further supported the participation of Fgf8 in NS pathogenesis. Overall, our study provides valuable insights into the molecular mechanism underlying developmental abnormalities observed in NS and suggests future therapeutic strategies to protect against the pathogenesis of NS and possibilities for preventing severe outcomes.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong 16911, Indonesia.
| | - May-Su You
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Taijiro Yabe
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shinji Takada
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Mohanthi S, Sutha J, Gayathri M, Ramesh M. Evaluation of the citalopram toxicity on early development of zebrafish: Morphological, physiological and biochemical responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124399. [PMID: 38906410 DOI: 10.1016/j.envpol.2024.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Citalopram, an antidepressant drug have been detected in different environmental matrices due to its high consumption. Previous study has proved that citalopram may alter the behaviour of aquatic organisms at environmentally relevant concentrations. However, scientific knowledge is still lacking on the ecotoxicological effects of citalopram on aquatic organisms. For this reason, the present study is aimed to investigate the potential toxicity of citalopram in terms of development, antioxidant, neurotoxicity, apoptosis, lipogenesis, and bone mineralization in embryonic and larval zebrafish (Danio rerio) at environmentally relevant concentrations. We noticed that citalopram exposure at 1 and 10 μg/L concentration delays hatching and heartbeat at 24, 48, 72 and 96 hpf. Exposure to citalopram also significantly increased mortality at 10 μg/L. Abnormal development with yolk sac edema, pericardial edema and scoliosis were also observed after citalopram treatment. In addition, citalopram significantly (P < 0.001) induced superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) and lipid peroxidation (LPO) levels. A significant decrease in acetylcholine esterase (AChE) activity was also observed in citalopram exposed groups. We found significant dose-and time-dependent increases in apoptosis, lipogenesis, and bone mineralization. In conclusion, the findings of the present study can provide new insights on the ecotoxicity of citalopram in the aquatic environment.
Collapse
Affiliation(s)
- Sundaram Mohanthi
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Jesudass Sutha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Murugesh Gayathri
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
4
|
Snega Priya P, Surisetti R, Gopi S, Pachaiappan R, Pasupuleti M, Rajagopal R, Alfarhan A, Guru A, Arockiaraj J. Chitosan-chondroitin sulfate-daidzein nanoconjugate ameliorates glucocorticoid induced osteoporosis in vivo. Int J Biol Macromol 2024; 280:135662. [PMID: 39284477 DOI: 10.1016/j.ijbiomac.2024.135662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The use of nanotechnology and polymer-based carriers in osteoporosis treatment offers promising avenues for targeted drug delivery and enhanced therapeutic efficacy. In this study, we developed a novel nanoconjugate composed of Chitosan (CH), Chondroitin Sulfate (CS), and Daidzein (DZ) to treat glucocorticoid-induced osteoporosis in an in vivo zebrafish model. The CH-CS-DZ nanoconjugate were synthesized using the ionic gelation method, with a CH: CS ratio of 1:1 and a 3 % DZ concentration was identified as optimal for further analysis. The resulting nanoparticles exhibited a particle size of 401.2 ± 0.87 nm. The polydispersity index (PDI) and zeta potential of nanoconjugate were of 0.147 ± 0.04 and 43.55 ± 0.68 mV respectively. Drug release studies demonstrated that 79.66 ± 4.04 % of DZ was released under physiological conditions (pH 7.5) after 96 h, indicating a sustained release profile beneficial for prolonged therapeutic effects. In vivo, studies using zebrafish larvae revealed a significant reduction in oxidative stress and apoptosis in the CH-CS-DZ treated group compared to the glucorticoid dexamethasone (Dex) treated group. Specifically, reactive oxygen species (ROS) levels were reduced, and lipid peroxidation was markedly decreased (p < 0.001) in the CH-CS-DZ treated group. Additionally, the survival and hatching rates of CH-CS-DZ-treated larvae were 94 % and 95 %, respectively, significantly higher than those in the Dex-treated group. The CH-CS-DZ nanoconjugate also restored bone mineralization, as evidenced by a significant increase in calcium deposition (p < 0.001) and alkaline phosphatase (ALP) activity (122 ± 0.4 U/L), compared to the Dex group (84 ± 0.7 U/L). Gene expression analysis showed upregulation of OPG and ALP and downregulation of RANKL and RUNX2b, further indicating the anti-osteoporotic potential of the CH-CS-DZ nanoconjugates. These findings suggest that polymer-based nanoconjugates like CH-CS-DZ can effectively mitigate osteoporosis through targeted delivery and sustained release, offering a potent strategy for bone health restoration.
Collapse
Affiliation(s)
- P Snega Priya
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Rachitha Surisetti
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Sanjay Gopi
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Division of Molecular Biology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
5
|
Jiang Z, Deng L, Xiang G, Xu X, Wang Y. A Mechanistic Study of the Osteogenic Effect of Arecoline in an Osteoporosis Model: Inhibition of Iron Overload-Induced Osteogenesis by Promoting Heme Oxygenase-1 Expression. Antioxidants (Basel) 2024; 13:430. [PMID: 38671878 PMCID: PMC11047558 DOI: 10.3390/antiox13040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Iron overload-associated osteoporosis presents a significant challenge to bone health. This study examines the effects of arecoline (ACL), an alkaloid found in areca nut, on bone metabolism under iron overload conditions induced by ferric ammonium citrate (FAC) treatment. The results indicate that ACL mitigates the FAC-induced inhibition of osteogenesis in zebrafish larvae, as demonstrated by increased skeletal mineralization and upregulation of osteogenic genes. ACL attenuates FAC-mediated suppression of osteoblast differentiation and mineralization in MC3T3-E1 cells. RNA sequencing analysis suggests that the protective effects of ACL are related to the regulation of ferroptosis. We demonstrate that ACL inhibits ferroptosis, including oxidative stress, lipid peroxidation, mitochondrial damage, and cell death under FAC exposure. In this study, we have identified heme oxygenase-1 (HO-1) as a critical mediator of ACL inhibiting ferroptosis and promoting osteogenesis, which was validated by HO-1 knockdown and knockout experiments. The study links ACL to HO-1 activation and ferroptosis regulation in the context of bone metabolism. These findings provide new insights into the mechanisms underlying the modulation of osteogenesis by ACL. Targeting the HO-1/ferroptosis axis is a promising therapeutic approach for treating iron overload-induced bone diseases.
Collapse
Affiliation(s)
- Zhongjing Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Linhua Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xia Xu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Practice, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
6
|
Sun J, Wu Q, Wei Y, Zhao W, Lv H, Peng W, Zheng J, Chen Y, Wang Z, Pan Y, Xue Y. Agaricus bisporus-Derived Glucosamine Hydrochloride Regulates VEGF through BMP Signaling to Promote Zebrafish Vascular Development and Impairment Repair. Life (Basel) 2023; 13:2330. [PMID: 38137931 PMCID: PMC10745105 DOI: 10.3390/life13122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Glucosamine hydrochloride (GAH) is a natural component of glycoproteins present in almost all human tissues and participates in the construction of human tissues and cell membranes. GAH has a wide range of biological activities, particularly in anti-inflammatory and osteogenic damage repair. At present, little is known about how GAH functions in angiogenesis. To determine the role of GAH on vascular development and impairment repair, we used the inhibitors VRI, DMH1, and dorsomorphin (DM) to construct vascular-impaired models in Tg(kdrl: mCherry) transgenic zebrafish. We then treated with GAH and measured its repair effects on vascular impairment through fluorescence intensity, mRNA, and protein expression levels of vascular-specific markers. Our results indicate that GAH promotes vascular development and repairs impairment by regulating the vascular endothelial growth factor (VEGF) signaling pathway through modulation of bone morphogenetic protein (BMP) signaling. This study provides an experimental basis for the development of GAH as a drug to repair vascular diseases.
Collapse
Affiliation(s)
- Jiarui Sun
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Qici Wu
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yuxin Wei
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Wei Zhao
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Haokun Lv
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Wei Peng
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Jiayi Zheng
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yixuan Chen
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Zhengsen Wang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yu Xue
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| |
Collapse
|
7
|
Li GF, Gao Y, Weinberg ED, Huang X, Xu YJ. Role of Iron Accumulation in Osteoporosis and the Underlying Mechanisms. Curr Med Sci 2023; 43:647-654. [PMID: 37326889 DOI: 10.1007/s11596-023-2764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/09/2021] [Indexed: 06/17/2023]
Abstract
Osteoporosis is prevalent in postmenopausal women. The underlying reason is mainly estrogen deficiency, but recent studies have indicated that osteoporosis is also associated with iron accumulation after menopause. It has been confirmed that some methods of decreasing iron accumulation can improve the abnormal bone metabolism associated with postmenopausal osteoporosis. However, the mechanism of iron accumulation-induced osteoporosis is still unclear. Iron accumulation may inhibit the canonical Wnt/β-catenin pathway via oxidative stress, leading to osteoporosis by decreasing bone formation and increasing bone resorption via the osteoprotegerin (OPG)/receptor activator of nuclear factor kappa-B ligand (RANKL)/receptor activator of nuclear factor kappa-B (RANK) system. In addition to oxidative stress, iron accumulation also has been reported to inhibit either osteoblastogenesis or osteoblastic function as well as to stimulate either osteoclastogenesis or osteoclastic function directly. Furthermore, serum ferritin has been widely used for the prediction of bone status, and nontraumatic measurement of iron content by magnetic resonance imaging may be a promising early indicator of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Guang-Fei Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 2015004, China
- Osteoporosis Institute of Soochow University, Suzhou, 215004, China
| | - Yan Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 2015004, China
- Osteoporosis Institute of Soochow University, Suzhou, 215004, China
| | - E D Weinberg
- Department of Biology & Program in Medical Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Xi Huang
- Department of Environmental Medicine, New York University, School of Medicine, New York, NY, 10016, USA
| | - You-Jia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 2015004, China.
- Osteoporosis Institute of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
8
|
Yuan W, Hu Y, Lu C, Zhang J, Liu Y, Li X, Jia K, Huang Y, Li Z, Chen X, Wang F, Yi X, Che X, Xiong H, Cheng B, Ma J, Zhao Y, Lu H. Propineb induced notochord deformity, craniofacial malformation, and osteoporosis in zebrafish through dysregulated reactive oxygen species generation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106596. [PMID: 37290275 DOI: 10.1016/j.aquatox.2023.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Dithiocarbamate (DTC) fungicides are contaminants that are ubiquitous in the environment. Exposure to DTC fungicides has been associated with a variety of teratogenic developmental effects. Propineb, a member of DTCs, was evaluated for the toxicological effects on notochord and craniofacial development, osteogenesis in zebrafish model. Embryos at 6 hours post-fertilization (hpf) were exposed to propineb at dosages of 1 and 4 μM. Morphological parameters were evaluated at exposure times of 24, 48, 72, and 120 hpf after propineb exposure. The survival and hatching rates as well as body length decreased at 1 and 4 μmol/L groups. Besides, transgenic zebrafish exposed to propineb showed abnormal vacuole biogenesis in notochord cells at the early stage of development. The expression of collagen type 2 alpha 1a (col2a1a), sonic hedgehog (shh), and heat shock protein family B member 11 (hspb11) measured by quantitative PCR and in situ hybridization experiment of col8a1a gene have consolidated the proposal process. Besides, Alcian blue, calcein, and alizarin red staining profiles displayed craniofacial malformations and osteoporosis were induced following propineb exposure. PPB exposure induced the changes in oxidative stress and reactive oxygen species inhibitor alleviated the deformities of PPB. Collectively, our data suggested that propineb exposure triggered bone abnormalities in different phenotypes of zebrafish. Therefore, propineb is a potential toxicant of high priority concern for aquatic organisms.
Collapse
Affiliation(s)
- Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ying Hu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Chen Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jun Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, Jiangsu, China
| | - Ye Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xinran Li
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zekun Li
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaomei Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Fei Wang
- The First Clinical College of Gannan Medical Uinversity, Ganzhou, 341000, Jiangxi, China
| | - Xiaokun Yi
- The First Clinical College of Gannan Medical Uinversity, Ganzhou, 341000, Jiangxi, China
| | - Xiaofang Che
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Haibin Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yan Zhao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009, Jiangxi, China..
| |
Collapse
|
9
|
Drábiková L, Fjelldal PG, Yousaf MN, Morken T, De Clercq A, McGurk C, Witten PE. Elevated Water CO 2 Can Prevent Dietary-Induced Osteomalacia in Post-Smolt Atlantic Salmon ( Salmo salar, L.). Biomolecules 2023; 13:biom13040663. [PMID: 37189410 DOI: 10.3390/biom13040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Expansion of land-based systems in fish farms elevate the content of metabolic carbon dioxide (CO2) in the water. High CO2 is suggested to increase the bone mineral content in Atlantic salmon (Salmo salar, L.). Conversely, low dietary phosphorus (P) halts bone mineralization. This study examines if high CO2 can counteract reduced bone mineralization imposed by low dietary P intake. Atlantic salmon post-seawater transfer (initial weight 207.03 g) were fed diets containing 6.3 g/kg (0.5P), 9.0 g/kg (1P), or 26.8 g/kg (3P) total P for 13 weeks. Atlantic salmon from all dietary P groups were reared in seawater which was not injected with CO2 and contained a regular CO2 level (5 mg/L) or in seawater with injected CO2 thus raising the level to 20 mg/L. Atlantic salmon were analyzed for blood chemistry, bone mineral content, vertebral centra deformities, mechanical properties, bone matrix alterations, expression of bone mineralization, and P metabolism-related genes. High CO2 and high P reduced Atlantic salmon growth and feed intake. High CO2 increased bone mineralization when dietary P was low. Atlantic salmon fed with a low P diet downregulated the fgf23 expression in bone cells indicating an increased renal phosphate reabsorption. The current results suggest that reduced dietary P could be sufficient to maintain bone mineralization under conditions of elevated CO2. This opens up a possibility for lowering the dietary P content under certain farming conditions.
Collapse
Affiliation(s)
- Lucia Drábiková
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Per Gunnar Fjelldal
- Institute of Marine Research (IMR), Matre Research Station, N-5984 Matredal, Norway
| | | | - Thea Morken
- Skretting Aquaculture Innovation, Sjøhagen 3, 4016 Stavanger, Norway
| | - Adelbert De Clercq
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Charles McGurk
- Skretting Aquaculture Innovation, Sjøhagen 3, 4016 Stavanger, Norway
| | - Paul Eckhard Witten
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Gan J, Xiao Z, Wang K, Kong X, Du M, Wang Z, Xu B, Cheng Y. Isolation, characterization, and molecular docking analyses of novel calcium-chelating peptide from soy yogurt and the study of its calcium chelation mechanism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2939-2948. [PMID: 36460619 DOI: 10.1002/jsfa.12370] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/21/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Calcium is an essential dietary mineral nutrient for humans. Digestive instability limits the bioavailability of calcium ions. Peptide-calcium chelate has been proven to excite higher calcium absorption than amino acid-calcium chelate, organic and inorganic calcium. Soy yogurt, which is produced via liquid-state fermentation using lactic acid bacteria, has a high amount of bioavailable calcium. In this study, a novel peptide with high calcium binding affinity was purified and identified from soy yogurt. The binding mechanism of peptide and calcium was then analyzed by bioinformatics and spectral analysis. Furthermore, the effect of the novel peptide on gastrointestinal stability by the Caco-2 cell model and calcium bioavailability in vivo were investigated by the zebrafish model. RESULTS The results showed that a novel peptide was purified and identified as DEDEQIPSHPPR (CBP). Calcium ions probably coordinate with Glu-2 and Glu-4 carboxyl groups via salt bridges and interact with Asp-1, Asp-3, and Arg-12 in CBP via charge pairing. The calcium binding activity of the CBP was 36.64 ± 0.04 mg g-1 . Fourier transform infrared (FTIR) spectra showed that calcium spontaneously bound to the amino group nitrogen and oxygen atoms of the carboxyl group. The binding mode is either bidentate or unidentate, depending on the circumstances. More importantly, the CBP peptide substantially increased the bone mass in a zebrafish osteoporosis model. CONCLUSION The more glutamic acid and aspartic acid, the high was the calcium affinity with peptide. Soy yogurt-derived peptides can be used as carriers of calcium ions throughout the gastrointestinal tract, which may be clinically useful for osteoporosis therapy. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Gan
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Ziqun Xiao
- College of Life Science, Yantai University, Yantai, Shandong, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- School of Food Science and Technology, Jiangnan University, Jiangsu, China
| | - Kuaitian Wang
- College of Life Science, Yantai University, Yantai, Shandong, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiao Kong
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Mengdi Du
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Zhenhua Wang
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Bo Xu
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Ciosek Ż, Kot K, Rotter I. Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2197. [PMID: 36767564 PMCID: PMC9915283 DOI: 10.3390/ijerph20032197] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the current understanding on the effects of five metals on bone tissue, namely iron, zinc, copper, cadmium, and mercury. Iron, zinc, and copper contribute significantly to human and animal metabolism when present in sufficient amounts, but their excess or shortage increases the risk of developing bone disorders. In contrast, cadmium and mercury serve no physiological purpose and their long-term accumulation damages the osteoarticular system. We discuss the methods of action and interactions between the discussed elements as well as the concentrations of each element in distinct bone structures.
Collapse
Affiliation(s)
- Żaneta Ciosek
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Iwona Rotter
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
12
|
Dubale NM, Kapron CM, West SL. Commentary: Zebrafish as a Model for Osteoporosis-An Approach to Accelerating Progress in Drug and Exercise-Based Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15866. [PMID: 36497941 PMCID: PMC9739463 DOI: 10.3390/ijerph192315866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Osteoporosis (OP) is a degenerative disease characterized by reduced bone strength and increased fracture risk. As the global population continues to age, the prevalence and economic burden of osteoporosis can be expected to rise substantially, but there remain various gaps in the field of OP care. For instance, there is a lack of anti-fracture drugs with proven long-term efficacy. Likewise, though exercise remains widely recommended in OP prevention and management, data regarding the safety and efficacy for patients after vertebral fracture remain limited. This lack of evidence may be due to the cost and inherent difficulties associated with exercise-based OP research. Thus, the current research landscape highlights the need for novel research strategies that accelerate OP drug discovery and allow for the low-cost study of exercise interventions. Here, we outline an example of one strategy, the use of zebrafish, which has emerged as a potential model for the discovery of anti-osteoporosis therapeutics and study of exercise interventions. The strengths, limitations, and potential applications of zebrafish in OP research will be outlined.
Collapse
Affiliation(s)
- Natnaiel M. Dubale
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Carolyn M. Kapron
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Sarah L. West
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
- Department of Kinesiology, Trent University, Peterborough, ON K9L 0G2, Canada
- Trent/Fleming School of Nursing, Trent University, Peterborough, ON K9L 0G2, Canada
| |
Collapse
|
13
|
Kague E, Karasik D. Functional Validation of Osteoporosis Genetic Findings Using Small Fish Models. Genes (Basel) 2022; 13:279. [PMID: 35205324 PMCID: PMC8872034 DOI: 10.3390/genes13020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022] Open
Abstract
The advancement of human genomics has revolutionized our understanding of the genetic architecture of many skeletal diseases, including osteoporosis. However, interpreting results from human association studies remains a challenge, since index variants often reside in non-coding regions of the genome and do not possess an obvious regulatory function. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary, such as the one offered by animal models. These models enable us to identify causal mechanisms, clarify the underlying biology, and apply interventions. Over the past several decades, small teleost fishes, mostly zebrafish and medaka, have emerged as powerful systems for modeling the genetics of human diseases. Due to their amenability to genetic intervention and the highly conserved genetic and physiological features, fish have become indispensable for skeletal genomic studies. The goal of this review is to summarize the evidence supporting the utility of Zebrafish (Danio rerio) for accelerating our understanding of human skeletal genomics and outlining the remaining gaps in knowledge. We provide an overview of zebrafish skeletal morphophysiology and gene homology, shedding light on the advantages of human skeletal genomic exploration and validation. Knowledge of the biology underlying osteoporosis through animal models will lead to the translation into new, better and more effective therapeutic approaches.
Collapse
Affiliation(s)
- Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK;
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
14
|
Huang W, Wu T, Au WW, Wu K. Impact of environmental chemicals on craniofacial skeletal development: Insights from investigations using zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117541. [PMID: 34118758 DOI: 10.1016/j.envpol.2021.117541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Craniofacial skeletal anomalies are among the most common structural birth defects around the world. Various studies using human populations and experimental animals have shown that genetic and environmental factors play significant roles in the causation and progression of these anomalies. Environmental factors, such as teratogens and toxin mixtures, induce craniofacial anomalies are gaining heightened attention. Among experimental investigations, the use of the zebrafish (Danio rerio) has been increasing. A major reason for the increased use is that the zebrafish boast a simple craniofacial structure, and facial morphogenesis is readily observed due to external fertilization and transparent embryo, making it a valuable platform to screen and identify environmental factors involved in the etiology of craniofacial skeletal malformation. This review provides an update on harmful effects from exposure to environmental chemicals, involving metallic elements, nanoparticles, persistent organic pollutants, pesticides and pharmaceutical formulations on craniofacial skeletal development in zebrafish embryos. The collected data provide a better understanding for induction of craniofacial skeletal anomalies and for development of better prevention strategies.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, China
| | - William W Au
- University of Medicine, Pharmacy, Science and Techonology, 540142, Tirgu Mures, Romania
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou, 515041, Guangdong, China.
| |
Collapse
|
15
|
Bek JW, Shochat C, De Clercq A, De Saffel H, Boel A, Metz J, Rodenburg F, Karasik D, Willaert A, Coucke PJ. Lrp5 Mutant and Crispant Zebrafish Faithfully Model Human Osteoporosis, Establishing the Zebrafish as a Platform for CRISPR-Based Functional Screening of Osteoporosis Candidate Genes. J Bone Miner Res 2021; 36:1749-1764. [PMID: 33957005 DOI: 10.1002/jbmr.4327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Genomewide association studies (GWAS) have improved our understanding of the genetic architecture of common complex diseases such as osteoporosis. Nevertheless, to attribute functional skeletal contributions of candidate genes to osteoporosis-related traits, there is a need for efficient and cost-effective in vivo functional testing. This can be achieved through CRISPR-based reverse genetic screens, where phenotyping is traditionally performed in stable germline knockout (KO) mutants. Recently it was shown that first-generation (F0) mosaic mutant zebrafish (so-called crispants) recapitulate the phenotype of germline KOs. To demonstrate feasibility of functional validation of osteoporosis candidate genes through crispant screening, we compared a crispant to a stable KO zebrafish model for the lrp5 gene. In humans, recessive loss-of-function mutations in LRP5, a co-receptor in the Wnt signaling pathway, cause osteoporosis-pseudoglioma syndrome. In addition, several GWAS studies identified LRP5 as a major risk locus for osteoporosis-related phenotypes. In this study, we showed that early stage lrp5 KO larvae display decreased notochord mineralization and malformations of the head cartilage. Quantitative micro-computed tomography (micro-CT) scanning and mass-spectrometry element analysis of the adult skeleton revealed decreased vertebral bone volume and bone mineralization, hallmark features of osteoporosis. Furthermore, regenerating fin tissue displayed reduced Wnt signaling activity in lrp5 KO adults. We next compared lrp5 mutants with crispants. Next-generation sequencing analysis of adult crispant tissue revealed a mean out-of-frame mutation rate of 76%, resulting in strongly reduced levels of Lrp5 protein. These crispants generally showed a milder but nonetheless highly comparable skeletal phenotype and a similarly reduced Wnt pathway response compared with lrp5 KO mutants. In conclusion, we show through faithful modeling of LRP5-related primary osteoporosis that crispant screening in zebrafish is a promising approach for rapid functional screening of osteoporosis candidate genes. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jan Willem Bek
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Chen Shochat
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Adelbert De Clercq
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Hanna De Saffel
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annekatrien Boel
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Department for Reproductive Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Juriaan Metz
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - Frans Rodenburg
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Biology, Leiden University, Leiden, The Netherlands.,Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Andy Willaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Ledesma-Colunga MG, Weidner H, Vujic Spasic M, Hofbauer LC, Baschant U, Rauner M. Shaping the bone through iron and iron-related proteins. Semin Hematol 2021; 58:188-200. [PMID: 34389111 DOI: 10.1053/j.seminhematol.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023]
Abstract
Well-controlled iron levels are indispensable for health. Iron deficiency is the most common cause of anemia, whereas iron overload, either hereditary or secondary due to disorders of ineffective erythropoiesis, causes widespread organ failure. Bone is particularly sensitive to fluctuations in systemic iron levels as both iron deficiency and overload are associated with low bone mineral density and fragility. Recent studies have shown that not only iron itself, but also iron-regulatory proteins that are mutated in hereditary hemochromatosis can control bone mass. This review will summarize the current knowledge on the effects of iron on bone homeostasis and bone cell activities, and on the role of proteins that regulate iron homeostasis, i.e. hemochromatosis proteins and proteins of the bone morphogenetic protein pathway, on bone remodeling. As disorders of iron homeostasis are closely linked to bone fragility, deeper insights into common regulatory mechanisms may provide new opportunities to concurrently treat disorders affecting iron homeostasis and bone.
Collapse
Affiliation(s)
- Maria G Ledesma-Colunga
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Maja Vujic Spasic
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Lorenz C Hofbauer
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
17
|
Rosa JT, Laizé V, Gavaia PJ, Cancela ML. Fish Models of Induced Osteoporosis. Front Cell Dev Biol 2021; 9:672424. [PMID: 34179000 PMCID: PMC8222987 DOI: 10.3389/fcell.2021.672424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Osteopenia and osteoporosis are bone disorders characterized by reduced bone mineral density (BMD), altered bone microarchitecture and increased bone fragility. Because of global aging, their incidence is rapidly increasing worldwide and novel treatments that would be more efficient at preventing disease progression and at reducing the risk of bone fractures are needed. Preclinical studies are today a major bottleneck to the collection of new data and the discovery of new drugs, since they are commonly based on rodent in vivo systems that are time consuming and expensive, or in vitro systems that do not exactly recapitulate the complexity of low BMD disorders. In this regard, teleost fish, in particular zebrafish and medaka, have recently emerged as suitable alternatives to study bone formation and mineralization and to model human bone disorders. In addition to the many technical advantages that allow faster and larger studies, the availability of several fish models that efficiently mimic human osteopenia and osteoporosis phenotypes has stimulated the interest of the academia and industry toward a better understanding of the mechanisms of pathogenesis but also toward the discovery of new bone anabolic or antiresorptive compounds. This mini review recapitulates the in vivo teleost fish systems available to study low BMD disorders and highlights their applications and the recent advances in the field.
Collapse
Affiliation(s)
- Joana T Rosa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,S2 AQUA - Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,GreenCoLab - Associação Oceano Verde, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| |
Collapse
|
18
|
Peng W, Zhang W, Wu Q, Cai S, Jia T, Sun J, Lin Z, Alitongbieke G, Chen Y, Su Y, Lin J, Cai L, Sun Y, Pan Y, Xue Y. Agaricus bisporus-Derived Glucosamine Hydrochloride Facilitates Skeletal Injury Repair through Bmp Signaling in Zebrafish Osteoporosis Model. JOURNAL OF NATURAL PRODUCTS 2021; 84:1294-1305. [PMID: 33635072 DOI: 10.1021/acs.jnatprod.1c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glucosamine hydrochloride (GAH), one of the most basic and important derivatives of chitin, is obtained by hydrolysis of chitin in concentrated hydrochloric acid. At present, little is known about how GAH functions in skeletal development. In this report, we demonstrate that GAH, extracted from the cell wall of Agaricus bisporus, acts in a dose-dependent manner to promote not only cartilage and bone development in larvae but also caudal fin regeneration in adult fish. Furthermore, GAH treatment causes a significant increase in expression of bone-related marker genes, indicating its important role in promoting skeletal development. We show that in both larval and adult osteoporosis models induced by high iron osteogenic defects are significantly ameliorated after treatment with GAH, which regulates expression of a series of bone-related genes. Finally, we demonstrate that GAH promotes skeletal development and injury repair through bone morphogenetic protein (Bmp) signaling, and it works at the downstream of the receptor level. Taken together, our findings not only provide a strong research foundation and strategy for the screening of natural osteoporosis drugs and product development using a zebrafish model but also establish the potential for the development of Agaricus bisporus-derived GAH as a new drug for osteoporosis treatment.
Collapse
Affiliation(s)
- Wei Peng
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Wenjuan Zhang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Anhui Zhifei Longcom Biopharmaceutical Co., Ltd., Hefei, Anhui 230088, China
| | - Qici Wu
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Tingting Jia
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Jiarui Sun
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Zhichao Lin
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Gulimiran Alitongbieke
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Yixuan Chen
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Yi Su
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Jinmei Lin
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Lisheng Cai
- Zhangzhou Municipal Hospital, Zhangzhou, Fujian 363000, China
| | - Yuqin Sun
- Zhangzhou Municipal Hospital, Zhangzhou, Fujian 363000, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Yu Xue
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| |
Collapse
|
19
|
Pham CV, Pham TT, Lai TT, Trinh DC, Nguyen HVM, Ha TTM, Phuong TT, Tran LD, Winkler C, To TT. Icariin reduces bone loss in a Rankl-induced transgenic medaka (Oryzias latipes) model for osteoporosis. JOURNAL OF FISH BIOLOGY 2021; 98:1039-1048. [PMID: 31858585 DOI: 10.1111/jfb.14241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Given the limitations and side effects of many synthetic drugs, natural products are an important alternative source for drugs and medications for many diseases. Icariin (ICA), one of the main flavonoids from plants of the Epimedium genus, has been shown to ameliorate osteoporosis and improve bone health in preclinical studies. Those studies have used different in vivo models, mostly rodents, but the underlying mechanisms remain unclear. The present study shows, for the first time, that ICA reduces bone damage in a Rankl-induced medaka fish (Oryzias latipes), a non-rodent osteoporosis model. Live imaging was previously performed in this model to characterize antiresorptive and bone-anabolic properties of drugs. Here, a new quantification method (IM ) was established based on the length of mineralized neural arches to quantify levels of bone mineralization damage and protection in early post-embryonic fish. This method was validated by quantification of three levels of bone damage in three independent Rankl fish lines, and by the determination of different degrees of severity of osteoporosis-like phenotypes in one Rankl line exposed to variable Rankl induction schemes. IM was also used to quantify the efficacy of alendronate and etidronate, two common anti-osteoporotic bisphosphonates, and revealed comparable bone protective effects for ICA and alendronate in this fish osteoporosis model. This study's data support the value of the medaka fish model for bone research and establish a method to screen for novel osteoprotective compounds.
Collapse
Affiliation(s)
- Cuong V Pham
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thanh T Pham
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thuy T Lai
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Dat C Trinh
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Huong V M Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Tam T M Ha
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thuong T Phuong
- Department of Herbal Analysis and Standardization, Vietnam National Institute of Medicinal Materials, Hanoi, Vietnam
| | - Long D Tran
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- The Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi, Vietnam
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Thuy T To
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- The Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi, Vietnam
- Dinh Tien Hoang Institute of Medicine, Hanoi, Vietnam
| |
Collapse
|
20
|
Khajuria DK, Karasik D. Novel model of restricted mobility induced osteopenia in zebrafish. JOURNAL OF FISH BIOLOGY 2021; 98:1031-1038. [PMID: 32383168 DOI: 10.1111/jfb.14369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Immobilization, such as prolonged bed rest, is a risk factor for bone loss in humans. Motivated by the emerging utility of zebrafish (Danio rerio) as an animal of choice for the study of musculoskeletal disease, here we report a model of restricted mobility induced osteopenia in adult zebrafish. Aquatic tanks with small cubical compartments to restrict the movement and locomotion of single fish were designed and fabricated for this study. Adult zebrafish were divided into two groups: a normal control (CONT) and a restricted mobility group (RMG) (18 fish/group). Six fish from each group were euthanized on days 14, 21 and 35 of the movement restriction. By using microcomputed tomography (micro-CT), we assessed bone volume/tissue volume (BV/TV) and bone density in the whole skeleton of the fish. Furthermore, we assessed skeletal shape in the vertebrae (radius, length, volume, neural and haemal arch aperture areas, neural and haemal arch angle, and thickness of the intervertebral space), single vertebra bone volume and bone density. Movement restriction significantly decreased vertebral skeletal parameters such as radius, length, volume, arch aperture areas and angles as well as the thickness of the intervertebral space in RMG. Furthermore, restricted mobility significantly (P < 0.001) decreased BV/TV and bone density as compared to the CONT group, starting as early as 14 days. By analysing zebrafish from CONT and RMG, we show that micro-CT imaging is a sensitive method to quantify distinct skeletal properties in zebrafish. We further defined the micro-CT parameters which can be used to examine the effects of restricted mobility on the skeleton of the fish. Our findings propose a rapid and effective osteopenia "stabulation" model, which could be used widely for osteoporosis drug screening.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Orthopaedics and Rehabilitation, Penn State University, College of Medicine, Hershey, Pennsylvania, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
21
|
Zhang J, Zhao H, Yao G, Qiao P, Li L, Wu S. Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms. Biomed Pharmacother 2021; 137:111380. [PMID: 33601146 DOI: 10.1016/j.biopha.2021.111380] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential trace element in the metabolism of almost all living organisms. Iron overload can disrupt bone homeostasis by significant inhibition of osteogenic differentiation and stimulation of osteoclastogenesis, consequently leading to osteoporosis. Iron accumulation is also involved in the osteoporosis induced by multiple factors, such as estrogen deficiency, ionizing radiation, and mechanical unloading. Iron chelators are first developed for treating iron overloaded disorders. However, growing evidence suggests that iron chelators can be potentially used for the treatment of bone loss. In this review, we focus on the therapeutic effects of iron chelators on bone loss. Iron chelators have therapeutic effects not only on iron overload induced osteoporosis, but also on osteoporosis induced by estrogen deficiency, ionizing radiation, and mechanical unloading, and in Alzheimer's disease-associated osteoporotic deficits. Iron chelators differently affect the cellular behaviors of bone cells. For osteoblast lineage cells (bone mesenchymal stem cells and osteoblasts), iron chelation stimulates osteogenic differentiation. Conversely, iron chelation significantly inhibits osteoclast differentiation. These different responses may be associated with the different needs of iron during differentiation. Fibroblast growth factor 23, angiogenesis, and antioxidant capability are also involved in the osteoprotective effects of iron chelators.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Longfei Li
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
22
|
Vimalraj S, Yuvashree R, Hariprabu G, Subramanian R, Murali P, Veeraiyan DN, Thangavelu L. Zebrafish as a potential biomaterial testing platform for bone tissue engineering application: A special note on chitosan based bioactive materials. Int J Biol Macromol 2021; 175:379-395. [PMID: 33556401 DOI: 10.1016/j.ijbiomac.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Biomaterials function as an essential aspect of tissue engineering and have a profound impact on cell growth and subsequent tissue regeneration. The development of new biomaterials requires a potential platform to understand the host-biomaterial interaction, which is crucial for successful biomaterial implantation. Biomaterials analyzed in rodent models for in vivo research are cost-effective but tedious, and the practice has many technical difficulties. As an alternative, zebrafish provide an excellent biomaterial testing platform over the current rodent models. During growth and recovery, zebrafish bone morphogenesis shows a variety of inductive signals involved in the cycle that are close to those influencing differentiation of bone and cartilage in mammals, including humans. This platform is cheap, optically transparent, quick to change genes, and provides reliable reproducibility on short life cycles. Chitosan is a well-known biomaterial in the field of tissue engineering. In view of its documented use in bone regeneration, the biological characterization of chitosan-based bioactive materials in the zebrafish model has been featured in an outstanding note. We, therefore, outlined this review of the zebrafish as a potential in vivo research model for the rapid characterization of the biological properties of new biomaterials for bone tissue engineering applications.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India; Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India.
| | | | - Gopal Hariprabu
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Raghunandhakumar Subramanian
- Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| | - Palraju Murali
- Department of Zoology, N.M.S.S. Vellaichamy Nadar College, Nagamalai, Madurai, Tamil Nadu, India
| | - Deepak Nallaswamy Veeraiyan
- Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| | - Lakshmi Thangavelu
- Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| |
Collapse
|
23
|
Hassan AT, Kwong RWM. The neurophysiological effects of iron in early life stages of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115625. [PMID: 33254686 DOI: 10.1016/j.envpol.2020.115625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Trace metal/ion homeostasis, neurophysiological performance, and molecular responses to iron (Fe) exposure were investigated in the model organism zebrafish (Danio rerio). The findings demonstrated that exposure to a sublethal concentration of ferric iron (Fe3+) increased Fe contents in both the whole body and head region of developing zebrafish. Among the various trace metals and major ion examined, a dysregulation in manganese, zinc, nickel, and calcium balance was also observed in Fe-exposed larvae. Further biochemical assay and in-vivo imaging revealed that Fe exposure resulted in possible oxidative stress-induced damage, and an increased generation of reactive oxygen species in specific regions of the larvae. Using a droplet digital PCR (ddPCR) technology, it was found that the expression levels of various oxidative stress-responsive genes were temporally modulated by Fe exposure. Additionally, Fe-exposed larvae exhibited an impairment in escape response and a decrease in swimming activity. These larvae also appeared to exhibit a reduced anxiety-like behaviour. Together, our research suggested that larvae experiencing an increased Fe loading exhibited a dysregulation in metal homeostasis and a decrease in neurophysiological performance. These results suggested that neurophysiological assessments are sensitive methods to evaluate Fe toxicity in developing fish.
Collapse
Affiliation(s)
- Ayaat T Hassan
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Yu P, Zheng L, Wang P, Chai S, Zhang Y, Shi T, Zhang L, Peng R, Huang C, Guo B, Jiang Q. Development of a novel polysaccharide-based iron oxide nanoparticle to prevent iron accumulation-related osteoporosis by scavenging reactive oxygen species. Int J Biol Macromol 2020; 165:1634-1645. [PMID: 33049237 DOI: 10.1016/j.ijbiomac.2020.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
In this work, the biological polysaccharide-based antioxidant polyglucose-sorbitol-carboxymethyl ether (PSC) was used as the precursor to synthesize Fe2O3@PSC nanoparticles, which are expected to scavenge excess reactive oxygen species (ROS) to inhibit osteogenesis and promote osteoclast differentiation in iron accumulation (IA)-related osteoporosis. The Fe2O3@PSC nanoparticles obtained were of a uniform particle size of 7.3 nm with elemental O/Fe/Cl/C at a ratio of 190:7:2:88. In addition, the Fe2O3@PSC nanoparticles showed the ability to supply equivalent amounts of iron as the typical iron agent ferric ammonium citrate (FAC) in vitro and in vivo. Importantly, the Fe2O3@PSC nanoparticles not only induced antioxidative MC3T3-E1 and Raw 264.7 cells to scavenge ROS but also promoted osteogenic differentiation by activating Akt-GSK-3β-β-catenin and inhibiting osteoclast differentiation by inhibiting the MAPK and NF-κB pathways in vitro. In vivo, no IA-related osteoporosis was induced in a mouse model when enough iron was supplied by the Fe2O3@PSC nanoparticles. Overall, the biological polysaccharide-based antioxidant PSC can supply iron and prevent IA-related osteoporosis, indicating that it is a promising novel iron agent for applications to treat iron deficiency diseases.
Collapse
Affiliation(s)
- Pengjun Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Senlin Chai
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Yibo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Tianshu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Rui Peng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Caoxing Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Baosheng Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China.
| |
Collapse
|
25
|
Ledesma-Colunga MG, Baschant U, Fiedler IAK, Busse B, Hofbauer LC, Muckenthaler MU, Altamura S, Rauner M. Disruption of the hepcidin/ferroportin regulatory circuitry causes low axial bone mass in mice. Bone 2020; 137:115400. [PMID: 32380257 DOI: 10.1016/j.bone.2020.115400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
Ferroportin (FPN) is the only known iron exporter. Mutations conferring resistance of FPN to hepcidin-mediated degradation cause the iron overload disorder hereditary hemochromatosis type 4. While iron overload is associated with low bone mass, the mechanisms involved are not completely understood. Here, we aimed to investigate whether the disruption in the hepcidin/FPN axis in FpnC326S mice and subsequent systemic iron accumulation impacts on bone tissue to a similar extent as in Hfe-/- mice, which are hallmarked by a milder iron overload phenotype. Hfe-/- and FpnC326S mice show increased plasma iron levels and liver iron content, whereas iron overload was more pronounced in FpnC326S compared to Hfe-/- mice. Bone volume fraction and trabecular thickness at the femur were not different between 10 and 14-week-old male wild-type (WT), Hfe-/- and FpnC326S mice. By contrast, both Hfe-/- and FpnC326S mice exhibited a lower bone volume fraction [Hfe-/-, 24%; FpnC326S, 33%; p < 0.05] and trabecular thickness [Hfe-/-, 10%; FpnC326S, 15%; p < 0.05] in the fourth lumbar vertebra compared to WT mice. Analysis of the bone formation rate at the tibia showed no difference in both genotypes, but it was reduced in the vertebral bone of FpnC326S [36%, p < 0.05] compared to WT mice. Serum levels of the bone formation marker, P1NP, were significantly reduced in both, Hfe-/- and FpnC326S compared with WT mice [Hfe-/-, 35%; FpnC326S, 40%; p < 0.05]. Also, the intrinsic differentiation capacity of FpnC326S osteoblasts was impaired. Osteoclast parameters were not grossly affected. Interestingly, the liver iron content and plasma iron levels negatively correlated with the bone formation rate and serum levels of P1NP. Thus, disruption of the hepcidin/ferroportin regulatory axis in FpnC326S mice results in axial bone loss due to suppressed bone formation.
Collapse
Affiliation(s)
- Maria G Ledesma-Colunga
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
26
|
Pandelides Z, Thornton C, Faruque AS, Whitehead AP, Willett KL, Ashpole NM. Developmental exposure to cannabidiol (CBD) alters longevity and health span of zebrafish (Danio rerio). GeroScience 2020; 42:785-800. [PMID: 32221778 DOI: 10.1007/s11357-020-00182-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Consumption of cannabinoid-containing products is on the rise, even during pregnancy. Unfortunately, the long-term, age-related consequences of developmental cannabidiol (CBD) exposure remain largely unknown. This is a critical gap given the established Developmental Origins of Health and Disease (DOHaD) paradigm which emphasizes that stressors, like drug exposure, early in life can instigate molecular and cellular changes that ultimately lead to adverse outcomes later in life. Thus, we exposed zebrafish (Danio rerio) to varying concentrations of CBD (0.02, 0.1, 0.5 μM) during larval development and assessed aging in both the F0 (exposed generation) and their F1 offspring 30 months later. F0 exposure to CBD significantly increased survival (~ 20%) and reduced size (wet weight and length) of female fish. While survival was increased, the age-related loss of locomotor function was unaffected and the effects on fecundity varied by sex and dose. Treatment with 0.5 μM CBD significantly reduced sperm concentration in males, but 0.1 μM increased egg production in females. Similar to other model systems, control aged zebrafish exhibited increased kyphosis as well as increased expression markers of senescence, and inflammation (p16ink4ab, tnfα, il1b, il6, and pparγ) in the liver. Exposure to CBD significantly reduced the expression of several of these genes in a dose-dependent manner relative to the age-matched controls. The effects of CBD on size, gene expression, and reproduction were not reproduced in the F1 generation, suggesting the influence on aging was not cross-generational. Together, our results demonstrate that developmental exposure to CBD causes significant effects on the health and longevity of zebrafish.
Collapse
Affiliation(s)
- Zacharias Pandelides
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
| | - Cammi Thornton
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
| | - Anika S Faruque
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
| | - Alyssa P Whitehead
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
| | - Kristine L Willett
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi School of Pharmacy, Oxford, MS, 38677, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA.
- Research Institute of Pharmaceutical Sciences, University of Mississippi School of Pharmacy, Oxford, MS, 38677, USA.
| |
Collapse
|
27
|
Tonelli F, Bek JW, Besio R, De Clercq A, Leoni L, Salmon P, Coucke PJ, Willaert A, Forlino A. Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Front Endocrinol (Lausanne) 2020; 11:489. [PMID: 32849280 PMCID: PMC7416647 DOI: 10.3389/fendo.2020.00489] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Animal models are essential tools for addressing fundamental scientific questions about skeletal diseases and for the development of new therapeutic approaches. Traditionally, mice have been the most common model organism in biomedical research, but their use is hampered by several limitations including complex generation, demanding investigation of early developmental stages, regulatory restrictions on breeding, and high maintenance cost. The zebrafish has been used as an efficient alternative vertebrate model for the study of human skeletal diseases, thanks to its easy genetic manipulation, high fecundity, external fertilization, transparency of rapidly developing embryos, and low maintenance cost. Furthermore, zebrafish share similar skeletal cells and ossification types with mammals. In the last decades, the use of both forward and new reverse genetics techniques has resulted in the generation of many mutant lines carrying skeletal phenotypes associated with human diseases. In addition, transgenic lines expressing fluorescent proteins under bone cell- or pathway- specific promoters enable in vivo imaging of differentiation and signaling at the cellular level. Despite the small size of the zebrafish, many traditional techniques for skeletal phenotyping, such as x-ray and microCT imaging and histological approaches, can be applied using the appropriate equipment and custom protocols. The ability of adult zebrafish to remodel skeletal tissues can be exploited as a unique tool to investigate bone formation and repair. Finally, the permeability of embryos to chemicals dissolved in water, together with the availability of large numbers of small-sized animals makes zebrafish a perfect model for high-throughput bone anabolic drug screening. This review aims to discuss the techniques that make zebrafish a powerful model to investigate the molecular and physiological basis of skeletal disorders.
Collapse
Affiliation(s)
- Francesca Tonelli
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Roberta Besio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Laura Leoni
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Paul J. Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Antonella Forlino
| |
Collapse
|
28
|
Zebrafish Models of Human Skeletal Disorders: Embryo and Adult Swimming Together. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1253710. [PMID: 31828085 PMCID: PMC6886339 DOI: 10.1155/2019/1253710] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Danio rerio (zebrafish) is an elective model organism for the study of vertebrate development because of its high degree of homology with human genes and organs, including bone. Zebrafish embryos, because of the optical clarity, small size, and fast development, can be easily used in large-scale mutagenesis experiments to isolate mutants with developmental skeletal defects and in high-throughput screenings to find new chemical compounds for the ability to revert the pathological phenotype. On the other hand, the adult zebrafish represents another powerful resource for pathogenic and therapeutic studies about adult human bone diseases. In fish, some characteristics such as bone turnover, reparation, and remodeling of the adult bone tissue cannot be found at the embryonic stage. Several pathological models have been established in adult zebrafish such as bone injury models, osteoporosis, and genetic diseases such as osteogenesis imperfecta. Given the growing interest for metabolic diseases and their complications, adult zebrafish models of type 2 diabetes and obesity have been recently generated and analyzed for bone complications using scales as model system. Interestingly, an osteoporosis-like phenotype has been found to be associated with metabolic alterations suggesting that bone complications share the same mechanisms in humans and fish. Embryo and adult represent powerful resources in rapid development to study bone physiology and pathology from different points of view.
Collapse
|
29
|
Lleras-Forero L, Winkler C, Schulte-Merker S. Zebrafish and medaka as models for biomedical research of bone diseases. Dev Biol 2019; 457:191-205. [PMID: 31325453 DOI: 10.1016/j.ydbio.2019.07.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022]
Abstract
The identification of disease-causing mutations has in recent years progressed immensely due to whole genome sequencing approaches using patient material. The task accordingly is shifting from gene identification to functional analysis of putative disease-causing genes, preferably in an in vivo setting which also allows testing of drug candidates or biotherapeutics in whole animal disease models. In this review, we highlight the advances made in the field of bone diseases using small laboratory fish, focusing on zebrafish and medaka. We particularly highlight those human conditions where teleost models are available.
Collapse
Affiliation(s)
- L Lleras-Forero
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstrasse 7, 48149 Münster, Germany; CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.
| | - C Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 04, 117558 Singapore
| | - S Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstrasse 7, 48149 Münster, Germany; CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.
| |
Collapse
|
30
|
Huo C, Li Y, Qiao Z, Shang Z, Cao C, Hong Y, Xiao H. Comparative proteomics analysis of microvesicles in human serum for the evaluation of osteoporosis. Electrophoresis 2019; 40:1839-1847. [PMID: 31081149 DOI: 10.1002/elps.201900130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 11/10/2022]
Abstract
Osteoporosis is an emerging health issue worldwide. Due to the decrease of bone mineral density and the deterioration of skeletal microarchitecture, osteoporosis could lead to increased bone fragility and higher fracture risk. Since lack of specific symptoms, novel serum proteomic indicators are urgently needed for the evaluation of osteoporosis. Microvesicles (MVs) are important messengers widely present in body fluids and have emerged as novel targets for the diagnosis of multiple diseases. In this study, MVs were successfully isolated from human serum and comprehensively characterized. Comparative proteomics analysis revealed differential MVs protein profiling in normal subjects, osteopenia patients, and osteoporosis patients. In total, about 200 proteins were identified and quantified from serum MVs, among which 19 proteins were upregulated (fold change >2) and five proteins were downregulated (fold change <0.5) in osteopenia group and osteoporosis group when compared with the normal group. Three protein candidates were selected for initial verification, including Vinculin, Filamin A, and Profilin 1. Profilin 1 was further pre-validated in an independent sample set, which could differentiate osteoporosis group from osteopenia group and normal group (p < 0.05). Our data collectively demonstrate that serum MVs proteome can be valuable indicators for the evaluation and diagnostics of bone loss disease.
Collapse
Affiliation(s)
- Chunhui Huo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yinghua Li
- National Institute of Clinical Research, Department of Oncology, Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, P. R. China
| | - Zhi Qiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhi Shang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Chengxi Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yang Hong
- National Institute of Clinical Research, Department of Oncology, Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, P. R. China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
31
|
Lin Y, Xiang X, Chen T, Gao C, Fu H, Wang L, Deng L, Zeng L, Zhang J. In vivo monitoring and high-resolution characterizing of the prednisolone-induced osteoporotic process on adult zebrafish by optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:1184-1195. [PMID: 30891338 PMCID: PMC6420289 DOI: 10.1364/boe.10.001184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/16/2019] [Accepted: 01/27/2019] [Indexed: 05/29/2023]
Abstract
Because of its similar genetic makeup with humans, zebrafish are an available and well-established osteoporosis model in vivo for anti-osteoporosis drug development as well as the drug safety-evaluation process. However, few optical imaging methods could effectively visualize the bone of adult zebrafish due to their limited penetration depth. In this paper, in vivo high-resolution and long-term characterization of a prednisolone-induced osteoporotic zebrafish model was achieved with spectral-domain optical coherence tomography (SD-OCT). The capability of three-dimensional SD-OCT imaging was also demonstrated in this study. With SD-OCT images, we could non-destructively monitor the deforming process of adult zebrafish skull from several directions at any time. There is good correlation and agreement between SD-OCT and histology. Valuable phenomenon such as bone defects could be quantitatively evaluated using the SD-OCT images at different time points during a period of 21 days.
Collapse
Affiliation(s)
- Yanping Lin
- School of Basic Medical Science, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiang Xiang
- School of Basic Medical Science, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Tingru Chen
- School of Basic Medical Science, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Chudan Gao
- School of Basic Medical Science, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongbo Fu
- School of Basic Medical Science, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Limei Wang
- Center for Drug Non-clinical Evaluation and Research, Guangdong Biological Resources Institute, Guangdong Academy of Sciences, Guangzhou 510900, China
| | - Lijun Deng
- Key Lab of Optic-Electronic and Communication, Jiangxi Sciences and Technology Normal University, Nanchang 330038, China
| | - Lvming Zeng
- Key Lab of Optic-Electronic and Communication, Jiangxi Sciences and Technology Normal University, Nanchang 330038, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jian Zhang
- School of Basic Medical Science, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
32
|
Bergen DJM, Kague E, Hammond CL. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Front Endocrinol (Lausanne) 2019; 10:6. [PMID: 30761080 PMCID: PMC6361756 DOI: 10.3389/fendo.2019.00006] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is metabolic bone disease caused by an altered balance between bone anabolism and catabolism. This dysregulated balance is responsible for fragile bones that fracture easily after minor falls. With an aging population, the incidence is rising and as yet pharmaceutical options to restore this imbalance is limited, especially stimulating osteoblast bone-building activity. Excitingly, output from large genetic studies on people with high bone mass (HBM) cases and genome wide association studies (GWAS) on the population, yielded new insights into pathways containing osteo-anabolic players that have potential for drug target development. However, a bottleneck in development of new treatments targeting these putative osteo-anabolic genes is the lack of animal models for rapid and affordable testing to generate functional data and that simultaneously can be used as a compound testing platform. Zebrafish, a small teleost fish, are increasingly used in functional genomics and drug screening assays which resulted in new treatments in the clinic for other diseases. In this review we outline the zebrafish as a powerful model for osteoporosis research to validate potential therapeutic candidates, describe the tools and assays that can be used to study bone homeostasis, and affordable (semi-)high-throughput compound testing.
Collapse
Affiliation(s)
- Dylan J. M. Bergen
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
33
|
Hu Z, Tang Y, Yue Z, Zheng W, Xiong Z. The facile synthesis of copper oxide quantum dots on chitosan with assistance of phyto-angelica for enhancing the human osteoblast activity to the application of osteoporosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 191:6-12. [PMID: 30557790 DOI: 10.1016/j.jphotobiol.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/22/2023]
Abstract
Osteoblasts are an important key factor for the pathogenesis of several bone-related diseases, notably in osteoporosis. Osteoporosis is a disorder categorized based on the bone mineral density (BMD) and an alteration in the bone micro-architecture had been considered as the major determinant for increasing the fracture risk. The available medicine for curing the osteoporosis shows a minimal or no activity against the genesis or function of osteoblasts. The present study was conducted to determine the influence of phyto Angelica species (Ang.) mediated synthesized copper quantum dots decorated chitosan on human osteoblast cells for application of osteoporosis. The phyto compound of Angelica sp. was extracted by ethanol as solvent and it has been characterized through spectral analyses. An Angelica sp. mediated synthesized copper oxide quantum dots (CuO QDs) and the presence of CuO QDs on chitosan have been analyzed and exhibited by important spectral investigations. The morphological observation of CuO QDs on the chitosan (CS) was visualized by the microscopic analyses. The MTT assay results showed that cell growth of CuO QDs/CS-Ang. by the concentration dependent. The highest cell growth (87%) was noted at 5 μg/mL followed by 80 and 77% at 15 and 25 μg/mL respectively. The functional groups and potential compounds of Angelica sp. with CuO QDs/CS has been improved the osteoblast cell activity as prophylactic potentials against osteoporosis.
Collapse
Affiliation(s)
- Zhongqing Hu
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, 156 Yucai Road, Hangzhou, Zhejiang 311201, PR China
| | - Yanghua Tang
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, 156 Yucai Road, Hangzhou, Zhejiang 311201, PR China.
| | - Zhenshuang Yue
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, 156 Yucai Road, Hangzhou, Zhejiang 311201, PR China
| | - Wenjie Zheng
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, 156 Yucai Road, Hangzhou, Zhejiang 311201, PR China
| | - Zhenfei Xiong
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, 156 Yucai Road, Hangzhou, Zhejiang 311201, PR China
| |
Collapse
|
34
|
Balogh E, Paragh G, Jeney V. Influence of Iron on Bone Homeostasis. Pharmaceuticals (Basel) 2018; 11:ph11040107. [PMID: 30340370 PMCID: PMC6316285 DOI: 10.3390/ph11040107] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Bone homeostasis is a complex process, wherein osteoclasts resorb bone and osteoblasts produce new bone tissue. For the maintenance of skeletal integrity, this sequence has to be tightly regulated and orchestrated. Iron overload as well as iron deficiency disrupt the delicate balance between bone destruction and production, via influencing osteoclast and osteoblast differentiation as well as activity. Iron overload as well as iron deficiency are accompanied by weakened bones, suggesting that balanced bone homeostasis requires optimal-not too low, not too high-iron levels. The goal of this review is to summarize our current knowledge about how imbalanced iron influence skeletal health. Better understanding of this complex process may help the development of novel therapeutic approaches to deal with the pathologic effects of altered iron levels on bone.
Collapse
Affiliation(s)
- Enikő Balogh
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| | - György Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| | - Viktória Jeney
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| |
Collapse
|
35
|
Suarez-Bregua P, Guerreiro PM, Rotllant J. Stress, Glucocorticoids and Bone: A Review From Mammals and Fish. Front Endocrinol (Lausanne) 2018; 9:526. [PMID: 30250453 PMCID: PMC6139303 DOI: 10.3389/fendo.2018.00526] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids (GCs) are the final effector products of a neuroendocrine HPA/HPI axis governing energy balance and stress response in vertebrates. From a physiological point of view, basal GC levels are essential for intermediary metabolism and participate in the development and homeostasis of a wide range of body tissues, including the skeleton. Numerous mammalian studies have demonstrated that GC hormones exert a positive role during bone modeling and remodeling as they promote osteoblastogenesis to maintain the bone architecture. Although the pharmacological effect of the so-called stress hormones has been widely reported, the role of endogenous GCs on bone mineral metabolism as result of the endocrine stress response has been largely overlooked across vertebrates. In addition, stress responses are variable depending on the stressor (e.g., starvation, predation, and environmental change), life cycle events (e.g., migration and aging), and differ among vertebrate lineages, which react differently according to their biological, social and cognitive complexity (e.g., mineral demands, physical, and psychological stress). This review intends to summarize the endogenous GCs action on bone metabolism of mammals and fish under a variety of challenging circumstances. Particular emphasis will be given to the regulatory loop between GCs and the parathyroid hormone (PTH) family peptides, and other key regulators of mineral homeostasis and bone remodeling in vertebrates.
Collapse
Affiliation(s)
- Paula Suarez-Bregua
- Institute of Marine Research, Spanish National Research Council (IIM-CSIC), Vigo, Spain
| | | | - Josep Rotllant
- Institute of Marine Research, Spanish National Research Council (IIM-CSIC), Vigo, Spain
| |
Collapse
|