1
|
Tahmasebi Dehkordi H, Khaledi F, Ghasemi S. Immunological processes of enhancers and suppressors of long non-coding RNAs associated with brain tumors and inflammation. Int Rev Immunol 2024; 43:178-196. [PMID: 37974420 DOI: 10.1080/08830185.2023.2280581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Immunological processes, such as inflammation, can both cause tumor suppression and cancer progression. Moreover, deregulated levels of long non-coding RNA (lncRNA) expression in the brain may cause inflammation and lead to the growth of tumors. Like other biological processes, the immune system's role in cancer is complicated, varies, and can help or hurt the cancer's maintenance. According to research, inflammation and brain cancer are correlated via several signaling pathways. A variety of lncRNAs have recently been revealed to influence cancer by modulating inflammatory pathways. As a result, lncRNAs have the potential to influence carcinogenesis, tumor formation, or tumor suppression via an increase or decrease in inflammation functions. Although the study and targeting of lncRNAs have made great progress in the treatment of cancer, there are definitely limitations and challenges. Using new technologies like nanocarriers and cell-penetrating peptides (CPPs) to target treatments without hurting healthy body tissues has shown to be very effective. In this review article, we have collected significantly related lncRNAs and their inhibitory or stimulating roles in inflammation and brain cancer for the first time. However, there are limitations, such as side effects and damage to normal tissues. With the advancement of new targeting technologies, these lncRNAs may be candidates for the specific targeting therapy of brain cancers by limiting inflammation or stimulating the immune system against them in the future.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Khaledi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Leonard-Murali S, Bhaskarla C, Yadav GS, Maurya SK, Galiveti CR, Tobin JA, Kann RJ, Ashwat E, Murphy PS, Chakka AB, Soman V, Cantalupo PG, Zhuo X, Vyas G, Kozak DL, Kelly LM, Smith E, Chandran UR, Hsu YMS, Kammula US. Uveal melanoma immunogenomics predict immunotherapy resistance and susceptibility. Nat Commun 2024; 15:2863. [PMID: 38627362 PMCID: PMC11021475 DOI: 10.1038/s41467-024-46906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/08/2024] [Indexed: 04/19/2024] Open
Abstract
Immune checkpoint inhibition has shown success in treating metastatic cutaneous melanoma but has limited efficacy against metastatic uveal melanoma, a rare variant arising from the immune privileged eye. To better understand this resistance, we comprehensively profile 100 human uveal melanoma metastases using clinicogenomics, transcriptomics, and tumor infiltrating lymphocyte potency assessment. We find that over half of these metastases harbor tumor infiltrating lymphocytes with potent autologous tumor specificity, despite low mutational burden and resistance to prior immunotherapies. However, we observe strikingly low intratumoral T cell receptor clonality within the tumor microenvironment even after prior immunotherapies. To harness these quiescent tumor infiltrating lymphocytes, we develop a transcriptomic biomarker to enable in vivo identification and ex vivo liberation to counter their growth suppression. Finally, we demonstrate that adoptive transfer of these transcriptomically selected tumor infiltrating lymphocytes can promote tumor immunity in patients with metastatic uveal melanoma when other immunotherapies are incapable.
Collapse
Affiliation(s)
- Shravan Leonard-Murali
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Solid Tumor Cellular Immunotherapy Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chetana Bhaskarla
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Solid Tumor Cellular Immunotherapy Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ghanshyam S Yadav
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Solid Tumor Cellular Immunotherapy Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sudeep K Maurya
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Solid Tumor Cellular Immunotherapy Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chenna R Galiveti
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Solid Tumor Cellular Immunotherapy Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua A Tobin
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Solid Tumor Cellular Immunotherapy Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel J Kann
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eishan Ashwat
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick S Murphy
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Solid Tumor Cellular Immunotherapy Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anish B Chakka
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vishal Soman
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul G Cantalupo
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinming Zhuo
- UPMC Genome Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gopi Vyas
- UPMC Genome Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dara L Kozak
- UPMC Genome Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsey M Kelly
- UPMC Genome Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ed Smith
- UPMC Genome Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Uma R Chandran
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yen-Michael S Hsu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Immunologic Monitoring and Cellular Products Laboratory, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Udai S Kammula
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Solid Tumor Cellular Immunotherapy Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Huldani H, Gandla K, Asiri M, Romero-Parra RM, Alsalamy A, Hjazi A, Najm MAA, Fawaz A, Hussien BM, Singh R. A comprehensive insight into the role of small nucleolar RNAs (snoRNAs) and SNHGs in human cancers. Pathol Res Pract 2023; 249:154679. [PMID: 37567032 DOI: 10.1016/j.prp.2023.154679] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/13/2023]
Abstract
Long non-coding RNAs (lncRNAs), which comprise most non-coding RNAs (ncRNAs), have recently become a focus of cancer research. How many functional ncRNAs exist is still a matter of debate. Although insufficient evidence supports that most lncRNAs function as transcriptional by-products, it is widely known that an increasing number of lncRNAs play essential roles in cells. Small nucleolar RNAs (snoRNAs), 60-300 nucleotides in length, have been better studied than long non-coding RNAs (lncRNAs) and are predominantly present in the nucleolus. Most snoRNAs are encoded in introns of protein- and non-protein-coding genes called small nucleolar RNA host genes (SNHGs). In this article, we explore the biology and characteristics of SNHGs and their role in developing human malignancies. In addition, we provide an update on the ability of these snoRNAs to serve as prognostic and diagnostic variables in various forms of cancer.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya Deemed to be University, Hanamkonda, India.
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Ali Alsalamy
- College of Medical Technology, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mazin A A Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Albab Fawaz
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rajesh Singh
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
4
|
Vijayalalitha R, Archita T, Juanitaa GR, Jayasuriya R, Amin KN, Ramkumar KM. Role of Long Non-Coding RNA in Regulating ER Stress Response to the Progression of Diabetic Complications. Curr Gene Ther 2023; 23:96-110. [PMID: 35927920 DOI: 10.2174/1566523222666220801141450] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Chronic hyperglycemia damages the nerves and blood vessels, culminating in other vascular complications. Such complications enhance cytokine, oxidative and endoplasmic reticulum (ER) stress. ER is the primary organelle where proteins are synthesised and attains confirmatory changes before its site of destination. Perturbation of ER homeostasis activates signaling sensors within its lumen, the unfolded protein response (UPR) that orchestrates ER stress and is extensively studied. Increased ER stress markers are reported in diabetic complications in addition to lncRNA that acts as an upstream marker inducing ER stress response. This review focuses on the mechanisms of lncRNA that regulate ER stress markers, especially during the progression of diabetic complications. Through this systemic review, we showcase the dysfunctional lncRNAs that act as a leading cause of ER stress response to the progression of diabetic complications.
Collapse
Affiliation(s)
- Ramanarayanan Vijayalalitha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Tca Archita
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - George Raj Juanitaa
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Karan Naresh Amin
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
5
|
Mukherjee S, Kundu U, Desai D, Pillai PP. Particulate Matters Affecting lncRNA Dysregulation and Glioblastoma Invasiveness: In Silico Applications and Current Insights. J Mol Neurosci 2022; 72:2188-2206. [PMID: 36370303 DOI: 10.1007/s12031-022-02069-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation-a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression-in the case of GBM-can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression.
Collapse
Affiliation(s)
- Swagatama Mukherjee
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Uma Kundu
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Dhwani Desai
- Integrated Microbiome Resource, Department of Pharmacology and Marine Microbial Genomics and Biogeochemistry lab, Department of Biology, Dalhousie University, Halifix, Canada
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India.
| |
Collapse
|
6
|
Malakoti F, Alemi F, Yeganeh SJ, Hosseini F, Shabestani N, Samemaleki S, Maleki M, Daneshvar SF, Montazer M, Yousefi B. Long noncoding RNA SNHG7-miRNA-mRNA axes crosstalk with oncogenic signaling pathways in human cancers. Chem Biol Drug Des 2022; 101:1151-1161. [PMID: 35993390 DOI: 10.1111/cbdd.14118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/19/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
LncRNAs and miRNAs are the two most important non-coding RNAs, which have been identified to be associated with cancer progression or prevention. The dysregulation of lncRNAs conducts tumorigenesis and metastasis in different ways. One of the mechanisms is that lncRNAs interact with miRNAs to regulate distinct cellular and genomic processes and cancer progression. LncRNA SNHG7 as an oncogene sponges miRNAs and develops lncRNA-miRNA-mRNA axes, leading to the regulation of several signaling pathways such as Wnt/β-Catenin, PI3K/AKT/mTOR, SIRT1, and Snail-EMT. Therefore, in this article, after a brief overview of lncRNA SNHG7-miRNA-mRNA axes' contribution to cancer development, we will discuss the role of lncRNA SNHG7 in the genes expression and signaling pathways related to cancers development via acting as a ceRNA.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Jafari Yeganeh
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Foroogh Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Shabestani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Samemaleki
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Fathi Daneshvar
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Montazer
- Department of Thorax Surgery, Faculty of Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Eshkoor SA, Ghodsian N, Akhtari-Zavare M. MicroRNAs influence and longevity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
MiRNAs play critical roles in the regulation of cellular function, life span, and the aging process. They can affect longevity positively and negatively through different aging pathways.
Main text
MiRNAs are a group of short non-coding RNAs that regulate gene expressions at post-transcriptional levels. The different types of alterations in miRNAs biogenesis, mRNA expressions, and activities of miRNA-protein complexes can affect the regulation of normal post-transcriptional gene process, which may lead to aging, age-related diseases, and an earlier death. It seems that the influence of deregulation of miRNAs on senescence and age-related diseases occurring by targeting aging molecular pathways can be used for diagnosis and prognosis of them. Therefore, the expression and function of miRNAs should be studied more accurately with new applicable and validated experimental tools. However, the current review wishes to highlight simply a connection among miRNAs, senescence and some age-related diseases.
Conclusion
Despite several research indicating the key roles of miRNAs in aging and longevity, further investigations are still needed to elucidate the essential roles of miRNAs in controlling mRNA regulation, cell proliferation, death and/or protection during stress and health problems. Besides, more research on miRNAs will help to identify new targets for alternative strategies regarding effectively screen, treat, and prevent diseases as well as make slow the aging process.
Collapse
|
8
|
Expression profiling of cancer-related long non-coding RNAs revealed upregulation and biomarker potential of HAR1B and JPX in colorectal cancer. Mol Biol Rep 2022; 49:6075-6084. [DOI: 10.1007/s11033-022-07396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
9
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Zhao Z, Gao J, Huang S. LncRNA SNHG7 Promotes the HCC Progression Through miR-122-5p/FOXK2 Axis. Dig Dis Sci 2022; 67:925-935. [PMID: 33738672 DOI: 10.1007/s10620-021-06918-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high mortality and severe complication in China. Numerous studies have shown that long noncoding RNAs (lncRNAs) are involved in the regulation of various processes in cancer cells. Our research aimed to investigate the underlying mechanism of the lncRNA small nucleolar RNA host gene 7 (SNHG7) in HCC development. The expression of SNHG7, microRNA-122-5p (miR-122-5p), and Forkhead box K2 (FOXK2) was assessed via quantitative real-time polymerase chain reaction. 3-(4,5) -dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) and transwell assays were performed to measure cell viability, migration, and invasion, respectively. The relative protein levels were detected by Western blot. The relationships between miR-122-5p and SNHG7 or FOXK2 were predicted by online software and then confirmed by dual-luciferase reporter assay. Animal experiments were conducted to clarify the effects of SNHG7 on proliferation in vivo. To begin with, SNHG7 was upregulated, while miR-122-5p was downregulated in HCC tissues and cells. Downregulation of SNHG7 inhibited cell growth and metastasis. Interestingly, SNHG7 could abolish the effects of miR-122-5p on HCC cells. Furthermore, miR-122-5p targeted FOXK2 and miR-122-5p recovered the effects of FOXK2 downregulation on cell growth and metastasis in HCC cells. Besides, SNHG7 facilitated HCC tumor growth in vivo through the miR-122-5p/FOXK2 axis. The lncRNA SNHG7 boosted the development of HCC by regulating FOXK2 through sponging miR-122-5p.
Collapse
Affiliation(s)
- Zhengbin Zhao
- Department of Infectious Diseases, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Chengguan District, Lanzhou City, Gansu, China.
| | - Jing Gao
- Department of Laboratory, Hospital of Northwest Minzu University, Lanzhou, 730030, Gansu, China
| | - Shuangsheng Huang
- Medical College of Northwest Minzu University, Lanzhou, 730030, Gansu, China
| |
Collapse
|
11
|
Barzegar Behrooz A, Talaie Z, Jusheghani F, Łos MJ, Klonisch T, Ghavami S. Wnt and PI3K/Akt/mTOR Survival Pathways as Therapeutic Targets in Glioblastoma. Int J Mol Sci 2022; 23:ijms23031353. [PMID: 35163279 PMCID: PMC8836096 DOI: 10.3390/ijms23031353] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a devastating type of brain tumor, and current therapeutic treatments, including surgery, chemotherapy, and radiation, are palliative at best. The design of effective and targeted chemotherapeutic strategies for the treatment of GBM require a thorough analysis of specific signaling pathways to identify those serving as drivers of GBM progression and invasion. The Wnt/β-catenin and PI3K/Akt/mTOR (PAM) signaling pathways are key regulators of important biological functions that include cell proliferation, epithelial–mesenchymal transition (EMT), metabolism, and angiogenesis. Targeting specific regulatory components of the Wnt/β-catenin and PAM pathways has the potential to disrupt critical brain tumor cell functions to achieve critical advancements in alternative GBM treatment strategies to enhance the survival rate of GBM patients. In this review, we emphasize the importance of the Wnt/β-catenin and PAM pathways for GBM invasion into brain tissue and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Brain Cancer Department, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran; (A.B.B.); (Z.T.)
| | - Zahra Talaie
- Brain Cancer Department, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran; (A.B.B.); (Z.T.)
| | - Fatemeh Jusheghani
- Department of Biotechnology, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
- Correspondence:
| |
Collapse
|
12
|
Najafi S, Ghafouri-Fard S, Hussen BM, Jamal HH, Taheri M, Hallajnejad M. Oncogenic Roles of Small Nucleolar RNA Host Gene 7 (SNHG7) Long Noncoding RNA in Human Cancers and Potentials. Front Cell Dev Biol 2022; 9:809345. [PMID: 35111760 PMCID: PMC8801878 DOI: 10.3389/fcell.2021.809345] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of noncoding transcripts characterized with more than 200 nucleotides of length. Unlike their names, some short open reading frames are recognized for them encoding small proteins. LncRNAs are found to play regulatory roles in essential cellular processes such as cell growth and apoptosis. Therefore, an increasing number of lncRNAs are identified with dysregulation in a wide variety of human cancers. SNHG7 is an lncRNA with upregulation in cancer cells and tissues. It is frequently reported with potency of promoting malignant cell behaviors in vitro and in vivo. Like oncogenic/tumor suppressor lncRNAs, SNHG7 is found to exert its tumorigenic functions through interaction with other biological substances. These include sponging target miRNAs (various numbers are identified), regulation of several signaling pathways, transcription factors, and effector proteins. Importantly, clinical studies demonstrate association between high SNHG7 expression and clinicopathological features in cancerous patients, worse prognosis, and enhanced chemoresistance. In this review, we summarize recent studies in three eras of cell, animal, and human experiments to bold the prognostic, diagnostic, and therapeutic potentials.
Collapse
Affiliation(s)
- Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Hazha Hadayat Jamal
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Hallajnejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Zhang Y, Tian Q, Huang S, Wang Q, Wu H, Dong Q, Chen X. Prognostic effect of lncRNA SNHG7 on cancer outcome: a meta and bioinformatic analysis. BMC Cancer 2022; 22:10. [PMID: 34979987 PMCID: PMC8722206 DOI: 10.1186/s12885-021-09068-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND New evidence from clinical and fundamental researches suggests that SNHG7 is involved in the occurrence and development of carcinomas. And the increased levels of SNHG7 are associated with poor prognosis in various kinds of tumors. However, the small sample size was the limitation for the prognostic value of SNHG7 in clinical application. The aim of the present meta-analysis was to conduct a qualitative analysis to explore the prognostic value of SNHG7 in various cancers. METHODS Articles related to the SNHG7 as a prognostic biomarker for cancer patients, were comprehensive searched in several electronic databases. The enrolled articles were qualified via the preferred reporting items for systematic reviews and meta-analysis of observational studies in epidemiology checklists. Additionally, an online database based on The Cancer Genome Atlas (TCGA) was further used to validate our results. RESULTS We analyzed 2418 cancer patients that met the specified criteria. The present research indicated that an elevated SNHG7 expression level was significantly associated with unfavorable overall survival (OS) (HR = 2.45, 95% CI: 2.12-2.85, p <0.001). Subgroup analysis showed that high expression levels of SNHG7 were also significantly associated with unfavorable OS in digestive system cancer (HR = 2.31, 95% CI: 1.90-2.80, p <0.001) and non-digestive system cancer (HR = 2.67, 95% CI: 2.12-3.37, p <0.001). Additionally, increased SNHG7 expression was found to be associated with tumor stage and progression (III/IV vs. I/II: HR = 1.76, 95% CI: 1.57-1.98, p <0.001). Furthermore, elevated SNHG7 expression significantly predicted lymph node metastasis (LNM) (HR = 1.98, 95% CI: 1.74-2.26, p <0.001) and distant metastasis (DM) (HR = 2.49, 95% CI: 1.88-3.30, p <0.001) respectively. No significant heterogeneity was observed among these studies. SNHG7 was significantly upregulated in four cancers and the elevated expression of SNHG7 predicted shorter OS in four cancers, worse DFS in five malignancies and worse PFI in five carcinomas based on the validation using the GEPIA on-line analysis tool. CONCLUSIONS The present analysis suggests that elevated SNHG7 is significantly associated with unfavorable OS, tumor progression, LNM and DM in various carcinomas, and may be served as a promising biomarker to guide therapy for cancer patients.
Collapse
Affiliation(s)
- Yunyuan Zhang
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Shifeng Huang
- Department of Clinical Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No. 1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Qing Wang
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Hongmei Wu
- Department of Abdominal Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
- Shandong Key Laboratory of Digital Medicine and Computer-Assisted Surgery, Qingdao, 266003, Shandong, China.
- Shandong College Collaborative Innovation Center of Digital Medicine Clinical Treatment and Nutrition Health, Qingdao, 266003, China.
| | - Xian Chen
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
| |
Collapse
|
14
|
Hu M, Wu Y, Su W, Wang Q, Xing C. Is Long Noncoding SNHG7 a Reliable Diagnostic Tool for Metastasis Diagnosis of Cancer: A Meta-Analysis. Genet Test Mol Biomarkers 2021; 25:765-771. [PMID: 34890252 DOI: 10.1089/gtmb.2021.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Background: The small nucleolar RNA host gene 7 (SNHG7) has been suggested as a biomarker of metastatic cancer; however, its reliability is controversial. Therefore, the goal of this study was to conduct a meta-analysis to assess the reliability of SNHG7 as a comprehensive cancer metastasis diagnostic biomarker. Methods: A comprehensive literature search was conducted using PubMed, Cochrane Library, Web of Science, Embase, and China National Knowledge Infrastructure (CNKI) to identify articles which examined the role of SNHG7 in cancers. Random-effects models and fixed-effects models were conducted to estimate the pooled odds ratios (ORs) for the associations of SNHG7 with distant metastases and lymph node metastases. Hierarchical summary receiver operating characteristic (ROC) models were used to estimate the sensitivity and specificity of SNHG7 as a biomarker for cancer metastasis diagnoses. Results: Nineteen studies comprised 1491 patients were included in this meta-analysis. We found that both distant metastasis (OR = 4.19, 95% confidence interval [CI] = 2.93-5.99, I2 = 34%) and lymph node metastasis (OR = 3.07, 95% CI = 1.65-5.68, I2 = 79.03%) were significantly associated with a higher expression of SNHG7. We also showed a pooled sensitivity and specificity of 74% (95% CI = 66-82) and 57% (95% CI = 53-61) for distant metastasis; as well as 72% (95% CI = 63-80) and 54% (95% CI = 46-63) for lymph node metastasis, respectively. Conclusion: Our findings suggest that SNHG7 is a potential diagnostic biomarker for metastasis of cancer; however, its clinical application requires stronger evidence due to the low sensitivity and specificity. Further larger-scale studies from diverse settings and cancer types will be necessary to reveal novel insights into SNHG7 as a biomarker for cancer metastasis diagnoses.
Collapse
Affiliation(s)
- Mingchao Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yong Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenzhao Su
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiang Wang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chungen Xing
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Zhang J, Zhang R, Ye Y. Long non-coding RNA (LncRNA) SNHG7/ Eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) involves in the malignant events of ovarian cancer cells with paclitaxel resistant. Bioengineered 2021; 12:10541-10552. [PMID: 34709112 PMCID: PMC8809996 DOI: 10.1080/21655979.2021.1999555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
LncRNA SNHG7 shows a strong relationship with malignant behavior of cancer cells and poor clinical outcome in cancer. The resistance of ovarian cancer for Paclitaxel seriously limits the clinical efficacy in chemotherapy for ovarian cancer patients. In this study, we investigated whether lncRNA SNHG7 was involved in Paclitaxel sensitivity of ovarian cancer as well as the underlying mechanism regulating the behavior of ovarian cancer cells with Paclitaxel resistance. The experiment results of wound healing and transwell showed that in paclitaxel-resistant ovarian cancer cells, transfection with siRNA-SNHG7 in ovarian cancer cells reduced cell migration and invasion. And cell cycle was observed by means of Flow cytometry. RNA immunoprecipitation assay was performed to analyze the interaction of lncRNA SNHG7 and EIF4G2. Overexpression of EIF4G2 by transfection with Ov- EIF4G2 plasmids efficiently blocked the changes of migration and invasion, as well as G0/1 arrest caused by lncRNA SNHG7 silencing. Taken together, these results demonstrated that lncRNA SNHG7 could affect the degradation of EIF4G2 to regulate the sensitivity of ovarian cancer to Paclitaxel, inhibit cell viability, migration, and invasion. The interaction of lncRNA SNHG7 and EIF4G2 plays an important role in the migrative and invasive activity and Paclitaxel resistance of ovarian cancer cells.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Rui Zhang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yongju Ye
- Department of Obstetrics and Gynecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| |
Collapse
|
16
|
Regulatory interplay between microRNAs and WNT pathway in glioma. Biomed Pharmacother 2021; 143:112187. [PMID: 34560532 DOI: 10.1016/j.biopha.2021.112187] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Glioma is one of the most common neoplasms of the central nervous system with a poor survival. Due to the obstacles in treating this disease, a part of recent studies mainly focuses on identifying the underlying molecular mechanisms that contribute to its malignancy. Altering microRNAs (miRNAs) expression pattern has been identified obviously in many cancers. Through regulating various targets and signaling pathways, miRNAs play a pivotal role in cancer progression. As one of the essential signaling pathways, WNT pathway is dysregulated in many cancers, and a growing body of evidence emphasis its dysregulation in glioma. Herein, we provide a comprehensive review of miRNAs involved in WNT pathway in glioma. Moreover, we show the interplay between miRNAs and WNT pathway in regulating different processes such as proliferation, invasion, migration, radio/chemotherapy resistance, and epithelial-mesenchymal-transition. Then, we introduce several drugs and treatments against glioma, which their effects are mediated through the interplay of WNT pathway and miRNAs.
Collapse
|
17
|
Yadav G, Kulshreshtha R. Metastasis associated long noncoding RNAs in glioblastoma: Biomarkers and therapeutic targets. J Cell Physiol 2021; 237:401-420. [PMID: 34533835 DOI: 10.1002/jcp.30577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023]
Abstract
Glioblastoma (GBM) is the most aggressive, malignant, and therapeutically challenging Grade IV tumor of the brain. Although the possibility of distant metastasis is extremely rare, GBM is known to cause intracranial metastasis forming aggressive secondary lesions resulting in a dismal prognosis. Metastasis also plays an important role in tumor dissemination and recurrence making GBM largely incurable. Recent studies have indicated the importance of long noncoding RNAs (lncRNAs) in GBM metastasis. lncRNAs are a class of regulatory noncoding RNAs (>200 nt) that interact with DNA, RNA, and proteins to regulate various biological processes. This is the first comprehensive review summarizing the lncRNAs associated with GBM metastasis and the underlying molecular mechanism involved in migration/invasion. We also highlight the complex network of lncRNA/miRNA/protein that collaborate/compete to regulate metastasis-associated genes. Many of these lncRNAs also show attractive potential as diagnostic/prognostic biomarkers. Finally, we discuss various therapeutic strategies and potential applications of lncRNAs as therapeutic targets for the treatment of GBM.
Collapse
Affiliation(s)
- Garima Yadav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
18
|
Sharma RK, Calderon C, Vivas-Mejia PE. Targeting Non-coding RNA for Glioblastoma Therapy: The Challenge of Overcomes the Blood-Brain Barrier. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:678593. [PMID: 35047931 PMCID: PMC8757885 DOI: 10.3389/fmedt.2021.678593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant form of all primary brain tumors, and it is responsible for around 200,000 deaths each year worldwide. The standard therapy for GBM treatment includes surgical resection followed by temozolomide-based chemotherapy and/or radiotherapy. With this treatment, the median survival rate of GBM patients is only 15 months after its initial diagnosis. Therefore, novel and better treatment modalities for GBM treatment are urgently needed. Mounting evidence indicates that non-coding RNAs (ncRNAs) have critical roles as regulators of gene expression. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are among the most studied ncRNAs in health and disease. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Several dysregulated miRNAs and lncRNAs have been identified in GBM cell lines and GBM tumor samples. Some of them have been proposed as diagnostic and prognostic markers, and as targets for GBM treatment. Most ncRNA-based therapies use oligonucleotide RNA molecules which are normally of short life in circulation. Nanoparticles (NPs) have been designed to increase the half-life of oligonucleotide RNAs. An additional challenge faced not only by RNA oligonucleotides but for therapies designed for brain-related conditions, is the presence of the blood-brain barrier (BBB). The BBB is the anatomical barrier that protects the brain from undesirable agents. Although some NPs have been derivatized at their surface to cross the BBB, optimal NPs to deliver oligonucleotide RNA into GBM cells in the brain are currently unavailable. In this review, we describe first the current treatments for GBM therapy. Next, we discuss the most relevant miRNAs and lncRNAs suggested as targets for GBM therapy. Then, we compare the current drug delivery systems (nanocarriers/NPs) for RNA oligonucleotide delivery, the challenges faced to send drugs through the BBB, and the strategies to overcome this barrier. Finally, we categorize the critical points where research should be the focus in order to design optimal NPs for drug delivery into the brain; and thus move the Oligonucleotide RNA-based therapies from the bench to the clinical setting.
Collapse
Affiliation(s)
- Rohit K. Sharma
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
| | - Carlos Calderon
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
| | - Pablo E. Vivas-Mejia
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| |
Collapse
|
19
|
lncRNA SNHG7 promotes cell proliferation in glioma by acting as a competing endogenous RNA and sponging miR-138-5p to regulate EZH2 expression. Oncol Lett 2021; 22:565. [PMID: 34113393 PMCID: PMC8185700 DOI: 10.3892/ol.2021.12826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Glioma is the most common type of primary brain cancer in adults. Accumulating studies have reported that long non-coding RNAs (lncRNAs) serve a significant role in the initiation and development of glioma. lncRNA small nucleolar RNA host gene 7 (SNHG7) has been previously demonstrated to serve a role in numerous glioma biological processes, including cell proliferation, invasion and migration. The present study aimed to investigate the role of SNHG7 in glioma through reverse transcription-quantitative PCR, western blotting and cell function assays. The results revealed that SNHG7 expression was upregulated in glioma tissues and cell lines, while microRNA (miR)-138-5p expression was downregulated. Moreover, the knockdown of SNHG7 expression decreased the proliferation of glioma cells. Mechanistic studies demonstrated that SNHG7 downregulated miR-138-5p expression, which subsequently affected the expression levels of its target gene, enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). In conclusion, the results of the present study suggested that SNHG7 may act as a competing endogenous RNA to sponge miR-138-5p and modulate EZH2 expression. Thus, SNHG7 may enhance glioma proliferation via modulating the miR-138-5p/EZH2 signaling axis.
Collapse
|
20
|
Jian Y, Fan Q. Long non-coding RNA SNHG7 facilitates pancreatic cancer progression by regulating the miR-146b-5p/Robo1 axis. Exp Ther Med 2021; 21:398. [PMID: 33680120 PMCID: PMC7918173 DOI: 10.3892/etm.2021.9829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) small nucleolar RNA host gene 7 (SNHG7) plays a crucial role in the progression of pancreatic cancer (PC). SNHG7 is upregulated in PC; therefore, the purpose of the present study was to investigate the role and underlying mechanism of SNHG7 on PC progression. In the present study, the mRNA expression levels of SNHG7, microRNA(miR)-146b-5p and roundabout homolog 1 (Robo1) were measured via reverse transcription-quantitative PCR. Moreover, cell viability and apoptosis were assessed by MTT and flow cytometry assays, respectively. The ability of cells to migrate and invade was evaluated by Transwell assays. In addition, dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assays were conducted to assess the interaction between miR-146b-5p and SNHG7 or Robo1. The protein expression of Robo1 was measured via western blotting. Furthermore, mouse xenograft models were established to further investigate the effect of SNHG7 on PC progression in vivo. The results indicated that SNHG7 was highly expressed in PC tissues and cells. It was also found that SNHG7 was sponged by miR-146b-5p and that Robo1 was a target of miR-146b-5p. Moreover, it was demonstrated that SNHG7 knockdown inhibited cell proliferation, migration and invasion, as well as tumorigenesis and apoptosis of PC cells in vitro and in vivo by regulating miR-146b-5p. The results also suggested that miR-146b-5p overexpression inhibited the progression of PC cells by modulating Robo1. Furthermore, silencing of SNHG7 downregulated Robo1 expression by sponging miR-146b-5p. Collectively, the present results indicate that SNHG7 promotes PC progression by sponging miR-146b-5p and upregulating Robo1.
Collapse
Affiliation(s)
- Yu Jian
- Emergency Medical Department, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Qi Fan
- Emergency Department, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| |
Collapse
|
21
|
Cao X, Xue LD, Di Y, Li T, Tian YJ, Song Y. MSC-derived exosomal lncRNA SNHG7 suppresses endothelial-mesenchymal transition and tube formation in diabetic retinopathy via miR-34a-5p/XBP1 axis. Life Sci 2021; 272:119232. [PMID: 33600866 DOI: 10.1016/j.lfs.2021.119232] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 01/13/2023]
Abstract
AIMS Diabetic retinopathy (DR) is the most common complication of type 2 diabetes mellitus, which could result in visual impairment. Accumulating studies have shown the implication of long non-coding RNAs (lncRNAs) in the pathogenesis of DR. Our aims are to investigate whether lncRNA SNHG7 plays a role during DR pathogenesis. MAIN METHODS Human retinal microvascular endothelial cells (HRMECs) were treated with high glucose (HG) to build cell model. Relative expression of RNAs were examined using qPCR, and western blot or immunofluorescence analysis was adopted to detect the protein expression. Cell viability, migration and angiogenic capacity of HRMECs were estimated through CCK-8, transwell and tube formation experiments, respectively. Dual-luciferase reporter and RNA pull down assays were employed to verify the interplay between miR-34a-5p and SNHG7 or XBP1. Mesenchymal stem cells (MSCs) were identified by examining typical surface makers using flow cytometry and the differentiation abilities via Alizarin red, Oil red O and Alcian blue staining. MSC-derived exosomes were verified by transmission electron microscopy and western blot. KEY FINDINGS LncRNA SNHG7 sponged to and negatively regulated miR-34a-5p. SNHG7 overexpression repressed HG induced endothelial-mesenchymal transition (EndMT) and tube formation of HRMECs, while miR-34a-5p overexpression could reverse this effect. miR-34a-5p targeted and negative regulated XBP1. Knockdown of miR-34a-5p repressed HG induced EndMT and tube formation, which were partially blocked by XBP1 inhibition. MSC-derived exosomes could transfer SNHG7 to HRMECs and modulated EndMT and tube formation. SIGNIFICANCE The MSC-derived exosomal lncRNA SNHG7 suppresses EndMT and tube formation in HRMECs via miR-34a-5p/XBP1 axis.
Collapse
Affiliation(s)
- Xin Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, PR China
| | - Li-Dan Xue
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, PR China
| | - Yue Di
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, PR China
| | - Tao Li
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, PR China
| | - Ya-Jing Tian
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, PR China
| | - Yu Song
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, PR China.
| |
Collapse
|
22
|
Pei LJ, Sun PJ, Ma K, Guo YY, Wang LY, Liu FD. LncRNA-SNHG7 interferes with miR-34a to de-sensitize gastric cancer cells to cisplatin. Cancer Biomark 2021; 30:127-137. [PMID: 33074217 DOI: 10.3233/cbm-201621] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) remains poor prognosis and survival issues due to the resistance of chemotherapies, such as cisplatin. The long non-coding RNA small nucleolar RNA host gene 7 (lncRNA-SNHG7) is known as an oncogenic molecule in diverse cancers. Here, we demonstrate that SNHG7 was significantly upregulated in gastric cancer and positively correlated with cisplatin resistance of gastric cancer cells that SNHG7 was significantly upregulated in cisplatin resistant cells. Silencing SNHG7 dramatically sensitized cisplatin resistant cells. In contrast, a negative correlation between lncRNA-SNHG7 and miR-34a was found that miR-34a was downregulated in gastric cancer patient tissues and significantly sensitized cisplatin resistant gastric cancer cells. Intriguingly, bioinformatical analysis indicated miR-34a has putative biding site for SNHG7 and such negative association between SNHG7 and miR-34a was verified in gastric cancer tissues. The cisplatin resistant cells displayed increased glycolysis rate and SNHG7 promoted cellular glycolysis rate of gastric cancer cells. Luciferase assay illustrated LDHA, a glycolysis enzyme, was the direct target of miR-34a. Importantly, inhibiting SNHG7 successfully suppressed LDHA expressions and sensitized cisplatin resistant cells and such inhibitory effects could be recovered by further anti-miR-34a. These findings suggest an important regulator mechanism for the SNHG7-mediated cisplatin resistance via miR-34a/LDHA-glycolysis axis.
Collapse
Affiliation(s)
- Li-Juan Pei
- Department of General Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China.,Department of General Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Peng-Jun Sun
- Department of General Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China.,Department of General Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, Beijing, China.,Department of General Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yan-Yan Guo
- Department of General Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Ling-Yan Wang
- Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Fei-De Liu
- Department of General Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Rezaei O, Tamizkar KH, Sharifi G, Taheri M, Ghafouri-Fard S. Emerging Role of Long Non-Coding RNAs in the Pathobiology of Glioblastoma. Front Oncol 2021; 10:625884. [PMID: 33634032 PMCID: PMC7901982 DOI: 10.3389/fonc.2020.625884] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is the utmost aggressive diffuse kind of glioma which is originated from astrocytes, neural stem cells or progenitors. This malignant tumor has a poor survival rate. A number of genetic aberrations and somatic mutations have been associated with this kind of cancer. In recent times, the impact of long non-coding RNAs (lncRNAs) in glioblastoma has been underscored by several investigations. Up-regulation of a number of oncogenic lncRNAs such as H19, MALAT1, SNHGs, MIAT, UCA, HIF1A-AS2 and XIST in addition to down-regulation of other tumor suppressor lncRNAs namely GAS5, RNCR3 and NBAT1 indicate the role of these lncRNAs in the pathogenesis of glioblastoma. Several in vitro and a number of in vivo studies have demonstrated the contribution of these transcripts in the regulation of cell proliferation and apoptosis, cell survival, invasion and metastasis of glioblastoma cells. Moreover, some lncRNAs such as SBF2-AS1 are involved in conferring resistance to temozolomide. Finally, few circularRNAs have been identified that influence the evolution of glioblastoma. In this paper, we discuss the impacts of lncRNAs in the pathogenesis of glioblastoma, their applications as markers and their implications in the therapeutic responses in this kind of cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Li ZH, Yu NS, Deng Q, Zhang Y, Hu YY, Liu G, Huang K. LncRNA SNHG7 Mediates the Chemoresistance and Stemness of Breast Cancer by Sponging miR-34a. Front Oncol 2020; 10:592757. [PMID: 33330080 PMCID: PMC7732589 DOI: 10.3389/fonc.2020.592757] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
Chemoresistance is considered to be a major cause of the recurrence and metastasis of breast cancer (BC). LncRNA SNHG7 has been reported to be upregulated in breast cancer and to promote tumor progression and metastasis. Nevertheless, the function and potential regulatory mechanism of SNHG7 in BC drug resistance are still largely unclear. This study indicated that SNHG7 was highly expressed in chemoresistant BC tissues and cells. Upregulated SNHG7 might predict a low pCR rate and poor clinical outcome in BC patients. Knockdown of SNHG7 enhanced drug sensitivity and drug-induced apoptosis in chemoresistant BC cells. In terms of the mechanism, miR-34a was found to be a target of SNHG7 and its expression in breast cancer tissues and chemoresistant cell lines was negatively correlated with SNHG7 expression. Importantly, sh-SNHG7 upregulated miR-34a expression, reduced the percentages of CD44+/CD24−cells, and inhibited sphere-formation and stem cell factor (Oct4, Nanog, SOX2) expression. Functional loss experiments showed that the repressive effect of SNHG7 knockdown on BC cell stemness was partially reversed by transfection with miR-34a inhibitors. In summary, this study indicated that SNHG7 contributed to the chemoresistance of BC and mediated chemoresistance and cancer stemness by sponging miR-34a.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Department of Breast Surgery, Third Hospital of Nanchang, JiangXi Breast Specialist Hospital, Nanchang, China.,Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Nanchang, China
| | - Ni-Si Yu
- Gynecology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qing Deng
- Department of Breast Surgery, Third Hospital of Nanchang, JiangXi Breast Specialist Hospital, Nanchang, China.,Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Nanchang, China
| | - Yulu Zhang
- Department of Breast Surgery, Third Hospital of Nanchang, JiangXi Breast Specialist Hospital, Nanchang, China
| | - Yang-Yang Hu
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Nanchang, China
| | - Gang Liu
- Department of Breast Surgery, Third Hospital of Nanchang, JiangXi Breast Specialist Hospital, Nanchang, China.,Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Nanchang, China
| | - Kedi Huang
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Nanchang, China.,Orthopedics Department, Third Hospital of Nanchang, Nanchang, China
| |
Collapse
|
25
|
Han W, Yu F, Guan W. Oncogenic roles of lncRNA BLACAT1 and its related mechanisms in human cancers. Biomed Pharmacother 2020; 130:110632. [PMID: 34321169 DOI: 10.1016/j.biopha.2020.110632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play indispensable roles in mediating regulation of epigenetics, and their dysregulation is strongly associated with the initiation and progression of human cancers. Recently, lncRNA bladder cancer-associated transcript 1 (BLACAT1) has been observed to exert oncogenic effects on cancers, including glioma, breast cancer, lung cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, ovarian cancer, cervical cancer and osteosarcoma. Additional mechanical analyses have uncovered that lncRNA BLACAT1 is positively correlated with tumor stage, lymph node metastasis and distant metastasis of primary tumors via involvement with various cellular activities, thus leading to poor overall survival and progression-free survival (PFS). In this review, we generalize the oncogenic roles of BLACAT1 in multiple human cancers through correlation with clinical implications and cellular activities. Moreover, we forecast its potential clinical application as a novel biomarker and a promising therapeutic target for cancers.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China; Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fan Yu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China; Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
26
|
Long non-coding RNAs as epigenetic mediator and predictor of glioma progression, invasiveness, and prognosis. Semin Cancer Biol 2020; 83:536-542. [PMID: 32920124 DOI: 10.1016/j.semcancer.2020.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Gliomas are aggressive brain tumors with high mortality rate. Over the past several years, non-coding RNAs, specifically the long non-coding RNAs (lncRNAs), have emerged as biomarkers of considerable interest. Emerging data reveals distinct patterns of expressions of several lncRNAs in the glioma tissues, relative to their expression in normal brains. This has led to the speculation for putative exploitation of lncRNAs as diagnostic biomarkers as well as biomarkers for targeted therapy. With a focus on lncRNAs that have shown promise as epigenetic biomarkers in the proliferation, migration, invasion, angiogenesis and metastasis in various glioma models, we discuss several such lncRNAs. The data from cell line / animal model-based studies as well as analysis from human patient samples is presented for the most up-to-date information on the topic. Overall, the information provided herein makes a compelling case for further evaluation of lncRNAs in clinical settings.
Collapse
|
27
|
Bian Z, Ji W, Xu B, Huang W, Jiao J, Shao J, Zhang X. The role of long noncoding RNA SNHG7 in human cancers (Review). Mol Clin Oncol 2020; 13:45. [PMID: 32874575 PMCID: PMC7453396 DOI: 10.3892/mco.2020.2115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to serve important roles in a variety of human tumor types. The lncRNA small nucleolar RNA host gene 7 (SNHG7) is associated with a variety of cancer types, such as esophageal cancer, breast cancer and gastric neoplasia. Based on previous studies that examined SNHG7 expression in tumors, it has become clear that SNHG7 modulates tumorigenesis and cancer progression by acting as a competing endogenous RNA. SNHG7 can sponge tumor-suppressive microRNAs and regulate downstream signaling pathways. In addition, overexpression of SNHG7 is associated with the clinical characteristics of patients with cancer by regulating cellular proliferation, invasion and metastasis and by inhibiting apoptosis via a variety of mechanisms of action. The function of SNHG7 in tumorigenesis and cancer progression indicates that it can potentially act as a novel therapeutic target or a diagnostic biomarker for cancer therapy or detection, respectively.
Collapse
Affiliation(s)
- Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Bing Xu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Weiyi Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Xiaolu Zhang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
28
|
Cheng G, Zheng J, Wang L. LncRNA SNHG7 promotes glioma cells viability, migration and invasion by regulating miR-342-3p/AKT2 axis. Int J Neurosci 2020; 131:1190-1202. [PMID: 32628059 DOI: 10.1080/00207454.2020.1790556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Glioma has been categorized as the most common primary malignant brain tumor. Long non-coding RNA SNHG7 (lncRNA SNHG7) has been recognized in various cancers as a possible oncogene. In this study, the effect of SNHG7 on glioma cells was investigated. MATERIALS AND METHODS Thirty glioma tissues and adjacent normal tissues were collected. Pc-SNHG7, sh-SNHG7, miR-342-3p mimic and miR-342-3p inhibitor were transfected into the glioma cells. Cell Counting Kit-8, Transwell and scratch assay evaluated glioma cells viability, invasion and migration, respectively. TargetScan, Starbase and dual-luciferase reporter were used to predict and confirm the target genes and potential binding sites of SNHG7, miR-342-3p and AKT2. Relative miR-342-3p and AKT2 expressions were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Pearson's analysis was adopted for correlation analysis between SNHG7, miR-342-3p and AKT2. RESULTS SNHG7 expressions in glioma tissues and cells were increased, upregulation of SNHG7 promotes cell viability, invasion and migration. SNHG7 was shown to bind with miR-342-3p, and upregulating SNHG7 reduced miR-342-3p expression. AKT2 was the target gene of miR-342-3p, and miR-342-3p expression was decreased while AKT2 expression was increased in glioma tissues. High expression of miR-342-3p inhibited cell viability, invasion and migration and reduced AKT2 expression, whereas low expression of miR-342-3p did the opposite effect. CONCLUSIONS Upregulating SNHG7 might promote glioma cells viability, migration and invasion with the regulation of decreasing miR-342-3p level and increasing AKT2 level.
Collapse
Affiliation(s)
- Gaopeng Cheng
- Department of Neurosurgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi City, China
| | - Jian Zheng
- Department of Electro Cardiogram, Shanxi Provincial Cancer Hospital, China
| | - Long Wang
- Department of Neurosurgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi City, China
| |
Collapse
|
29
|
Han W, Shi J, Cao J, Dong B, Guan W. Current advances of long non-coding RNAs mediated by wnt signaling in glioma. Pathol Res Pract 2020; 216:153008. [PMID: 32703485 DOI: 10.1016/j.prp.2020.153008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/14/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
Glioma is the most common and aggressive brain tumor in the central nervous system (CNS), in which Wnt signaling pathway has been verified to play a pivotal role in regulating the initiation and progression. Currently, numerous studies have indicated that long non-coding RNAs (lncRNAs) have critical functions across biological processes including cell proliferation, colony formation, migration, invasion and apoptosis via Wnt signaling pathway in glioma. This review depicts canonical and non-canonical Wnt/β-catenin signaling pathway properties and relative processing mechanisms in gliomas, and summarizes the function and regulation of lncRNAs mediated by Wnt signaling pathway in the development and progression of glioma. Ultimately, we hope to seek out promising biomarkers and reliable therapeutic targets for glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
30
|
Wang Y, Gao Y, Guo S, Chen Z. Integrated analysis of lncRNA-associated ceRNA network identified potential regulatory interactions in osteosarcoma. Genet Mol Biol 2020; 43:e20190090. [PMID: 32453338 PMCID: PMC7252519 DOI: 10.1590/1678-4685-gmb-2019-0090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/05/2020] [Indexed: 12/24/2022] Open
Abstract
This study aimed to identify potential therapeutic targets in osteosarcoma (OS) through the network analysis of competing endogenous RNAs (ceRNAs). The differentially expressed miRNAs (DEMIs) and mRNAs (DEMs) were identified between OS cell lines and human mesenchymal stem cells (hMSCs) from the data deposited under GSE70415 using limma package. Functional analysis of DEMs was performed using DAVID and clusterProfiler to identify significantly enriched Gene Ontology biological processes and KEGG pathways, respectively. The DEMI-DEM interaction network was constructed using Cytoscape. LncRNA-miRNA interactions were predicted using starBase database. The ceRNA regulatory network was constructed by integrating mRNAs, miRNAs, and lncRNAs, and functional enrichment analysis was performed for the genes involved. The analysis revealed a total of 326 DEMs and 54 DEMIs between OS cells and hMSCs. We identified several novel therapeutic targets involved in the progression and metastasis of OS, such as CBX7, RAD9A, SNHG7 and miR-34a-5p. The miRNA, miR-543 (target gene: CBX7) was found to be associated with the pathway Mucin type O-glycan biosynthesis. Using the ceRNA network, we established the following regulatory interactions: NEAT1/miR-543/CBX7, SNHG7/miR-34a-5p/RAD9A, and XIST/miR-34a-5p/RAD9A. CBX7, RAD9A, lncRNA SNHG7, miR-543, and miR-34a-5p may be explored as novel therapeutic targets for treatment of OS.
Collapse
Affiliation(s)
- Yongwei Wang
- Department of Anatomy, Basic Medical Institute, Chengde Medical
College, Chengde 067000, Hebei, China
| | - Yaxian Gao
- Department of Immunology, Basic Medical Institute, Chengde Medical
College, Chengde 067000, Hebei, China
| | - Sen Guo
- Department of Anatomy, Basic Medical Institute, Chengde Medical
College, Chengde 067000, Hebei, China
| | - Zhihong Chen
- Department of Anatomy, Basic Medical Institute, Chengde Medical
College, Chengde 067000, Hebei, China
| |
Collapse
|
31
|
Chen Z, He M, Chen J, Li C, Zhang Q. Long non-coding RNA SNHG7 inhibits NLRP3-dependent pyroptosis by targeting the miR-34a/SIRT1 axis in liver cancer. Oncol Lett 2020; 20:893-901. [PMID: 32566017 PMCID: PMC7285900 DOI: 10.3892/ol.2020.11635] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNA small nucleolar RNA host gene 7 (SNHG7) is involved in a variety of different types of cancer; however, the role of SNHG7 during liver cancer progression is not completely understood. The aim of the present study was to investigate the functional role and regulatory mechanism underlying SNHG7 during liver cancer. A total of 25 paired hepatocellular carcinoma (HCC) tumor tissues and adjacent normal tissues were collected. Reverse transcription-quantitative PCR and western blotting were performed to detect the expression levels of SNHG7, microRNA (miR)-34a, sirtuin 1 (SIRT1) and pyroptosis-related targets. RNA fluorescence in situ hybridization was performed to detect the expression of SNHG7 in HCC tissues. SNHG7 expression was upregulated in HCC tissues and liver cancer cells compared with normal tissues and normal liver cell lines. High expression of SNHG7 inhibited NLR family pyrin domain containing 3 (NLRP3)-dependent pyroptosis in HepG2 and SK-hep-1 cells. Bioinformatics analysis and dual-luciferase reporter assays were performed to investigate the interactions between miR-34a and SNHG7 or SIRT1. SNHG7 served as a competing endogenous RNA of miR-34a, and SIRT1 was identified as a direct target of miR-34a. Cell pyroptosis was evaluated by TUNEL and lactate dehydrogenase release assays. SNHG7 knockdown reduced SIRT1 expression, but increased the expression levels of NLRP3, caspase-1 and interleukin-1β, leading to pyroptosis. SNHG7 knockdown-induced effects were enhanced by miR-34a upregulation. In summary, the present study indicated that the SNHG7/miR-34a/SIRT1 axis contributed to NLRP3-dependent pyroptosis during liver cancer.
Collapse
Affiliation(s)
- Zhaohong Chen
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Miao He
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Junhua Chen
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Chao Li
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Qianshi Zhang
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| |
Collapse
|
32
|
Wang L, Zhang L, Wang L. SNHG7 Contributes to the Progression of Non-Small-Cell Lung Cancer via the SNHG7/miR-181a-5p/E2F7 Axis. Cancer Manag Res 2020; 12:3211-3222. [PMID: 32440218 PMCID: PMC7213887 DOI: 10.2147/cmar.s240964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Non-small-cell lung cancer (NSCLC) is a common malignant tumor with very high mortality. Small nucleolar RNA host gene 7 (SNHG7) was associated with many tumors progression. We aimed to explore the role and regulatory mechanism of SNHG7 in the development of NSCLC. Methods The expression of SNHG7, miR-181a-5p and E2F transcription factor 7 (E2F7) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression of E2F7 was evaluated by Western blot. Cell Counting Kit-8 (CCK-8) assay was conducted to explore cell proliferation. Flow cytometry was used to examine cell apoptosis. The clonogenic examination was performed to reflect cell population dependence and proliferative ability. Transwell assay was used to assess cell migration and invasion. The potential target relationship between miR-181a-5p and SNHG7 or E2F7 was analyzed by dual-luciferase reporter assay. A xenograft mouse model was generated to verify the effect of SNHG7 on tumor growth in vivo. Results SNHG7 and E2F7 were increased, while miR-181a-5p was decreased in NSCLC. Knockdown of SNHG7 suppressed cell viability, clonogenic, migration, invasion and tumor growth, and promoted cell apoptosis. SNHG7 acted as a sponge of miR-181a-5p and E2F7 was directly interacted with miR-181a-5p. Overexpression of miR-181a-5p had the same functional effect as SNHG7 knockdown on the progression of NSCLC cells. E2F7 was negatively correlated with miR-181a-5p and positively correlated with SNHG7. Moreover, miR-181a-5p inhibition or E2F7 overexpression abolished the effect of SNHG7 knockdown on the progression of NSCLC cells. Conclusion SNHG7 regulated the development of NSCLC cells by the miR-181a-5p/E2F7 axis.
Collapse
Affiliation(s)
- Liming Wang
- Department of Interventional, Shandong Provincial Chest Hospital, Jinan, Shandong, People's Republic of China
| | - Lili Zhang
- Thoracoscopic Ward, Shandong Provincial Chest Hospital, Jinan, Shandong, People's Republic of China
| | - Liwei Wang
- Department of Radiology, Tianbao Township Health Center, Taian, Shandong, People's Republic of China
| |
Collapse
|
33
|
Ji J, Zhao L, Zhao X, Li Q, An Y, Li L, Li D. Genome‑wide DNA methylation regulation analysis of long non‑coding RNAs in glioblastoma. Int J Mol Med 2020; 46:224-238. [PMID: 32319552 PMCID: PMC7255472 DOI: 10.3892/ijmm.2020.4579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor associated with high mortality. Long non-coding RNAs (lncRNAs) are increasingly being recognized as its modulators. However, it remains mostly unexplored how lncRNAs are mediated by DNA methylation in GBM. The present study integrated multi-omics data to analyze the epigenetic dysregulation of lncRNAs in GBM. Widely aberrant methylation in the lncRNA promoters was observed, and the lncRNA promoters exhibited a more hypomethylated pattern in GBM. By combining transcriptional datasets, it was possible identify the lncRNAs whose transcriptional changes might be associated with the aberrant promoter methylation. Then, a methylation-mediated lncRNA regulatory network and functional enrichment analysis of aberrantly methylated lncRNAs showed that lncRNAs with different methylation patterns were involved in diverse GBM progression-related biological functions and pathways. Specifically, four lncRNAs whose increased expression may be regulated by the corresponding promoter hypomethylation were evaluated to have an excellent diagnostic effect and clinical prognostic value. Finally, through the construction of drug-target association networks, the present study identified potential therapeutic targets and small-molecule drugs for GBM treatment. The present study provides novel insights for understanding the regulation of lncRNAs by DNA methylation and developing cancer biomarkers in GBM.
Collapse
Affiliation(s)
- Jianghuai Ji
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P.R. China
| | - Lei Zhao
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Xiaoxiao Zhao
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P.R. China
| | - Qianpeng Li
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P.R. China
| | - Yi An
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Li Li
- Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Dongguo Li
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
34
|
Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An Emerging Class of Long Non-coding RNA With Oncogenic Role Arises From the snoRNA Host Genes. Front Oncol 2020; 10:389. [PMID: 32318335 PMCID: PMC7154078 DOI: 10.3389/fonc.2020.00389] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
The small nucleolar RNA host genes (SNHGs) are a group of long non-coding RNAs, which are reported in many studies as being overexpressed in various cancers. With very few exceptions, the SNHGs (SNHG1, SNHG3, SNHG5, SNHG6, SNHG7, SNHG12, SNHG15, SNHG16, SNHG20) are recognized as inducing increased proliferation, cell cycle progression, invasion, and metastasis of cancer cells, which makes this class of transcripts a viable biomarker for cancer development and aggressiveness. Through our literature research, we also found that silencing of SNHGs through small interfering RNAs or short hairpin RNAs is very effective in both in vitro and in vivo experiments by lowering the aggressiveness of solid cancers. The knockdown of SNHG as a new cancer therapeutic option should be investigated more in the future.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Stefan
- African Organisation for Research and Training in Cancer, Cape Town, South Africa
| | - Calin Ionescu
- Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. I. Chiricuta”, Cluj-Napoca, Romania
| |
Collapse
|
35
|
Liu G, Pan Y, Li Y, Xu H. lncRNA and mRNA signature for prognosis prediction of glioblastoma. Future Oncol 2020; 16:837-848. [PMID: 32250161 DOI: 10.2217/fon-2019-0538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims: We aimed to find out potential novel biomarkers for prognosis of glioblastoma (GBM). Materials & methods: We downloaded mRNA and lncRNA expression profiles of 169 GBM and five normal samples from The Cancer Genome Atlas and 129 normal brain samples from genotype-tissue expression. We use R language to perform the following analyses: differential RNA expression analysis of GBM samples using 'edgeR' package, survival analysis taking count of single or multiple gene expression level using 'survival' package, univariate and multivariate Cox regression analysis using Cox function plugged in 'survival' package. Gene ontology and Kyoto encyclopedia of genes and genomes pathway analysis were performed using FunRich tool online. Results and conclusion: We obtained differentially DEmRNAs and DElncRNAs in GBM samples. Most prognostically relevant mRNAs and lncRNAs were filtered out. 'GPCR ligand binding' and 'Class A/1' are found to be of great significance. In short, our study provides novel biomarkers for prognosis of GBM.
Collapse
Affiliation(s)
- Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, PR China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, PR China
| | - Yueying Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, PR China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, PR China
| |
Collapse
|
36
|
Liu S, Yang N, Wang L, Wei B, Chen J, Gao Y. lncRNA SNHG11 promotes lung cancer cell proliferation and migration via activation of Wnt/β-catenin signaling pathway. J Cell Physiol 2020; 235:7541-7553. [PMID: 32239719 DOI: 10.1002/jcp.29656] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/22/2020] [Indexed: 12/27/2022]
Abstract
Lung cancer ranks topmost among the most frequently diagnosed cancers. Despite increasing research, there are still unresolved mysteries in the molecular mechanism of lung cancer. Long noncoding RNA small nucleolar RNA host gene 11 (SNHG11) was found to be upregulated in lung cancer and facilitated lung cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition progression while suppressed cell apoptosis. Moreover, the high expression of SNHG11 was correlated with poor prognosis of lung cancer patients, TNM stage, and tumor size. Further assays demonstrated that SNHG11 functioned in lung cancer cells via Wnt/β-catenin signaling pathway. Subsequently, Wnt/β-catenin pathway was found to be activated through SNHG11/miR-4436a/CTNNB1 ceRNA axis. As inhibiting miR-4436 could only partly rescue the suppression of cell function induced by silencing SNHG11, it was suspected that β-catenin might enter cell nucleus through other pathways. Mechanism investigation proved that SNHG11 would directly bind with β-catenin to activate classic Wnt pathway. Subsequently, in vivo tumorigenesis was also demonstrated to be enhanced by SNHG11. Hence, SNHG11 was found to promote lung cancer progression by activating Wnt/β-catenin pathway in two different patterns, implying that SNHG11 might contribute to lung cancer treatment by acting as a therapeutic target.
Collapse
Affiliation(s)
- Shaoxia Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningning Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bing Wei
- Department of Molecular Pathology, The Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jiayao Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonghua Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Contributions of Gene Modules Regulated by Essential Noncoding RNA in Colon Adenocarcinoma Progression. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8595473. [PMID: 32280704 PMCID: PMC7128050 DOI: 10.1155/2020/8595473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 11/17/2022]
Abstract
Noncoding RNAs (ncRNAs), especially microRNA (miRNA) and long noncoding RNA (lncRNA), have an impact on a variety of important biological processes during colon adenocarcinoma (COAD) progression. This includes chromatin organization, transcriptional and posttranscriptional regulation, and cell-cell signaling. The aim of this study is to identify the ncRNA-regulated modules that accompany the progression of COAD and to analyze their mechanisms, in order to screen the potential prognostic biomarkers for COAD. An integrative molecular analysis was carried out to identify the crosstalks of gene modules between different COAD stages, as well as the essential ncRNAs in the posttranscriptional regulation of these modules. 31 ncRNA regulatory modules were found to be significantly associated with overall survival in COAD patients. 17 out of the 31 modules (in which ncRNAs played essential roles) had improved the predictive ability for COAD patient survival compared to only the mRNAs of those modules, which were enriched in the core cancer hallmark pathways with closer interactions. These suggest that the ncRNAs' regulatory modules not only exhibit close relation to COAD progression but also reflect the dynamic significant crosstalk of genes in the modules to the different malignant extent of COAD.
Collapse
|
38
|
Zhang P, Shi L, Song L, Long Y, Yuan K, Ding W, Deng L. LncRNA CRNDE and lncRNA SNHG7 are Promising Biomarkers for Prognosis in Synchronous Colorectal Liver Metastasis Following Hepatectomy. Cancer Manag Res 2020; 12:1681-1692. [PMID: 32210611 PMCID: PMC7069563 DOI: 10.2147/cmar.s233147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023] Open
Abstract
Purpose Synchronous colorectal liver metastasis (SCLM) had limited availability of tools to predict survival and tumor recurrence. LncRNA CRNDE and lncRNA SNHG7 have been proven to be closely related to cancer progression. However, the predictive value of lncRNA CRNDE and lncRNA SNHG7 in cancer prognosis is still unclear. The purpose of this study was to investigate whether lncRNA CRNDE and lncRNA SNHG7 could be used as promising biomarkers for prognosis prediction of SCLM patients who underwent hepatectomy. Methods The expression profile of lncRNA CRNDE and lncRNA SNHG7 in serum of SCLM patients was examined by qRT-PCR. The relationship between lncRNA expression and clinicopathological characteristics was analyzed. The Cox proportional-hazards regression model and Kaplan-Meier analysis were performed to analyze the association between lncRNA expression and overall survival (OS) and tumor recurrence of SCLM patients. Results Levels of lncRNA CRNDE and lncRNA SNHG7 in patients who underwent recurrence or death were significantly higher than that of patients with recurrence-free or survival (P<0.01). Both lncRNA CRNDE high level and lncRNA SNHG7 high level showed a significant correlation with differentiation of primary tumor, invasion depth of primary focus, lymph node metastases, number of liver metastases, and liver metastasis grade. High levels of lncRNA CRNDE or lncRNA SNHG7 predicted shorter recurrence time, shorter OS time, higher recurrence rate and lower OS rate. Furthermore, lncRNA CRNDE and lncRNA SNHG7 were independent risk factors for high recurrence and poor OS in SCLM underwent hepatectomy. Conclusion Taken together, lncRNA CRNDE and lncRNA SNHG7 could be promising biomarkers for prediction of OS and tumor recurrence in SCLM underwent hepatectomy.
Collapse
Affiliation(s)
- Peixian Zhang
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Lan Shi
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Linjing Song
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Yi Long
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Kehua Yuan
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Wanbao Ding
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Lei Deng
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
39
|
Tian F, Wang J, Zhang Z, Yang J. LncRNA SNHG7/miR-34a-5p/SYVN1 axis plays a vital role in proliferation, apoptosis and autophagy in osteoarthritis. Biol Res 2020; 53:9. [PMID: 32066502 PMCID: PMC7027214 DOI: 10.1186/s40659-020-00275-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/01/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most common rheumatic diseases of which clinical symptoms includes swelling, synovitis and inflammatory pain, affect patients' daily life. It was reported that non-coding RNAs play vital roles in OA. However, the regulation mechanism of ncRNA in OA pathogenesis has not been fully elucidated. METHODS The expression of SNHG7, miR-34a-5p and SYVN1 was detected using qRT-PCR in tissues, serum and cells. The protein expression of SYVN1, PCNA, cleavage-caspase 3, beclin1 and LC3 were measured using western blot. The RNA immunoprecipitation (RIP), RNA pulldown, and luciferase reporter assays were used to verify the relationship between SNHG7, miR-34a-5p and SYVN1. The MTT and flow cytometry assay was performed to detected cell proliferation and cell apoptosis respectively. RESULTS In this study, SNHG7 and SYVN1 expression were down-regulated, but miR-34a-5p was up-regulated in OA tissues and IL-1β treated cells compared with normal tissues and chondrocyte. Functional investigation revealed that up-regulated SNHG7 or down-regulated miR-34a-5p could promote cell proliferation and inhibit cell apoptosis and autophagy in OA cells. More than that, RIP, pulldown and luciferase reporter assay was applied to determine that miR-34a-5p was a target miRNA of SNHG7 and SYVN1 was a target mRNA of miR-34-5p. Rescue experiments showed that overexpression of miR-34a reversed high expression of SNHG7-mediated suppression of apoptosis and autophagy as well as promotion of proliferation, while its knockdown inhibited cell apoptosis and autophagy and promoted cell proliferation which could be impaired by silencing SYVN1. In addition, SNHG7 regulated SYVN1 through sponging miR-34a-5p. CONCLUSION SNHG7 sponged miR-34a-5p to affect cell proliferation, apoptosis and autophagy through targeting SYVN1 which provides a novel sight into the pathogenesis of OA.
Collapse
Affiliation(s)
- Feng Tian
- Department of Foot and Ankle Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, No. 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Junhu Wang
- Department of Foot and Ankle Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, No. 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Zhanhua Zhang
- Department of Internal Medicine, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Yang
- Department of Foot and Ankle Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, No. 555 East Youyi Road, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
40
|
Dalton S, Smith K, Singh K, Kaiser H, Kolhe R, Mondal AK, Khayrullin A, Isales CM, Hamrick MW, Hill WD, Fulzele S. Accumulation of kynurenine elevates oxidative stress and alters microRNA profile in human bone marrow stromal cells. Exp Gerontol 2020; 130:110800. [PMID: 31790802 PMCID: PMC6998036 DOI: 10.1016/j.exger.2019.110800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 02/09/2023]
Abstract
Kynurenine, a metabolite of tryptophan breakdown, has been shown to increase with age, and plays a vital role in a number of age-related pathophysiological changes, including bone loss. Accumulation of kynurenine in bone marrow stromal cells (BMSCs) has been associated with a decrease in cell proliferation and differentiation, though the exact mechanism by which kynurenine mediates these changes is poorly understood. MiRNAs have been shown to regulate BMSC function, and accumulation of kynurenine may alter the miRNA expression profile of BMSCs. The aim of this study was to identify differentially expressed miRNAs in human BMSCs in response to treatment with kynurenine, and correlate miRNAs function in BMSCs biology through bioinformatics analysis. Human BMSCs were cultured and treated with and without kynurenine, and subsequent miRNA isolation was performed. MiRNA array was performed to identify differentially expressed miRNA. Microarray analysis identified 50 up-regulated, and 36 down-regulated miRNAs in kynurenine-treated BMSC cultures. Differentially expressed miRNA included miR-1281, miR-330-3p, let-7f-5p, and miR-493-5p, which are important for BMSC proliferation and differentiation. KEGG analysis found up-regulated miRNA targeting glutathione metabolism, a pathway critical for removing oxidative species. Our data support that the kynurenine dependent degenerative effect is partially due to changes in the miRNA profile of BMSCs.
Collapse
Affiliation(s)
- Sherwood Dalton
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - Kathryn Smith
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - Kanwar Singh
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - Helen Kaiser
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - Ravindra Kolhe
- Departments of Pathology, Augusta University, Augusta, GA 30912, United States of America
| | - Ashis K Mondal
- Departments of Pathology, Augusta University, Augusta, GA 30912, United States of America
| | - Andrew Khayrullin
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, 29403, United States of America
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
41
|
Xia Q, Li J, Yang Z, Zhang D, Tian J, Gu B. Long non-coding RNA small nucleolar RNA host gene 7 expression level in prostate cancer tissues predicts the prognosis of patients with prostate cancer. Medicine (Baltimore) 2020; 99:e18993. [PMID: 32049793 PMCID: PMC7035107 DOI: 10.1097/md.0000000000018993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Long non-coding small nucleolar RNA host gene 7 (lncRNA SNHG7) is located on chromosome 9q34.3 in length of 984 bp. SNHG7 has been found to play the role of oncogene in varieties of cancers, and its dysregulation has been found to be associated with carcinogenesis and progression. In the present study, we examined the expression of SNHG7 in prostate cancer tissues and in paired adjacent normal prostate tissues, and we further explored the clinical significance and prognostic value of SNHG7 in prostate cancer patients.A total of 127 prostate cancer tissues were collected from prostate cancer patients who underwent radical prostatectomy between April 2011 and March 2019 at the department of urology, Pudong New Area People's Hospital. Real-time quantitative polymerase chain reaction experiment was performed to detect the relative expressions of SNHG7 in the prostate cancer tissues and normal prostate tissues. The Kaplan-Meier method was used to create survival curves and the log-rank test was used to determine statistical significance. A Cox proportional hazard analysis was used to evaluate the prognostic factors in univariate and multivariate analyses.Compared with paired adjacent normal prostatic tissues, SNHG7 expression was increased in prostate cancer tissues (P < .001). Increased SNHG7 expression correlated with Gleason score (P = .021), bone metastasis (P = .013), pelvic lymph node metastasis (P = .008), and TNM stage (P = .007). Multivariate Cox regression analyses revealed increased SNHG7 expression was independently associated with a poor prognosis of prostate cancer patients (hazard ratio [HR] = 2.839, 95% confidence interval [CI] = 1.921-8.382, P = .038).This study showed that lncRNA-SNHG7 was overexpressed in prostate cancer tissues, and it might contributes to the development and progression of prostate cancer. Furthermore, the SNHG7 expression was associated with the prognosis of prostate cancer, suggesting a potential target for the treatment and prognosis of prostate cancer. Nevertheless, the underlying modulatory mechanism by which SNHG7 aggravates prostate cancer progression need to be further studied.
Collapse
|
42
|
Zhou Y, Tian B, Tang J, Wu J, Wang H, Wu Z, Li X, Yang D, Zhang B, Xiao Y, Wang Y, Ma J, Wang W, Su M. SNHG7: A novel vital oncogenic lncRNA in human cancers. Biomed Pharmacother 2020; 124:109921. [PMID: 31986417 DOI: 10.1016/j.biopha.2020.109921] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a group of RNAs that lack protein-coding ability, with lengths greater than 200 nucleotides. Increasing evidence has indicated that they mediate multiple physiological and pathological processes by regulating gene expression at the epigenetic, transcriptional, post-transcriptional, and translational levels. The deregulation of lncRNAs was demonstrated to have tumor suppressive or oncogenic effects, and thus, these molecules play vital regulatory roles in tumor initiation and progression. Small nucleolar RNA hostgene 7 (SNHG7) is a lncRNA located on chromosome 9q34.3. Different studies have explored the potential role of SNHG7 in the development and progression of multiple human malignancies such as bladder, breast, colorectal, esophageal, gastric, and prostate cancer, as well as osteosarcoma, among others, and high expression predicts poor prognosis and poor survival for such patients. Moreover, this molecule can promote proliferation and metastasis, while inhibiting apoptosis in cancer cells. The present review highlights the latest insights into the expression, functional roles, and molecular mechanisms of SNHG7 in different human malignancies.
Collapse
Affiliation(s)
- Yong Zhou
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Tian
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinming Tang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Wu
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhining Wu
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xu Li
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Desong Yang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Baihua Zhang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Junliang Ma
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenxiang Wang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Min Su
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
43
|
Wu F, Sui Y, Wang Y, Xu T, Fan L, Zhu H. Long Noncoding RNA SNHG7, a Molecular Sponge for microRNA-485, Promotes the Aggressive Behavior of Cervical Cancer by Regulating PAK4. Onco Targets Ther 2020; 13:685-699. [PMID: 32158221 PMCID: PMC6986251 DOI: 10.2147/ott.s232542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose A long noncoding RNA called small nucleolar RNA host gene 7 (SNHG7) is known to be a key regulator of biological processes in multiple human cancer types. In this study, our aims were to determine the expression status of SNHG7 in cervical cancer, to figure out the detailed roles of SNHG7 in cervical cancer cells, and to identify the mechanism underlying the activity of SNHG7 in cervical cancer. Methods Reverse-transcription quantitative PCR was performed to measure SNHG7 expression in cervical cancer. A Cell Counting Kit-8 assay, flow-cytometric analysis, cell migration and invasion assays, and a tumor xenograft experiment were conducted to respectively determine the effects of SNHG7 on cervical cancer cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. Results SNHG7 was found to be markedly upregulated in cervical cancer tissues and cell lines. Higher SNHG7 expression significantly correlated with FIGO stage, lymph node metastasis, the depth of cervical invasion, and shorter overall survival in patients with cervical cancer. Functional experiments indicated that a SNHG7 knockdown attenuated proliferation, migration, and invasiveness and promoted apoptosis of cervical cancer cells in vitro. The SNHG7 knockdown also slowed tumor growth in vivo. Further investigation showed that SNHG7 acts as a competing endogenous RNA for microRNA-485 (miR-485) in cervical cancer cells, and the inhibitory actions of the SNHG7 knockdown on the malignant phenotype were reversed by miR-485 inhibition. P21-activated kinase 4 (PAK4) was identified as a direct target gene of miR-485 in cervical cancer, and PAK4 expression was promoted by SNHG7. Conclusion SNHG7 functions as an oncogenic RNA in cervical cancer, competitively binds to miR-485, and thereby upregulates PAK4. This SNHG7–miR-485–PAK4 regulatory network may provide insights into the pathogenesis of cervical cancer, and can help in the identification of novel diagnostic and therapeutic approaches for cervical cancer.
Collapse
Affiliation(s)
- Fei Wu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yujie Sui
- Medical Research Center, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yinhuai Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Limei Fan
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - He Zhu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
44
|
Chen Y, Yuan S, Ning T, Xu H, Guan B. SNHG7 Facilitates Glioblastoma Progression by Functioning as a Molecular Sponge for MicroRNA-449b-5p and Thereby Increasing MYCN Expression. Technol Cancer Res Treat 2020; 19:1533033820945802. [PMID: 32720593 PMCID: PMC7388098 DOI: 10.1177/1533033820945802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Long noncoding RNA (small nucleolar RNA host gene 7) has been reported to be involved in multiple malignancies and acts as an oncogene. However, the potential mechanism of small nucleolar RNA host gene 7 in glioblastoma is rarely known. In this study, we attempted to elucidate the biological effects of small nucleolar RNA host gene 7 and the possible molecular mechanism in glioblastoma. METHODS The expression level of small nucleolar RNA host gene 7 in glioblastoma tissues and corresponding tumor cell lines was evaluated by using quantitative real-time polymerase chain reaction. Bioinformatics analyses and dual-luciferase reporter gene assay were conducted to verify the correlation among small nucleolar RNA host gene 7, miR-449b-5p, and MYCN. The role of small nucleolar RNA host gene 7 on cell viability, migration, and invasion was measured. RESULTS Small nucleolar RNA host gene 7 expression was markedly increased in glioblastoma tumor tissue. Small nucleolar RNA host gene 7 can sponge miR-449b-5p and negatively regulate miR-449b-5p expression. MiR-449b-5p was remarkably repressed in glioblastoma tissues. Reduction of miR-449b-5p reversed the repressive effects of small nucleolar RNA host gene 7 knockdown on cellular behaviors in glioblastoma. In addition, miR-449b-5p can directly bind with MYCN. Compared with normal samples, MYCN expression was increased. The MYCN expression was negatively related to miR-449b-5p expression while positively related to small nucleolar RNA host gene 7 expression. Rescue experiments revealed that MYCN overexpression reversed the repressive role of small nucleolar RNA host gene 7 knockdown on viability, migration, and invasion of U251 cells. CONCLUSION In summary, our results demonstrated that small nucleolar RNA host gene 7 regulates glioblastoma proliferation, migration, and invasion via regulating miR-449b-5p and its target gene MYCN, thereby providing a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Yaogang Chen
- Department of Neurosurgery, The Central Hospital of Qingdao,
Shandong, China
| | - Shaoyong Yuan
- Department of Neurosurgery, The Central Hospital of Qingdao,
Shandong, China
| | - Tieying Ning
- Department of Neurosurgery, The Central Hospital of Qingdao,
Shandong, China
| | - Huiqing Xu
- Department of Pathology, Qingdao Traditional Chinese Medicine
Hospital, Qingdao, Shandong, China
| | - Bo Guan
- Department of Neurosurgery, Zhucheng People’s Hospital, Zhucheng,
Shandong, China
| |
Collapse
|
45
|
Hu Y, Wang L, Li Z, Wan Z, Shao M, Wu S, Wang G. Potential Prognostic and Diagnostic Values of CDC6, CDC45, ORC6 and SNHG7 in Colorectal Cancer. Onco Targets Ther 2019; 12:11609-11621. [PMID: 32021241 PMCID: PMC6942537 DOI: 10.2147/ott.s231941] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/18/2019] [Indexed: 01/20/2023] Open
Abstract
Background Colorectal cancer (CRC) is a common human malignancy. The aims of this study are to investigate the gene expression profile of CRC and to explore potential strategy for CRC diagnosis, therapy and prognosis. Methods We use affy and Limma package of Bioconductor R to do differential expression genes (DEGs) and differential expression lncRNAs (DELs) analysis from the gene datasets (GSE8671, GSE21510, GSE32323, GSE39582 and TCGA) respectively. Then, DEGs were analyzed by GO and KEGG pathway and Kaplan-Meier survival curve and Cox regression analyses were used to find aberrantly expressed genes associated with survival outcome of CRC patients. Real-time PCR assay was used to verify the aberrantly expressed genes expression in CRC samples. Results 306 up-regulation and 213 down-regulation common DEGs were found. A total of 485 DELs were identified, of which 241 up-regulated and 244 down-regulated. Then, GO and KEGG pathway analyses showed that DEGs were involved in cell cycle, mineral absorption, DNA replication, and Nitrogen metabolism. Among them, Kaplan-Meier survival curve and Cox regression analyses revealed that CDC6, CDC45, ORC6 and SNHG7 levels were significantly associated with survival outcome of CRC patients. Finally, real-time PCR assay was used to verify that the CDC6, CDC45, ORC6 and SNHG7 expression were up-regulated in 198 CRC samples compared with the expression levels in individual-matched adjacent mucosa samples. Conclusion CDC6, CDC45, ORC6 and SNHG7 are implicated in CRC initiation and progression and could be explored as potential diagnosis, therapy and prognosis targets for CRC.
Collapse
Affiliation(s)
- Yang Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Liping Wang
- Department of Clinical Oncology, The First People's Hospital of Chenzhou, Chenzhou 432000, Hunan, People's Republic of China
| | - Zhixing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Zirui Wan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Mingjie Shao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.,Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shaobin Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.,Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| |
Collapse
|
46
|
Zhang Y, Yuan Y, Zhang Y, Cheng L, Zhou X, Chen K. SNHG7 accelerates cell migration and invasion through regulating miR-34a-Snail-EMT axis in gastric cancer. Cell Cycle 2019; 19:142-152. [PMID: 31814518 DOI: 10.1080/15384101.2019.1699753] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Small nucleolar RNA host gene 7 (SNHG7) is a newly recognized oncogenic Long non-coding RNA (lncRNA) in most human cancers. In gastric cancer, SNHG7 has been suggested to enhance cell proliferation and suppressed apoptosis through down-regulating P15 and P16 expression, but the effect of SNHG7 on gastric cancer cell migration and invasion was still unknown. In our study, we aimed to estimate the relationship between SNHG7 expression and clinical and pathological characteristics, and explore the effect of SNHG7 on gastric cancer cell migration and invasion. In our study, the levels of SNHG7 expression in gastric cancer tissues and cell lines were severally higher than in normal adjacent tissues and gastric mucosal epithelial cells. Moreover, high SNHG7 expression was positively correlated with TNM stage, depth of invasion, lymph-node metastasis and distant metastasis in gastric cancer patients. Furthermore, the multivariate Cox proportional hazard analysis further showed high SNHG7 expression was an independent poor prognostic factor for overall survival in gastric cancer patients. The studies in vitro revealed that SNHG7 directly binds to miR-34a and negatively regulates miR-34a expression, and SNHG7 enhances gastric cancer cell migration and invasion through suppressing miR-34a-Snail-EMT axis. In conclusion, SNHG7 functions as oncogenic lncRNA in gastric cancer and may be a potential therapeutic target for gastric cancer patients.Abbreviations: lncRNA: Long non-coding RNA; SNHG7: Small nucleolar RNA host gene 7; EMT: Epithelial mesenchymal transition; TNM: Tumor-Lymph Node-Metastasis.
Collapse
Affiliation(s)
- Yangmei Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Yuan Yuan
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Long Cheng
- Department of Intervention, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Xichang Zhou
- Department of Intervention, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Kai Chen
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
47
|
Janaki Ramaiah M, Divyapriya K, Kartik Kumar S, Rajesh YBRD. Drug-induced modifications and modulations of microRNAs and long non-coding RNAs for future therapy against Glioblastoma Multiforme. Gene 2019; 723:144126. [PMID: 31589963 DOI: 10.1016/j.gene.2019.144126] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs are known to participate in cancer initiation, progression, and metastasis by regulating the status of chromatin epigenetics and gene expression. Although these non-coding RNAs do not possess defined protein-coding potential, they are involved in the expression and stability of messenger RNA (mRNA). The length of microRNAs (miRs) ranges between 20 and 22 nt, whereas, long non-coding RNAs (lncRNAs) length ranges between 200 nt to 1 Kb. In the case of circular RNAs (circRNAs), the size varies depending upon the length of the exon from where they were derived. Epigenetic regulations of miR and lncRNA genes will influence the gene expression by modulating histone acetylation and methylation patterns. Especially, lncRNAs will act as a scaffold for various epigenetic proteins, such as EZH2 and LSD1, and influence the chromatin epigenetic state at various genomic loci involved at silencing. Thus investigations on the expression of lncRNAs and designing drugs to modulate the expression of these genes will have a profound impact on future therapeutics against cancers such as Glioblastoma Multiforme (GBM) and also against various other diseases. With the recent advancements in genome-wide transcriptomic studies, scientists are focused on the non-coding RNAs and their regulations on various cellular processes involved in GBM and on other types of cancer as well as trying to understand possible epigenetic modulations that help in generating promising therapeutics for the future generations. In this review, the involvement of epigenetic proteins, enzymes that change chromatin architecture and epigenetic landscape and new roles of lncRNAs that are involved in GBM progression are elaborately discussed.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India.
| | - Karthikeyan Divyapriya
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| | - Sarwareddy Kartik Kumar
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| | - Y B R D Rajesh
- Organic Synthesis and Catalysis Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
48
|
Yang X, Sun L, Wang L, Yao B, Mo H, Yang W. LncRNA SNHG7 accelerates the proliferation, migration and invasion of hepatocellular carcinoma cells via regulating miR-122-5p and RPL4. Biomed Pharmacother 2019; 118:109386. [PMID: 31545291 DOI: 10.1016/j.biopha.2019.109386] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 01/14/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play vital roles in the development and progression of hepatocellular carcinoma (HCC). The recent study finds a strong correlation between lncRNA small nucleolar RNA host gene 7 (SNHG7) and HCC metastasis. However, the molecular mechanism by which SNHG7 regulates HCC progression has not been investigated. In this study, we found that SNHG7 was highly expressed in HCC tissues compared to non-tumor tissues. Data from public databases consistently indicated the up-regulated expression of SNHG7 in HCC. Furthermore, the levels of SNHG7 were up-regulated in four HCC cell lines (Huh7, Hep3B, HCCLM3, MHCC97 H) compared with LO2 cells. Interestingly, the elevated expression of SNHG7 was closely correlated with advanced tumor stages, high tumor grades, vascular invasion and poor prognosis of HCC. Knockdown of SNHG7 markedly inhibited cell proliferation, migration and invasion in HCCLM3 and MHCC97H cells, and prominently suppressed the growth and metastasis of HCCLM3 cells in vivo. Mechanistically, SNHG7 silencing increased the level of miR-122-5p in HCC cells. Luciferase reporter assay revealed the direct interaction between SNHG7 and miR-122-5p. Moreover, SNHG7 knockdown decreased the levels of ribosomal protein L4 (RPL4) mRNA and protein in HCC cells. Accordingly, the stability of RPL4 mRNA was reduced by SNHG7 silencing. More importantly, either miR-122-5p knockdown or RPL4 restoration partially reversed SNHG7 silencing-induced tumor suppressive effects on HCC cells. In conclusion, we demonstrated that SNHG7 expression was up-regulated in HCC. SNHG7 contributed to HCC progression by regulating miR-122-5p and RPL4. Therefore, SNHG7 might be a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xue Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
49
|
Long non-coding RNAs as regulators of Wnt/β catenin pathway. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Chen L, Zhu J, Zhang LJ. Long non-coding RNA small nucleolar RNA host gene 7 is upregulated and promotes cell proliferation in thyroid cancer. Oncol Lett 2019; 18:4726-4734. [PMID: 31611982 PMCID: PMC6781492 DOI: 10.3892/ol.2019.10782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022] Open
Abstract
Thyroid cancer (THCA) is one of the most common types of endocrine cancer worldwide. However, the mechanisms underlying THCA progression have not been fully elucidated. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are dysregulated in human diseases, and are involved in regulating various biological processes. Furthermore, several reports have indicated that lncRNAs serve important roles in THCA. In the present study, a dataset from The Cancer Genome Atlas was used to analyze the expression levels and the clinical information of small nucleolar RNA host gene 7 (SNHG7) in THCA. Starbase was used to construct the competing endogenous RNA network. The Molecule Annotation System was used to analyze the data from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Furthermore, cell proliferation and cell cycle assays were used to detect the functions of SNHG7 in THCA. The present study revealed for the first time, to the best of our knowledge, that SNHG7 is markedly upregulated in THCA samples following analysis of The Cancer Genome Atlas datasets. SNHG7 expression was higher in advanced stage compared with early stage THCA samples. In addition, high expression levels of SNHG7 were associated with shorter survival times in THCA patients compared with low expression levels. Bioinformatics analysis revealed that SNHG7 was associated with the processes of ‘protein translation’, ‘viral life cycle’, ‘RNA processing’, ‘mRNA splicing’, ‘histone ubiquitination’, ‘endoplasmic reticulum-to-Golgi vesicle-mediated transport’, ‘sister chromatid cohesion’, ‘DNA damage checkpoint regulation’, ‘translation’ and ‘the spliceosome’. Additionally, knockdown of SNHG7 significantly inhibited thyroid cancer cell proliferation and cell cycle progression in vitro. Taken together, the results obtained in the present study suggested that SNHG7 may serve as a novel therapeutic and prognostic target for THCA.
Collapse
Affiliation(s)
- Li Chen
- Department of Endocrinology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Jing Zhu
- Department of Clinical Laboratory, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Ling-Jie Zhang
- Department of Anesthesiology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei 430015, P.R. China
| |
Collapse
|