1
|
Zhao KY, Fang Y, Xu RJ, Zhang J, Sun B, Li XP. PoIL8-L, a teleost interleukin-8 like, enhances leukocyte cellular vitality and host defense against bacterial infections in Japanese flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109876. [PMID: 39236861 DOI: 10.1016/j.fsi.2024.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Interleukin-8 (IL-8), a CXC chemokine, exerts pivotal effect on cell migration, inflammatory response, and immune regulation. In this study, we examined the immunological characteristics of an IL-8 like homologue (PoIL8-L) in Japanese flounder (Paralichthys olivaceus). PoIL8-L contains a conserved chemokine CXC domain and 105 amino acid residues. PoIL8-L expression in tissues was constitutive, and significantly regulated by V. havieri or E. tarda infection. In vitro, rPoIL8-L could bind to eight tested bacteria, exhibited bacteriostatic and bactericidal effects against certain bacteria, and could bind to the targeted bacterial Ⅳ pilin protein rPilA of E. tarda. Furthermore, rPoIL8-L could attach to peripheral blood leukocytes, and enhance their immune genes expression, respiratory burst, chemotaxis, proliferation, acid phosphatase activity, and phagocytic activity. Additionally, rPoIL8-L induce neutrophils to extrude neutrophil extracellular traps. In vivo, rPoIL8-L could promote host resistance to E. tarda infection. In summary, these findings provide fresh perspectives on the immunological antibacterial properties of IL-8 in teleost.
Collapse
Affiliation(s)
- Kun-Yu Zhao
- School of Ocean, Yantai University, Yantai, China
| | - Yue Fang
- School of Ocean, Yantai University, Yantai, China
| | | | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China
| | - Bin Sun
- School of Ocean, Fujian Polytechnic Normal University, Fuzhou, China.
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
2
|
Valero Y, Hurtado CF, Mercado L. Sexual dimorphism in fish innate immunity: a functional and transcriptional study in yellowtail kingfish. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109921. [PMID: 39321908 DOI: 10.1016/j.fsi.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Sexual dimorphism in immunity has been extensively documented across vertebrates, with marked contrasts observed in immune responses between males and females. These variations are mainly attributed to oestrogens conferring enhanced immune responses in females, while males exhibit greater susceptibility to pathogens. However, in the light of the data, consensus is lacking, as different physiological and environmental factors such, as epigenetics, may impact sex-biased immunity. In fish, the regulation of immune responses through sex hormones is primarily determined by the leucocyte function, which contains sex steroid receptors. However, comparative sex-based research in fish immunity is still very limited. This study aimed to evaluate, for the first time, the disparities between males and females yellowtail kingfish (Seriola lalandi) juveniles in several parameters of local humoral innate immunity related to mucosae (skin mucus and foregut homogenates) and reproductive tissue (ovary and testis homogenates), as well as in serum. We investigated the sexual dimorphism in the expression patterns of genes coding for antimicrobial peptides, antiviral markers, and cytokines. Our findings revealed that the yellowtail kingfish males exhibit significantly higher levels of innate immune parameters, both functionally and transcriptionally, compared to females. These results suggest that females may have a higher susceptibility to pathogen infections, potentially leading to latent infections, which deservers further investigations. Understanding these sex-based differences in immunity could guide breeding strategies improvements and disease management in aquaculture facilities.
Collapse
Affiliation(s)
- Yulema Valero
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Carlos Felipe Hurtado
- Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso (PUCV), Avda. Universidad 330, Valparaíso 2373223, Chile.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
3
|
Zhao KY, Chen GY, Huang H, Jiao XD, Li XP, Zhang J. PoCXCL8, a teleost chemokine, exerts direct bactericidal, chemotactic/phagocytic, and NETs releasing properties, promoting host anti-bacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109874. [PMID: 39241818 DOI: 10.1016/j.fsi.2024.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
As an important CXC chemokine, CXCL8 plays pleiotropic roles in immunological response. In teleost, CXCL8 is involved in cell migration and bacterial invasion. However, the immune antibacterial function of CXCL8 in Japanese flounder (Paralichthys olivaceus) (PoCXCL8) is largely scarce. In this research, we investigated the antibacterial property and leukocyte activation of PoCXCL8. PoCXCL8 consists of 100 amino acid residues, with a conserved chemokine CXC domain. PoCXCL8 was expressed in various tissues, with the highest level in liver and the lowest level in muscle, and sharply induced by V. harveyi or E. tarda in liver, spleen, and head kidney. In vitro, the recombinant PoCXCL8 (rPoCXCL8) could bind to Bacillus subtilis, Edwardsiella tarda, Escherichia coli, Pseudomonas fluorescens, Vibrio anguillarum, Vibrio harveyi, Staphylococcus aureus, and Micrococcus luteus, affect the growth of E. coli, E. tarda, M. luteus, and P. fluorescens, and have a direct bactericidal effect on E. coli and E. tarda. Moreover, rPoCXCL8 was able to bind the outer membranal protein rPilA of E. tarda. In addition, rPoCXCL8 could bind to PBLs, activating the PBLs activity including chemotaxis, proliferation, phagocytosis, reactive oxygen species, acid phosphatase activity. At same time, rPoCXCL8 could induce neutrophil to generate neutrophil extracellular traps (NETs) and promote the expression of inflammatory genes including IL-1β, IL6, MMP13, TNF-α, and NF-κB. In flounder, the presence of rPoCXCL8 could enhance the in vivo resistance to E. tarda in liver, spleen, and head kidney. Moreover, the PoCXCL8-deficient could attenuate the fish defense against E. tarda infection in in spleen and head kidney. In conclusion, these results provided new insights into the antibacterial properties of CXCL8 in P. olivaceus.
Collapse
Affiliation(s)
- Kun-Yu Zhao
- School of Ocean, Yantai University, Yantai, China
| | - Guan-Yu Chen
- School of Ocean, Yantai University, Yantai, China
| | - Hui Huang
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Xu-Dong Jiao
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
4
|
Valero Y, Souto S, Olveira JG, López-Vázquez C, Dopazo CP, Bandín I. Water-in-oil adjuvant challenges in fish vaccination: An experimental inactivated adjuvanted vaccine against betanodavirus infection in Senegalese sole. JOURNAL OF FISH DISEASES 2024; 47:e13945. [PMID: 38523313 DOI: 10.1111/jfd.13945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
The extensive growth of intensive fish farming has led to a massive spread of infectious diseases. Nervous necrosis virus (NNV) is the causative agent of the viral encephalo- and retinopathy disease which has become a major threat for fish farming all over the globe. The devastating mortality rates recorded in disease outbreaks, especially when infected specimens are at early stages of development, have a high economic impact on the sector. Currently, vaccines are the most cost-effective preventing tool in the fight against viruses. Inactivated vaccines have the advantage of simplicity in their development at the same time as present the antigen in a similar manner than the natural infection in the host. Nevertheless, they usually trigger weaker immune responses needing adjuvants to boost their effectiveness. In this work, we have intraperitoneally vaccinated Senegalese sole juveniles (Solea senegalensis) with a previously designed inactivated vaccine against NNV based on binary ethylenimine (BEI), mixed or not with an oil-adjuvant. Our results demonstrated the potential activation of different immune pathways when the vaccine was administered alone compared to the oil-adjuvanted vaccine, both resulting in an equivalent partial improvement in survival following a NNV challenge. However, whilst the vaccine alone led to a significant increase in specific antibodies, in the adjuvanted version those antibodies were kept basal although with a slight improvement in their neutralization capacity. At transcriptional level, neither vaccine (adjuvanted or not) triggered the immune system activation during the vaccination period. However, after NNV infection, the BEI-inactivated vaccines alone and oil-adjuvanted both elicited the stimulation of antiviral responsive genes (rtp3, herc4), antigen presentation molecules (mhcii) and T-cell markers (cd8a) in the head-kidney. Additionally, the oil-adjuvanted vaccine appears to stimulate mediator cytokines (il6) and B-cell markers (ight and ighm). Surprisingly, when the adjuvant was administered alone, fish showed the highest survival rates concomitantly with a lack of NNV-IgM production, pointing to the possible induction of different immune pathways than the B-cell responses via antibodies by the adjuvant. Since this combined vaccine did not succeed in the full extension of protection against the pathogen, further studies should be performed focusing on unravelling the molecular mechanisms through which adjuvants trigger the immune response, both independently and when added to a vaccine antigen.
Collapse
Affiliation(s)
- Yulema Valero
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sandra Souto
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José G Olveira
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen López-Vázquez
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos P Dopazo
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Bandín
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Álvarez CA, Toro-Araneda T, Cumillaf JP, Vega B, Tapia MJ, Roman T, Cárdenas C, Córdova-Alarcón V, Jara-Gutiérrez C, Santana PA, Guzmán F. Evaluation of the Biological Activities of Peptides from Epidermal Mucus of Marine Fish Species from Chilean Aquaculture. Mar Drugs 2024; 22:248. [PMID: 38921559 PMCID: PMC11204461 DOI: 10.3390/md22060248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
The skin of fish is a physicochemical barrier that is characterized by being formed by cells that secrete molecules responsible for the first defense against pathogenic organisms. In this study, the biological activity of peptides from mucus of Seriola lalandi and Seriolella violacea were identified and characterized. To this purpose, peptide extraction was carried out from epidermal mucus samples of juveniles of both species, using chromatographic strategies for purification. Then, the peptide extracts were characterized to obtain the amino acid sequence by mass spectrometry. Using bioinformatics tools for predicting antimicrobial and antioxidant activity, 12 peptides were selected that were chemically produced by simultaneous synthesis using the Fmoc-Tbu strategy. The results revealed that the synthetic peptides presented a random coil or extended secondary structure. The analysis of antimicrobial activity allowed it to be discriminated that four peptides, named by their synthesis code 5065, 5069, 5070, and 5076, had the ability to inhibit the growth of Vibrio anguillarum and affected the copepodite stage of C. rogercresseyi. On the other hand, peptides 5066, 5067, 5070, and 5077 had the highest antioxidant capacity. Finally, peptides 5067, 5069, 5070, and 5076 were the most effective for inducing respiratory burst in fish leukocytes. The analysis of association between composition and biological function revealed that the antimicrobial activity depended on the presence of basic and aromatic amino acids, while the presence of cysteine residues increased the antioxidant activity of the peptides. Additionally, it was observed that those peptides that presented the highest antimicrobial capacity were those that also stimulated respiratory burst in leukocytes. This is the first work that demonstrates the presence of functional peptides in the epidermal mucus of Chilean marine fish, which provide different biological properties when the fish face opportunistic pathogens.
Collapse
Affiliation(s)
- Claudio A. Álvarez
- Laboratorio de Cultivo de Peces Marinos, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile;
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile; (T.T.-A.); (B.V.); (M.J.T.); (V.C.-A.)
| | - Teresa Toro-Araneda
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile; (T.T.-A.); (B.V.); (M.J.T.); (V.C.-A.)
| | | | - Belinda Vega
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile; (T.T.-A.); (B.V.); (M.J.T.); (V.C.-A.)
| | - María José Tapia
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile; (T.T.-A.); (B.V.); (M.J.T.); (V.C.-A.)
| | - Tanya Roman
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.)
| | - Constanza Cárdenas
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.)
| | - Valentina Córdova-Alarcón
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile; (T.T.-A.); (B.V.); (M.J.T.); (V.C.-A.)
- Genomics on the Wave SpA, Viña del Mar 2520056, Chile
| | - Carlos Jara-Gutiérrez
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud—MEDING, Universidad de Valparaíso, Valparaíso 2362905, Chile;
- Facultad de Medicina, Escuela de Kinesiología, Universidad de Valparaíso, Valparaíso 2362905, Chile
| | - Paula A. Santana
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.)
| |
Collapse
|
6
|
Zhang HQ, Jin XY, Li XP, Li MF. IL8 of Takifugu rubripes is a chemokine that interacts with peripheral blood leukocytes and promotes antibacterial defense. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108918. [PMID: 37364660 DOI: 10.1016/j.fsi.2023.108918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 06/28/2023]
Abstract
Interleukin 8 (IL8) is a CXC chemokine that plays a crucial role on promoting inflammatory response and immune regulation. In teleost, IL8 can induce the migration and activation of immune cells. However, the biological functions of IL8 are still unknown in Takifugu rubripes. In this study, we examined the biological characteristics of TrIL8 in T. rubripes. TrIL8 is composed of 98 residues and contained a chemokine CXC domain. We found that the TrIL8 expression was detected in diverse organs and significantly increased by Vibrio harveyi or Edwardsiella tarda challenge. The recombinant TrIL8 (rTrIL8) exhibited significantly the binding capacities to 8 tested bacteria. In addition, rTrIL8 could bind to peripheral blood leukocytes (PBL), and increased the expression of immune gene, resistance to bacterial infection, respiratory burst, acid phosphatase activity, chemotactic activity, and phagocytic activity of PBL. In the presence of rTrIL8, T. rubripes was enhanced the resistance to V. harveyi infection. These results indicated that TrIL8 is a chemokine and involved in the activation of immune cells against bacterial infection in teleost.
Collapse
Affiliation(s)
- Hong-Qiang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Xiao-Yan Jin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China
| | - Mo-Fei Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
7
|
Medina L, Guzmán F, Álvarez C, Delgado JP, Carbonell-M B. Ramosin: The First Antibacterial Peptide Identified on Bolitoglossa ramosi Colombian Salamander. Pharmaceutics 2022; 14:pharmaceutics14122579. [PMID: 36559073 PMCID: PMC9782819 DOI: 10.3390/pharmaceutics14122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The discovery and improvements of antimicrobial peptides (AMPs) have become an alternative to conventional antibiotics. They are usually small and heat-stable peptides, exhibiting inhibitory activity against Gram-negative and Gram-positive bacteria. In this way, studies on broad-spectrum AMPs found in amphibians with the remarkable capability to regenerate a wide array of tissues are of particular interest in the search for new strategies to treat multidrug-resistant bacterial strains. In this work, the use of bioinformatic approaches such as sequence alignment with Fasta36 and prediction of antimicrobial activity allowed the identification of the Ramosin peptide from the de novo assembled transcriptome of the plethodontid salamander Bolitoglossa ramosi obtained from post-amputation of the upper limb tissue, heart, and intestine samples. BLAST analysis revealed that the Ramosin peptide sequence is unique in Bolitoglossa ramosi. The peptide was chemically synthesized, and physicochemical properties were characterized. Furthermore, the in vitro antimicrobial activity against relevant Gram-positive and Gram-negative human pathogenic bacteria was demonstrated. Finally, no effect against eukaryotic cells or human red blood cells was evidenced. This is the first antibacterial peptide identified from a Colombian endemic salamander with interesting antimicrobial properties and no hemolytic activity.
Collapse
Affiliation(s)
- Laura Medina
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
- Correspondence:
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Claudio Álvarez
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Jean Paul Delgado
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Belfran Carbonell-M
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
- Departamento de Estudios Básicos Integrados, Facultad de Odontología, Universidad de Antioquia, Medellín 050010, Colombia
| |
Collapse
|
8
|
Fu Q, Hu J, Zhang P, Li Y, Zhao S, Cao M, Yang N, Li C. CC and CXC chemokines in turbot (Scophthalmus maximus L.): Identification, evolutionary analyses, and expression profiling after Aeromonas salmonicida infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:82-98. [PMID: 35690275 DOI: 10.1016/j.fsi.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/06/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Chemokines are a superfamily of structurally related cytokines, which exert essential roles in guiding cell migration in development, homeostasis, and immunity. CC and CXC chemokines are the two major subfamilies in teleost species. In this study, a total of seventeen CC and CXC chemokines, with inclusion of twelve CC and five CXC chemokines, were systematically identified from the turbot genome, making turbot the teleost harboring the least number of CC and CXC chemokines among all teleost species ever reported. Phylogeny, synteny, and genomic organization analyses were performed to annotate these genes, and multiple chemokine genes were identified in the turbot genome, due to the tandem duplications (CCL19 and CCL20), the whole genome duplications (CCL20, CCL25, and CXCL12), and the teleost-specific members (CCL34-36, CCL44, and CXCL18). In addition, chemokines were ubiquitously expressed in nine examined healthy tissues, with high expression levels observed in liver, gill, and spleen. Moreover, most chemokines were significantly differentially expressed in gill and spleen after Aeromonas salmonicida infection, and exhibited tissue-specific and time-dependent manner. Finally, protein-protein interaction network (PPI) analysis indicated that turbot chemokines interacted with a few immune-related genes such as interleukins, cathepsins, stats, and TLRs. These results should be valuable for comparative immunological studies and provide insights for further functional characterization of chemokines in teleost.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Hu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
Yang X, Wu Y, Zhang P, Chen G, Cao Z, Ao J, Sun Y, Zhou Y. CC chemokine 1 protein from Cromileptes altivelis (CaCC1) promotes antimicrobial immune defense. FISH & SHELLFISH IMMUNOLOGY 2022; 123:102-112. [PMID: 35240293 DOI: 10.1016/j.fsi.2022.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Chemokines are a family of small signaling proteins that are secreted by various cells. In addition to their roles in immune surveillance, localization of antigen, and lymphocyte trafficking for the maintenance of homeostasis, chemokines also function in induce immune cell migration under pathological conditions. In the present study, a novel CC chemokine gene (CaCC1) from humpback grouper (Cromileptes altivelis) was cloned and characterized. CaCC1 comprised a 435 bp open reading frame encoding 144 amino acid residues. The putative molecular weight of CaCC1 protein was 15 kDa CaCC1 contains four characteristic cysteines that are conserved in other known CC chemokines. CaCC1 also shares 11.64%-90.28% identity with other teleost and mammal CC chemokines. Phylogenetic analysis revealed that CaCC1 is most closely related to Epinephelus coioides EcCC1, both of which are in a fish-specific CC chemokine clade. CaCC1 was constitutively expressed in all examined C. altivelis tissues, with high expression levels in skin, heart, liver, and intestine. Vibrio harveyi stimulation up-regulated CaCC1 expression levels in liver, spleen, and head-kidney. Functional analyses revealed that the recombinant protein (rCaCC1) could induce the migration of head-kidney lymphocytes from C. altivelis. Moreover, rCaCC1 significantly enhanced phagocytosis in head-kidney macrophages from C. altivelis. In addition, rCaCC1 exhibited antimicrobial activities against Staphylococcus aureus, Edwardsiella tarda, and V. harveyi. In vivo, CaCC1 overexpression improved bacterial clearance in V. harveyi infected fish. Conversely, CaCC1 knockdown resulted in a significant decrease of bacterial clearance. These results demonstrate the important roles that CaCC1 plays in homeostasis and in inflammatory response to bacterial infection.
Collapse
Affiliation(s)
- Xiaoyu Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Panpan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Guisen Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
10
|
Sáenz-Martínez DE, Santana PA, Aróstica M, Forero JC, Guzmán F, Mercado L. Immunodetection of rainbow trout IL-8 cleaved-peptide: Tissue bioavailability and potential antibacterial activity in a bacterial infection context. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104182. [PMID: 34166719 DOI: 10.1016/j.dci.2021.104182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Chemokines such as IL-8 are part of an important group of proinflammatory response molecules, as well as cell recruitment. However, it has been described in both higher vertebrates and fish that IL-8 has an additional functional role by acting as an antimicrobial effector, either directly or by cleavage of a peptide derived from its C-terminal end. Nevertheless, it is still unknown whether this fragment is released in the context of infection by bacterial pathogens and if it could be immunodetected in tissues of infected salmonids. Therefore, the objective of this research was to demonstrate that the C-terminal end of IL-8 from Oncorhynchus mykiss is cleaved, retaining its antibacterial properties, and that is detectable in tissues of infected rainbow trout. SDS-PAGE and mass spectrometry demonstrated the cleavage of a fragment of about 2 kDa when the recombinant IL-8 was subjected to acidic conditions. By chemical synthesis, it was possible to synthesize this fragment called omIL-8α80-97 peptide, which has antibacterial activity against Gram-negative and Gram-positive bacteria at concentrations over 10 μM. Besides, by fluorescence microscopy, it was possible to locate the omIL-8α80-97 peptide both on the cell surface and in the cytoplasm of the bacteria, as well as inside the monocyte/macrophage-like cell. Finally, by indirect ELISA, Western blot, and mass spectrometry, the presence of the fragment derived from the C-terminal end of IL-8 was detected in the spleen of trout infected with Piscirickettsia salmonis. The results reported in this work present the first evidence about the immunodetection of an antibacterial, and probably cell-penetrating peptide cleaved from the C-terminal end of IL-8 in monocyte/macrophage-like cell and tissue of infected rainbow trout.
Collapse
Affiliation(s)
- Daniel E Sáenz-Martínez
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Universidad Técnico Federico Santa María, Valparaíso, Chile.
| | - Paula A Santana
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile.
| | - Mónica Aróstica
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Universidad Técnico Federico Santa María, Valparaíso, Chile.
| | - Juan C Forero
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| | - Luis Mercado
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| |
Collapse
|
11
|
The transcriptome analysis of the whole-body of the gastropod mollusk Limax flavus and screening of putative antimicrobial peptide and protein genes. Genomics 2020; 112:3991-3999. [PMID: 32650091 DOI: 10.1016/j.ygeno.2020.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/23/2023]
Abstract
The gastropod mollusk Limax flavus, one of the most widespread pests in China, is used to treat infectious diseases in traditional Chinese medicine. However, little genomic information is available for this non-model species. In this study, the whole-body transcriptome of L. flavus was sequenced using next generation sequencing technology. A total of 6.81 Gb clean reads were obtained, which were assembled into 150,766 transcripts with 132,206 annotated unigenes. Functionally classification assigned 30,542 unigenes to 56 Gene Ontology terms, 16,745 unigenes were divided into 26 euKaryotic Ortholog Groups of proteins categories, and 13,854 unigenes were assigned to 230 Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, we identified 17,251 simple sequence repeats and several kinds of antimicrobial peptide and protein (AMPs) genes. The transcriptome data of L. flavus will provide a valuable genomic resource for further studies on this species, and the AMPs identified in L. flavus will support its medical potential.
Collapse
|
12
|
Characterization and Antimicrobial Activity of the Teleost Chemokine CXCL20b. Antibiotics (Basel) 2020; 9:antibiotics9020078. [PMID: 32059392 PMCID: PMC7168194 DOI: 10.3390/antibiotics9020078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023] Open
Abstract
Fish are a potential source of diverse organic compounds with a broad spectrum of biological activities. Many fish-derived antimicrobial peptides and proteins are key components of the fish innate immune system. They are also potential candidates for development of new antimicrobial agents. CXCL20b is a grass carp (Ctenopharyngodon idella) CXC chemokine strongly transcribed at the early stage of bacterial infections, for which the immune role had not been reported to date. In the present study, we found that CXCL20b is a cationic amphipathic protein that displays potent antimicrobial activity against both Gram-positive and Gram-negative bacteria. The results of DiOC2(3) and atomic force microscopy (AFM) assays indicated that CXCL20b could induce bacterial membrane depolarization and disruption in a short time. By performing further structure-activity studies, we found that the antimicrobial activity of CXCL20b was mainly relative to the N-terminal random coil region. The central part of this cytokine representing β-sheet region was insoluble in water and the C-terminal α-helical region did not show an antimicrobial effect. The results presented in this article support the poorly understood function of CXCL20b, which fulfills an important role in bony fish antimicrobial immunity.
Collapse
|
13
|
Valero Y, Arizcun M, Cortés J, Ramírez-Cepeda F, Guzmán F, Mercado L, Esteban MÁ, Chaves-Pozo E, Cuesta A. NK-lysin, dicentracin and hepcidin antimicrobial peptides in European sea bass. Ontogenetic development and modulation in juveniles by nodavirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103516. [PMID: 31593708 DOI: 10.1016/j.dci.2019.103516] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 05/06/2023]
Abstract
Antimicrobial peptides (AMPs) are considered to be amongst the most powerful tools for the fight against pathogens in fish, since they form part of the innate immune response, which is especially vital in eggs and early larval stages, when the immune system is developing. The fish responsible for a large part of the profits in Mediterranean aquaculture is European sea bass (Dicentrarchus labrax), a species greatly susceptible to nodavirus (NNV), especially in the larval and juvenile stages. In this work, polyclonal antibodies were developed and used to detect and quantify NK-lysin, dicentracin and hepcidin AMPs in European sea bass eggs and during larval development, as well as to evaluate their regulation in juvenile specimens upon NNV infection. Basal and detectable levels of all the AMPs studied were present in eggs, confirming the maternal transfer of peptides, which increased in one or two waves during larval development up to 69 days post-fertilization. After NNV infection, the mRNA of all the AMPs analysed was up-regulated five days after infection in most of the tissues, whilst peptide quantification of all three AMPs decreased in the brain, the target tissue for NNV, but increased in the head-kidney 5 days after infection. Further research should be carried out to ascertain the role of AMPs in fish innate immunity and to understand how NNV evades the immune response to be disseminated.
Collapse
Affiliation(s)
- Yulema Valero
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography (IEO), Carretera de la Azohía S/n, 30860, Puerto de Mazarrón, Murcia, Spain; Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marta Arizcun
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography (IEO), Carretera de la Azohía S/n, 30860, Puerto de Mazarrón, Murcia, Spain
| | - Jimena Cortés
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Felipe Ramírez-Cepeda
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Fanny Guzmán
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - M Ángeles Esteban
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography (IEO), Carretera de la Azohía S/n, 30860, Puerto de Mazarrón, Murcia, Spain
| | - Elena Chaves-Pozo
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography (IEO), Carretera de la Azohía S/n, 30860, Puerto de Mazarrón, Murcia, Spain
| | - Alberto Cuesta
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography (IEO), Carretera de la Azohía S/n, 30860, Puerto de Mazarrón, Murcia, Spain.
| |
Collapse
|
14
|
Soto-Dávila M, Valderrama K, Inkpen SM, Hall JR, Rise ML, Santander J. Effects of Vitamin D 2 (Ergocalciferol) and D 3 (Cholecalciferol) on Atlantic Salmon ( Salmo salar) Primary Macrophage Immune Response to Aeromonas salmonicida subsp. salmonicida Infection. Front Immunol 2020; 10:3011. [PMID: 32010129 PMCID: PMC6973134 DOI: 10.3389/fimmu.2019.03011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/09/2019] [Indexed: 11/24/2022] Open
Abstract
Vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol) are fat-soluble secosteroid hormones obtained from plant and animal sources, respectively. Fish incorporates vitamin D2 and D3 through the diet. In mammals, vitamin D forms are involved in mineral metabolism, cell growth, tissue differentiation, and antibacterial immune response. Vitamin D is an essential nutrient in aquafeeds for finfish. However, the influence of vitamin D on fish cell immunity has not yet been explored. Here, we examined the effects of vitamin D2 and vitamin D3 on Salmo salar primary macrophage immune response to A. salmonicida subspecies salmonicida infection under in vitro conditions. We determined that high concentrations of vitamin D2 (100,000 ng/ml) and D3 (10,000 ng/ml) affect the growth of A. salmonicida and decrease the viability of S. salar primary macrophages. In addition, we determined that primary macrophages pre-treated with a biologically relevant concentration of vitamin D3 for 24 h showed a decrease of A. salmonicida infection. In contrast, vitamin D2 did not influence the antibacterial activity of the S. salar macrophages infected with A. salmonicida. Vitamin D2 and D3 did not influence the expression of canonical genes related to innate immune response. On the other hand, we found that A. salmonicida up-regulated the expression of several canonical genes and suppressed the expression of leukocyte-derived chemotaxin 2 (lect-2) gene, involved in neutrophil recruitment. Primary macrophages pre-treated for 24 h with vitamin D3 counteracted this immune suppression and up-regulated the transcription of lect-2. Our results suggest that vitamin D3 affects A. salmonicida attachment to the S. salar primary macrophages, and as a consequence, the A. salmonicida invasion decreased. Moreover, our study shows that the positive effects of vitamin D3 on fish cell immunity seem to be related to the lect-2 innate immunity mechanisms. We did not identify positive effects of vitamin D2 on fish cell immunity. In conclusion, we determined that the inactive form of vitamin D3, cholecalciferol, induced anti-bacterial innate immunity pathways in Atlantic salmon primary macrophages, suggesting that its utilization as a component of a healthy aquafeed diet in Atlantic salmon could enhance the immune response against A. salmonicida.
Collapse
Affiliation(s)
- Manuel Soto-Dávila
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katherinne Valderrama
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Centre, St. John's, NL, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Centre, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
15
|
Muñoz-Atienza E, Aquilino C, Syahputra K, Al-Jubury A, Araújo C, Skov J, Kania PW, Hernández PE, Buchmann K, Cintas LM, Tafalla C. CK11, a Teleost Chemokine with a Potent Antimicrobial Activity. THE JOURNAL OF IMMUNOLOGY 2019; 202:857-870. [PMID: 30610164 DOI: 10.4049/jimmunol.1800568] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023]
Abstract
CK11 is a rainbow trout (Oncorhynchus mykiss) CC chemokine phylogenetically related to both mammalian CCL27 and CCL28 chemokines, strongly transcribed in skin and gills in homeostasis, for which an immune role had not been reported to date. In the current study, we have demonstrated that CK11 is not chemotactic for unstimulated leukocyte populations from central immune organs or mucosal tissues but instead exerts a potent antimicrobial activity against a wide range of rainbow trout pathogens. Our results show that CK11 strongly inhibits the growth of different rainbow trout Gram-positive and Gram-negative bacteria, namely Lactococcus garvieae, Aeromonas salmonicida subsp. salmonicida, and Yersinia ruckeri and a parasitic ciliate Ichthyophthirius multifiliis Similarly to mammalian chemokines and antimicrobial peptides, CK11 exerted its antimicrobial activity, rapidly inducing membrane permeability in the target pathogens. Further transcriptional studies confirmed the regulation of CK11 transcription in response to exposure to some of these pathogens in specific conditions. Altogether, our studies related to phylogenetic relations, tissue distribution, and biological activity point to CK11 as a potential common ancestor of mammalian CCL27 and CCL28. To our knowledge, this study constitutes the first report of a fish chemokine with antimicrobial activity, thus establishing a novel role for teleost chemokines in antimicrobial immunity that supports an evolutionary relationship between chemokines and antimicrobial peptides.
Collapse
Affiliation(s)
- Estefanía Muñoz-Atienza
- Animal Health Research Centre, National Institute for Agricultural and Food Research, Valdeolmos 28130, Madrid, Spain
| | - Carolina Aquilino
- Animal Health Research Centre, National Institute for Agricultural and Food Research, Valdeolmos 28130, Madrid, Spain
| | - Khairul Syahputra
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark; and
| | - Azmi Al-Jubury
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark; and
| | - Carlos Araújo
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos, Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jakob Skov
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark; and
| | - Per W Kania
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark; and
| | - Pablo E Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos, Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Kurt Buchmann
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark; and
| | - Luis M Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos, Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carolina Tafalla
- Animal Health Research Centre, National Institute for Agricultural and Food Research, Valdeolmos 28130, Madrid, Spain;
| |
Collapse
|
16
|
Chemical Synthesis and Functional Analysis of VarvA Cyclotide. Molecules 2018; 23:molecules23040952. [PMID: 29671790 PMCID: PMC6017059 DOI: 10.3390/molecules23040952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
Cyclotides are circular peptides found in various plant families. A cyclized backbone, together with multiple disulfide bonds, confers the peptides’ exceptional stability against protease digestion and thermal denaturation. In addition, the features of these antimicrobial molecules make them suitable for use in animal farming, such as aquaculture. Fmoc solid phase peptide synthesis on 2-chlorotrityl chlorine (CTC) resin using the “tea-bag” approach was conducted to generate the VarvA cyclotide identified previously from Viola arvensis. MALDI-TOF mass spectrometry determined the correct peptide amino acid sequence and the cyclization sites-critical in this multicyclic compound. The cyclotide showed antimicrobial activity against various Gram-negative bacteria, including recurrent pathogens present in Chilean aquaculture. The highest antimicrobial activity was found to be against Flavobacterium psychrophilum. In addition, membrane blebbing on the bacterial surface after exposure to the cyclotide was visualized by SEM microscopy and the Sytox Green permeabilization assay showed the ability to disrupt the bacterial membrane. We postulate that this compound can be proposed for the control of fish farming infections.
Collapse
|