1
|
Stuart S, Tarade D, Ohh M. Cathepsins L and B target HIF1α for oxygen-independent proteolytic cleavage. Sci Rep 2024; 14:14799. [PMID: 38926538 PMCID: PMC11208597 DOI: 10.1038/s41598-024-65537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
The oxygen-labile transcription factor called hypoxia-inducible factor (HIF) is responsible for the cellular and organismal adaptive response to reduced oxygen availability. Deregulation of HIF is associated with the pathogenesis of major human diseases including cardiovascular disease and cancer. Under normoxia, the HIFα subunit is hydroxylated on conserved proline residues within the oxygen-dependent degradation domain (ODD) that labels HIFα for proteasome-mediated degradation. Despite similar oxygen-dependent degradation machinery acting on HIF1α and HIF2α, these two paralogs have been shown to exhibit unique kinetics under hypoxia, which suggests that other regulatory processes may be at play. Here, we characterize the protease activity found in rabbit reticulocytes that specifically cleaves the ODD of HIF1α but not HIF2α. Notably, the cleavage product is observed irrespective of the oxygen-dependent prolyl-hydroxylation potential of HIF1α, suggesting independence from oxygen. HIF1α M561T substitution, which mimics an evolutionary substitution that occurred during the duplication and divergence of HIF1α and HIF2α, diminished the cleavage of HIF1α. Protease inhibitor screening suggests that cysteine proteases cathepsins L and B preferentially cleave HIF1αODD, thereby revealing an additional layer of differential HIF regulation.
Collapse
Affiliation(s)
- Sarah Stuart
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Daniel Tarade
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
2
|
Xu ZH, Xiong CW, Miao KS, Yu ZT, Zhang JJ, Yu CL, Huang Y, Zhou XD. Adipokines regulate mesenchymal stem cell osteogenic differentiation. World J Stem Cells 2023; 15:502-513. [PMID: 37424950 PMCID: PMC10324509 DOI: 10.4252/wjsc.v15.i6.502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/26/2023] [Accepted: 04/24/2023] [Indexed: 06/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into various tissue cell types including bone, adipose, cartilage, and muscle. Among those, osteogenic differentiation of MSCs has been widely explored in many bone tissue engineering studies. Moreover, the conditions and methods of inducing osteogenic differentiation of MSCs are continuously advancing. Recently, with the gradual recognition of adipokines, the research on their involvement in different pathophysiological processes of the body is also deepening including lipid metabolism, inflammation, immune regulation, energy disorders, and bone homeostasis. At the same time, the role of adipokines in the osteogenic differentiation of MSCs has been gradually described more completely. Therefore, this paper reviewed the evidence of the role of adipokines in the osteogenic differentiation of MSCs, emphasizing bone formation and bone regeneration.
Collapse
Affiliation(s)
- Zhong-Hua Xu
- Department of Orthopedics, Jintan Hospital Affiliated to Jiangsu University, Changzhou 213200, Jiangsu Province, China
| | - Chen-Wei Xiong
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Kai-Song Miao
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Zhen-Tang Yu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Jun-Jie Zhang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Chang-Lin Yu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Xin-Die Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture 811800, Qinghai Province, China
| |
Collapse
|
3
|
Pigeaud KE, Rietveld ML, Witvliet AF, Hogervorst JMA, Zhang C, Forouzanfar T, Bravenboer N, Schoenmaker T, de Vries TJ. The Effect of Sclerostin and Monoclonal Sclerostin Antibody Romosozumab on Osteogenesis and Osteoclastogenesis Mediated by Periodontal Ligament Fibroblasts. Int J Mol Sci 2023; 24:ijms24087574. [PMID: 37108735 PMCID: PMC10145870 DOI: 10.3390/ijms24087574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Sclerostin is a bone formation inhibitor produced by osteocytes. Although sclerostin is mainly expressed in osteocytes, it was also reported in periodontal ligament (PDL) fibroblasts, which are cells that play a role in both osteogenesis and osteoclastogenesis. Here, we assess the role of sclerostin and its clinically used inhibitor, romosozumab, in both processes. For osteogenesis assays, human PDL fibroblasts were cultured under control or mineralizing conditions with increasing concentrations of sclerostin or romosozumab. For analyzing osteogenic capacity and alkaline phosphatase (ALP) activity, alizarin red staining for mineral deposition and qPCR of osteogenic markers were performed. Osteoclast formation was investigated in the presence of sclerostin or romosozumab and, in PDLs, in the presence of fibroblasts co-cultured with peripheral blood mononuclear cells (PBMCs). PDL-PBMC co-cultures stimulated with sclerostin did not affect osteoclast formation. In contrast, the addition of romosozumab slightly reduced the osteoclast formation in PDL-PBMC co-cultures at high concentrations. Neither sclerostin nor romosozumab affected the osteogenic capacity of PDL fibroblasts. qPCR analysis showed that the mineralization medium upregulated the relative expression of osteogenic markers, but this expression was barely affected when romosozumab was added to the cultures. In order to account for the limited effects of sclerostin or romosozumab, we finally compared the expression of SOST and its receptors LRP-4, -5, and -6 to the expression in osteocyte rich-bone. The expression of SOST, LRP-4, and LRP-5 was higher in osteocytes compared to in PDL cells. The limited interaction of sclerostin or romosozumab with PDL fibroblasts may relate to the primary biological function of the periodontal ligament: to primarily resist bone formation and bone degradation to the benefit of an intact ligament that is indented by every chew movement.
Collapse
Affiliation(s)
- Karina E Pigeaud
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Melanie L Rietveld
- Amsterdam University College, University of Amsterdam and Vrije Universiteit, Science Park 113, 1098 XG Amsterdam, The Netherlands
| | - Aster F Witvliet
- Amsterdam University College, University of Amsterdam and Vrije Universiteit, Science Park 113, 1098 XG Amsterdam, The Netherlands
| | - Jolanda M A Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
| | - Chen Zhang
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Tim Forouzanfar
- Oral Pathology and 3D Innovation Lab, Department of Oral and Maxillofacial Surgery, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
4
|
Kawai R, Sugisaki R, Miyamoto Y, Yano F, Sasa K, Minami E, Maki K, Kamijo R. Cathepsin K degrades osteoprotegerin to promote osteoclastogenesis in vitro. In Vitro Cell Dev Biol Anim 2023; 59:10-18. [PMID: 36689044 DOI: 10.1007/s11626-023-00747-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
Osteoblasts produce the receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin, the inducer and the suppressor of osteoclast differentiation and activation. We previously proposed that the degradation of osteoprotegerin by lysine-specific gingipain of Porphyromonas gingivalis and neutrophil elastase is one of the mechanisms of bone resorption associated with infection and inflammation. In the present study, we found that cathepsin K (CTSK) also degraded osteoprotegerin in an acidic milieu and the buffer with a pH of 7.4. The 37 k fragment of osteoprotegerin produced by the reaction with CTSK was further degraded into low molecular weight fragments, including a 13 k fragment, depending on the reaction time. The N-terminal amino acid sequence of the 37 k fragment matched that of the intact osteoprotegerin, indicating that CTSK preferentially hydrolyzes the death domain-like region of osteoprotegerin, not its RANKL-binding region. The 13 k fragment of osteoprotegerin was the C-terminal 13 k portion within the RANKL-binding region of the 37 k fragment. Finally, CTSK restored RANKL-dependent osteoclast differentiation that was suppressed by the addition of osteoprotegerin. Collectively, CTSK is a possible positive regulator of osteoclastogenesis.
Collapse
Affiliation(s)
- Ryota Kawai
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.,Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Risa Sugisaki
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan. .,Division of Physiology and Biochemistry, Faculty of Arts and Sciences at Fujiyoshida, Showa University, Fujiyoshida, Japan.
| | - Fumiko Yano
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Erika Minami
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.,Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Koutaro Maki
- Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
5
|
Potential donor-dependent regulative effects of endogenous sclerostin expression and mineralization potential in primary human PDL cells in vitro. Ann Anat 2022; 244:151980. [PMID: 35787444 DOI: 10.1016/j.aanat.2022.151980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/21/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The glycoprotein sclerostin is mostly expressed in osteocytes and plays a central role in human bone metabolism. However, sclerostin and the corresponding SOST gene have been found in periodontal ligament cells under mineralizing conditions as well. The present study aimed to investigate, whether there was a correlation between endogenous SOST expression, the corresponding gene, and mineralization potential in human periodontal ligament cells and to identify different sclerostin expression and secretion patterns in cells derived from individual donors. MATERIAL AND METHODS Primary human periodontal ligament cells of three different donors were cultivated under control or mineralizing conditions for 6, 13, 15 and 18 days, respectively. Calcium deposits were stained with alizarin red and quantified afterwards. Quantitative expression analysis of the SOST gene encoding sclerostin was performed using quantitative reverse transcription polymerase chain reaction (RT-PCR). Additionally, intracellular sclerostin expression was analyzed using Western blotting and extracellular sclerostin secretion was quantified using Enzyme-linked Immunosorbent Assay (ELISA). RESULTS Alizarin red staining identified calcium deposits in periodontal ligament cells under mineralizing conditions beginning from day 13, relative SOST expression occurred on day 6. Whereas staining continued to increase in donor 1 on day 15, it remained stable in donors 2 and 3. Conversely, baseline SOST expression was significantly lower in donor 1 compared to donors 2 and 3. Western blotting and ELISA revealed increased intra- and extracellular sclerostin expression at day 13 under mineralizing conditions. Donor 3 exhibited the highest overall sclerostin levels. CONCLUSIONS Our data emphasize donor-specific characteristics in differentiation potential and sclerostin expression patterns in primary human periodontal ligament cells. Sclerostin might play a central role in modulating osteogenic differentiation in periodontal ligament cells as part of a negative feedback mechanism in avoiding excessive mineralization.
Collapse
|
6
|
Zhang J, Li D, Zheng X, Zhang W, Hou R, Liu C, Zhang Y, Hu K, Zhou H, Xue Y. TMT-labelled quantitative proteomic analysis to predict the target promoting human odontogenic inflammatory granulation tissue transform into reparative granulation tissue. Acta Odontol Scand 2021; 79:458-465. [PMID: 33823749 DOI: 10.1080/00016357.2021.1890817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Odontogenic inflammatory diseases are main causes for alveolar bone breakdown and teeth loss, leaving great difficulties in denture restoration. Local inflammatory granulation tissue (IGT) is considered as pathological tissue and required to be removed. However, there are many evidences supporting that under appropriate intervention, IGT in alveolar bone maybe transformed into reparative granulation tissue (RGT), followed by ossification. Therefore, this study aimed to discover a specific target to promote this transformation. MATERIALS AND METHODS After drawing out histological differences between IGT and RGT with haematoxylin and eosin (H&E) and immunohistochemical (IHC) assay staining, TMT-labelled quantitative proteomic analysis was applied to identify potential targets. RESULTS The most striking histological property of RGT was found to be ECM deposition, which significantly decreased inflammatory cells, prominently increased fibroblasts as well as triggered changes of vascular types. Combined with histological findings and proteomic analysis, five KEGG pathways were associated with ECM, inflammation and angiogenesis and 49 pathways involved in differentially expressed proteins. COL1A1 was not only the most up-regulated protein, but also one of main hubs in protein-protein interaction regulatory network. Specific protease cathepsin K (CTSK) was identified. Level of CTSK in RGT was down-regulated to 69.10-76.97% (p < .05), with significantly up-regulated COL1A1, COL1A2, FN1 and TGFB1 included in focal adhesion, PI3K-Akt signalling pathways and angiogenesis. CTSK involved in transformation from IGT to RGT. CONCLUSIONS CTSK might be a target to regulate transformation from IGT to RGT in alveolar bone through ECM, stem cells and angiogenesis mechanisms. However, further research is also clearly required.
Collapse
Affiliation(s)
- Jianying Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China
| | - Dengke Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China
| | - Xueni Zheng
- Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China
| | - Wuyang Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China
| | - Rui Hou
- Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China
| | - Changkui Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an, China
| | - Yu Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China
| | - Kaijin Hu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China
| | - Hongzhi Zhou
- Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China
| | - Yang Xue
- Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Zhang W, Dong Z, Li D, Li B, Liu Y, Zheng X, Liu H, Zhou H, Hu K, Xue Y. Cathepsin K deficiency promotes alveolar bone regeneration by promoting jaw bone marrow mesenchymal stem cells proliferation and differentiation via glycolysis pathway. Cell Prolif 2021; 54:e13058. [PMID: 34053135 PMCID: PMC8249792 DOI: 10.1111/cpr.13058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives To clarify the possible role and mechanism of Cathepsin K (CTSK) in alveolar bone regeneration mediated by jaw bone marrow mesenchymal stem cells (JBMMSC). Materials and Methods Tooth extraction models of Ctsk knockout mice (Ctsk‐/‐) and their wildtype (WT) littermates were used to investigate the effect of CTSK on alveolar bone regeneration. The influences of deletion or inhibition of CTSK by odanacatib (ODN) on proliferation and osteogenic differentiation of JBMMSC were assessed by CCK‐8, Western blot and alizarin red staining. To explore the differently expressed genes, RNA from WT and Ctsk‐/‐ JBMMSC was sent to RNA‐seq. ECAR, glucose consumption and lactate production were measured to identify the effect of Ctsk deficiency or inhibition on glycolysis. At last, we explored whether Ctsk deficiency or inhibition promoted JBMMSC proliferation and osteogenic differentiation through glycolysis. Results We found out that Ctsk knockout could promote alveolar bone regeneration in vivo. In vitro, we confirmed that both Ctsk knockout and inhibition by ODN could promote proliferation of JBMMSC, up‐regulate expression of Runx2 and ALP, and enhance matrix mineralization. RNA‐seq results showed that coding genes of key enzymes in glycolysis were significantly up‐regulated in Ctsk‐/‐ JBMMSC, and Ctsk deficiency or inhibition could promote glycolysis in JBMMSC. After blocking glycolysis by 3PO, the effect of Ctsk deficiency or inhibition on JBMMSC’s regeneration was blocked subsequently. Conclusions Our findings revealed that Ctsk knockout or inhibition could promote alveolar bone regeneration by enhancing JBMMSC regeneration via glycolysis. These results shed new lights on the regulatory mechanism of CTSK on bone regeneration.
Collapse
Affiliation(s)
- Wuyang Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhiwei Dong
- State Key Laboratory of Military Stomatology, Xi'an, China
| | - Dengke Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuan Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xueni Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Hui Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Hongzhi Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kaijin Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yang Xue
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Johnson IRD, Nguyen CT, Wise P, Grimm D. Implications of Altered Endosome and Lysosome Biology in Space Environments. Int J Mol Sci 2020; 21:ijms21218205. [PMID: 33147843 PMCID: PMC7663135 DOI: 10.3390/ijms21218205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Space exploration poses multiple challenges for mankind, not only on a technical level but also to the entire physiology of the space traveller. The human system must adapt to several environmental stressors, microgravity being one of them. Lysosomes are ubiquitous to every cell and essential for their homeostasis, playing significant roles in the regulation of autophagy, immunity, and adaptation of the organism to changes in their environment, to name a few. Dysfunction of the lysosomal system leads to age-related diseases, for example bone loss, reduced immune response or cancer. As these conditions have been shown to be accelerated following exposure to microgravity, this review elucidates the lysosomal response to real and simulated microgravity. Microgravity activates the endo-lysosomal system, with resulting impacts on bone loss, muscle atrophy and stem cell differentiation. The investigation of lysosomal adaptation to microgravity can be beneficial in the search for new biomarkers or therapeutic approaches to several disease pathologies on earth as well as the potential to mitigate pathophysiology during spaceflight.
Collapse
Affiliation(s)
- Ian R. D. Johnson
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
- Correspondence:
| | - Catherine T. Nguyen
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Petra Wise
- Department of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA;
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Thiele S, Hannemann A, Winzer M, Baschant U, Weidner H, Nauck M, Thakker RV, Bornhäuser M, Hofbauer LC, Rauner M. Regulation of sclerostin in glucocorticoid-induced osteoporosis (GIO) in mice and humans. Endocr Connect 2019; 8:923-934. [PMID: 31234141 PMCID: PMC6612066 DOI: 10.1530/ec-19-0104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GC) are used for the treatment of inflammatory diseases, including various forms of arthritis. However, their use is limited, amongst others, by adverse effects on bone. The Wnt and bone formation inhibitor sclerostin was recently implicated in the pathogenesis of GC-induced osteoporosis. However, data are ambiguous. The aim of this study was to assess the regulation of sclerostin by GC using several mouse models with high GC levels and two independent cohorts of patients treated with GC. Male 24-week-old C57BL/6 and 18-week-old DBA/1 mice exposed to GC and 12-week-old mice with endogenous hypercortisolism displayed reduced bone formation as indicated by reduced levels of P1NP and increased serum sclerostin levels. The expression of sclerostin in femoral bone tissue and GC-treated bone marrow stromal cells, however, was not consistently altered. In contrast, GC dose- and time-dependently suppressed sclerostin at mRNA and protein levels in human mesenchymal stromal cells, and this effect was GC receptor dependent. In line with the human cell culture data, patients with rheumatoid arthritis (RA, n = 101) and polymyalgia rheumatica (PMR, n = 21) who were exposed to GC had lower serum levels of sclerostin than healthy age- and sex-matched controls (-40%, P < 0.01 and -26.5%, P < 0.001, respectively). In summary, sclerostin appears to be differentially regulated by GC in mice and humans as it is suppressed by GCs in humans but is not consistently altered in mice. Further studies are required to delineate the differences between GC regulation of sclerostin in mice and humans and assess whether sclerostin mediates GC-induced osteoporosis in humans.
Collapse
Affiliation(s)
- Sylvia Thiele
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Maria Winzer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine University of Oxford, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Churchill Hospital, Oxford, UK
| | - Martin Bornhäuser
- Department of Medicine I, Technische Universität Dresden, Dresden, Germany
- DFG Research Center and Cluster of Excellence for Regenerative Therapies, Technical University, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- DFG Research Center and Cluster of Excellence for Regenerative Therapies, Technical University, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|