1
|
Zhang G, Guan Q, Zhao Y, Wang S, Li H. miR-1-3p Inhibits Osteosarcoma Cell Proliferation and Cell Cycle Progression While Promoting Cell Apoptosis by Targeting CDK14 to Inactivate Wnt/Beta-Catenin Signaling. Mol Biotechnol 2024; 66:1704-1717. [PMID: 37420040 DOI: 10.1007/s12033-023-00811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Osteosarcoma (OS) is a common bone malignancy and is diagnosed frequently in children and young adults. According to previous RNA sequencing, miR-1-3p is downregulated in OS clinical samples. Nevertheless, the functions of miR-1-3p in OS cell process and the related mechanism have not been revealed yet. In the current study, miR-1-3p expression in OS tissues and cells were evaluated using quantitative polymerase chain reaction. CCK-8 assays were conducted to measure OS cell viability in response to miR-1-3p overexpression. Colony forming assays and EdU staining were conducted for measurement of cell proliferation, and flow cytometry analysis was performed to determine cell apoptosis and cell cycle progression. Protein levels of apoptotic markers, beta-catenin, and Wnt downstream targets were quantified using western blotting. The binding relation between miR-1-3p and cyclin dependent kinase 14 (CDK14) was validated utilizing luciferase reporter assays. Experimental results revealed that miR-1-3p expression was decreased in OS tissues and cells. Additionally, miR-1-3p inhibited cell proliferation and cell cycle progression while enhancing OS cell apoptosis. Moreover, miR-1-3p directly targeted CDK14 and inversely regulated CDK14 expression in OS cells. Furthermore, miR-1-3p inactivated the Wnt/beta-catenin signaling. CDK14 overexpression partially rescued the inhibitory impact of miR-1-3p on OS cell growth. Overall, miR-1-3p inhibits OS cell proliferation and cell cycle progression while promoting cell apoptosis by targeting CDK14 and inactivating the Wnt/beta-catenin signaling.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China
| | - Qingyu Guan
- Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Yingsong Zhao
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China
| | - Siyuan Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Hewei Li
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China.
| |
Collapse
|
2
|
Li P, Ding H, Han S, Ding S, Yang Y. Long noncoding RNA LINC00858 aggravates the progression of esophageal squamous cell carcinoma via regulating the miR-425-5p/ABL2 axis. Heliyon 2024; 10:e27337. [PMID: 38496838 PMCID: PMC10944188 DOI: 10.1016/j.heliyon.2024.e27337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most fatal cancers with high morbidity and mortality, which severely affects people's lives. Long intergenic non-protein coding RNA 858 (LINC00858) was confirmed to promote the progression of colorectal cancer and lung cancer. However, the role of lncRNA LINC00858 is still unknown in ESCC. Herein, the main purpose of research was to explore LINC00858 function and its impact on ESCC cell biological behaviors. RT-qPCR was used to test the expression of LINC00858, miR-425-5p and ABL proto-oncogene 2 (ABL2) in ESCC cells. Functional experiments such as EdU assay, CCK-8 assay, transwell assay and Western blot assay were conducted to investigate the biological behaviors of ESCC cells. Luciferase reporter assay and RIP assay were implemented to determine the binding situation among RNAs. LINC00858 expression was abnormally high in ESCC cells and down-regulation of LINC00858 could restrain the proliferation, invasion, migration and EMT process of ESCC cells. Furthermore, miR-425-5p was proved to be sponged by LINC00858 and was down-regulated in ESCC cells. Besides, we discovered that miR-425-5p could target ABL2. Moreover, knockdown of ABL2 reversed the promoting function of miR-425-5p inhibitor on ESCC progression. LINC00858 aggravated ESCC progression via regulating the miR-425-5p/ABL2 axis.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Hui Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Shuangyin Han
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Songze Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Yuxiu Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
3
|
Sun P, Luan Y, Cai X, Liu Q, Ren P, Peng P, Yu Y, Song B, Wang Y, Chang H, Ma H, Chen Y. LINC00858 facilitates formation of hepatic metastases from colorectal cancer via regulating the miR-132-3p/IGF2BP1 axis. Biol Chem 2024; 405:129-141. [PMID: 36857196 DOI: 10.1515/hsz-2022-0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 03/02/2023]
Abstract
Hepatic metastasis is a major cause of colorectal cancer (CRC)-related deaths. Presently, the role of long non-coding RNAs (lncRNAs) in hepatic metastases from CRC is elusive. We dissected possible interplay between LINC00858/miR-132-3p/IGF2BP1 via bioinformatics approaches. Subsequently we analyzed mRNA expression of LINC00858, miR-132-3p and IGF2BP1 through qRT-PCR. Western blot was used to detect protein expression of IGF2BP1. RNA immunoprecipitation chip and dual-luciferase assay validated interaction between LINC00858 and miR-132-3p, as well as miR-132-3p and IGF2BP1. Cell viability, invasion, and migration were examined via CCK-8, colony formation, transwell and wound healing assays. Effect of LINC00858 on CRC hepatic metastases was validated via in vivo assay. Upregulated LINC00858 and IGF2BP1, and downregulated miR-132-3p were predicted in tumor tissues of patients with hepatic metastases from CRC. There were targeting relationships between LINC00858 and miR-132-3p, as well as miR-132-3p and IGF2BP1. Besides, LINC00858 facilitated progression of CRC cells. Rescue assay suggested that silencing LINC00858 suppressed CRC cell progression, while further silencing miR-132-3p or overexpressing IGF2BP1 reversed such effects. LINC00858 could facilitate CRC tumor growth and hepatic metastases. LINC00858 induced CRC hepatic metastases via regulating miR-132-3p/ IGF2BP1, and this study may deliver a new diagnostic marker for the disease.
Collapse
Affiliation(s)
- Peng Sun
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Yusong Luan
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Xuhao Cai
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Qi Liu
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Peide Ren
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Panxin Peng
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Yonggang Yu
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Bolun Song
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Yangyang Wang
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Huijing Chang
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Haoyue Ma
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Yinggang Chen
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| |
Collapse
|
4
|
Dai S, Li F, Xu S, Hu J, Gao L. The important role of miR-1-3p in cancers. J Transl Med 2023; 21:769. [PMID: 37907984 PMCID: PMC10617136 DOI: 10.1186/s12967-023-04649-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer is a malignant tumor that seriously threatens human life and health. At present, the main treatment methods include surgical resection, chemotherapy, radiotherapy, and immunotherapy. However, the mechanism of tumor occurrence and development is complex, and it produces resistance to some traditional treatment methods, leading to treatment failure and a high mortality rate for patients. Therefore, exploring the molecular mechanisms of tumor occurrence, development, and drug resistance is a very important task. MiRNAs are a type of non-coding small RNA that regulate a series of biological effects by binding to the 3'-UTR of the target mRNA, degrading the mRNA, or inhibiting its translation. MiR-1-3p is an important member of them, which is abnormally expressed in various tumors and closely related to the occurrence and development of tumors. This article introduces miR-1-3p from multiple aspects, including its production and regulation, role in tumor occurrence and development, clinical significance, role in drug resistance, and approaches for targeting miR-1-3p. Intended to provide readers with a comprehensive understanding of the important role of miR-1-3p in tumors.
Collapse
Affiliation(s)
- Shangming Dai
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Fengjiao Li
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuoguo Xu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Jinda Hu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Lichen Gao
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China.
| |
Collapse
|
5
|
Dong Z, Liao Z, He Y, Wu C, Meng Z, Qin B, Xu G, Li Z, Sun T, Wen Y, Li G. Advances in the Biological Functions and Mechanisms of miRNAs in the Development of Osteosarcoma. Technol Cancer Res Treat 2022; 21:15330338221117386. [PMID: 35950243 PMCID: PMC9379803 DOI: 10.1177/15330338221117386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma is one of the most common primary malignant bone tumors, mainly
occurring in children and adolescents, and is characterized by high morbidity
and poor prognosis. MicroRNAs, a class of noncoding RNAs consisting of 19 to 25
nucleotides, are involved in cell proliferation, invasion, metastasis, and
apoptosis to regulate the development and progression of osteosarcoma. Studies
have found that microRNAs are closely related to the diagnosis, treatment, and
prognosis of osteosarcoma patients and have an important role in improving drug
resistance in osteosarcoma. This paper reviews the role of microRNAs in the
pathogenesis of osteosarcoma and their clinical value, aiming to provide a new
research direction for diagnosing and treating osteosarcoma and achieving a
better prognosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zhipeng Liao
- The Second School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yonglin He
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Chengye Wu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zixiang Meng
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Baolong Qin
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Ge Xu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zeyang Li
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Tianxin Sun
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yuyan Wen
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Zhu R, Li X, Cai Z, Liang S, Yuan Y, Xu Y, Lai D, Zhao H, Yang W, Bian J, Liu L, Xu G. Risk Scores Based on Six Survival-Related RNAs in a Competing Endogenous Network Composed of Differentially Expressed RNAs Between Clear Cell Renal Cell Carcinoma Patients Carrying Wild-Type or Mutant Von Hippel-Lindau Serve Well to Predict Malignancy and Prognosis. Front Oncol 2021; 11:726671. [PMID: 34760693 PMCID: PMC8573174 DOI: 10.3389/fonc.2021.726671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) carrying wild-type Von Hippel–Lindau (VHL) tumor suppressor are more invasive and of high morbidity. Concurrently, competing endogenous RNA (ceRNA) network has been suggested to play an important role in ccRCC malignancy. In order to understand why the patients carrying wild-type VHL gene have high degrees of invasion and morbidity, we applied bioinformatics approaches to identify 861 differentially expressed RNAs (DE-RNAs) between patients carrying wild-type and patients carrying mutant VHL from The Cancer Genome Atlas (TCGA) database, established a ceRNA network including 122 RNAs, and elected six survival-related DE-RNAs including Linc00942, Linc00858, RP13_392I16.1, hsa-miR-182-5p, hsa-miR-183-5p, and PAX3. Examining clinical samples from our hospital revealed that patients carrying wild-type VHL had significantly higher levels of all six RNAs than those carrying mutant VHL. Patients carrying wild-type VHL had significantly higher risk scores, which were calculated based on expression levels of all six RNAs, than those carrying mutant VHL. Patients with higher risk scores had significantly shorter survival times than those with lower risk scores. Therefore, the risk scores serve well to predict malignancy and prognosis.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiezhao Li
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiduan Cai
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Siyang Liang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoji Yuan
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuyu Xu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dehui Lai
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haibo Zhao
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqing Yang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Bian
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Leyuan Liu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibin Xu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Zhang Q, Zhong C, Duan S. The tumorigenic function of LINC00858 in cancer. Biomed Pharmacother 2021; 143:112235. [PMID: 34649358 DOI: 10.1016/j.biopha.2021.112235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Long non-coding RNA (lncRNA) plays an important regulatory role in the occurrence and development of human cancer. LINC00858 is a newly discovered lncRNA with a length of 2685 nucleotides. Existing studies have shown that LINC00858 has abnormally high expression levels in malignant tumors such as colorectal cancer, gastric cancer, hepatocellular carcinoma, lung cancer, non-small cell lung cancer, ovarian cancer, osteosarcoma, retinoblastoma, Wilms tumor, bladder cancer, and cervical cancer. By regulating a variety of microRNAs, LINC00858 can affect tumor cell proliferation, invasion, metastasis, and apoptosis. Related research also found that LINC00858 is related to nuclear transcription factor/protein kinase and gene methylation. The aberrant expression of LINC00858 is related to the prognosis and clinicopathological characteristics of a variety of tumors. Overexpressed LINC00858 is closely related to the clinical stage, lymph node metastasis, and distant metastasis of cancer, including colorectal cancer, gastric cancer, non-small cell lung cancer, ovarian cancer, and Wilms tumor. Also, it is summarized that LINC00858 can regulate MAPK and TGF-β signaling pathways. This review shows that LINC00858 as an important oncogene can promote tumorigenesis and cancer development.
Collapse
Affiliation(s)
- Qiudan Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China; Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Chenming Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China; Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
9
|
Li P, Huang G. Long noncoding RNA LINC00858 promotes the progression of ovarian cancer via regulating the miR-134-5p/TRIM44 axis. J Recept Signal Transduct Res 2021; 42:382-389. [PMID: 34423728 DOI: 10.1080/10799893.2021.1968433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recent studies have shown that many long noncoding RNAs (lncRNAs) are abnormally expressed in ovarian cancer and involved in the pathological progress of ovarian cancer. In the present study, we aimed to investigate the role of lncRNA LINC00858 and the potential mechanism in ovarian cancer. The qRT-PCR was used to measure the expression levels of LINC00858 and miR-134-5p in ovarian cancer tissue specimens and cell lines. Loss-of-function assays were performed to investigate the role of LINC00858 in ovarian cancer. MTT assay was carried out to measure cell proliferation. Transwell assays were performed to determine cell migration and invasion. Biological information analysis and luciferase report gene assay were used to verify potential downstream genes of LINC00858. The xenograft mouse model was established to analyze tumor growth in vivo. Our results showed that LINC00858 was highly expressed in human ovarian cancer tissues and cell lines. Knockdown of LINC00858 inhibited cell proliferation, migration and invasion of SKOV3 cells, and suppressed tumor growth in mouse xenograft models. Mechanistic studies revealed that LINC00858 acted as a sponge of miR-134-5p and then regulated TRIM44 expression in SKOV3 cells. Furthermore, rescue experiments illustrated that inhibition of miR-134-5p restored the inhibitory effects of LINC00858 knockdown on cell proliferation, migration and invasion. TRIM44 overexpression could counteract the inhibitory effects of miR-134-5p mimics on ovarian cancer cells. In conclusion, these findings demonstrated that LINC00858 exerted oncogenic role in ovarian cancer, which was mediated by miR-134-5p/TRIM44 axis. Thus, LINC00858 might be a therapeutic target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
| | - Gang Huang
- Department of Neurology, Luohe Central Hospital, Luohe, China
| |
Collapse
|
10
|
Wei M, Chen Y, Du W. LncRNA LINC00858 enhances cervical cancer cell growth through miR-3064-5p/ VMA21 axis. Cancer Biomark 2021; 32:479-489. [PMID: 34275889 DOI: 10.3233/cbm-200033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cervical cancer (CC) is the most common form of gynecological malignancy. Long intergenic non-protein coding RNA 858 (LINC00858) has been identified to participate in multiple cancers. However, the role and mechanism of LINC00858 in CC cells are still elusive. AIM The aim of this study is to explore the biological functions and mechanisms of LINC00858 in CC cells. METHODS RT-qPCR analysis was used to examine the expression of LINC00858 in CC cells. EdU and colony formation assay were utilized to assess cell proliferation. TUNEL assay and flow cytometry assay were conducted to assess cell apoptosis. The mechanism regarding LINC00858 was certified through RNA pull down, RIP and luciferase reporter assays. RESULTS The up-regulated LINC00858 was detected in CC cells. Reduction of LINC00858 effectively subdued CC cells proliferation and stimulated cell apoptosis. LINC00858 was determined to bind with miR-3064-5p and up-regulate VMA21 in CC cells. In rescue assays, miR-3064-5p down-regulation and VMA21 up-regulation were able to counteract the effect caused by LINC00858 decrease on CC cell proliferation and apoptosis. CONCLUSION LINC00858 enhances cell proliferation, while restraining cell apoptosis in CC through targeting miR-3064-5p/VMA21 axis, implying that LINC00858 may serve as a promising therapeutic target for CC.
Collapse
Affiliation(s)
- Min Wei
- Department of Gynecology, 1st Affiliated Hospital, Soochow University, Gusu District, Suzhou, Jiangsu, China.,Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Quanshan District, Xuzhou, Jiangsu, China
| | - Youguo Chen
- Department of Gynecology, 1st Affiliated Hospital, Soochow University, Gusu District, Suzhou, Jiangsu, China
| | - Wensheng Du
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Quanshan District, Xuzhou, Jiangsu, China
| |
Collapse
|
11
|
Fu D, Zang L, Li Z, Fan C, Jiang H, Men T. Long non-coding RNA CRNDE regulates the growth and migration of prostate cancer cells by targeting microRNA-146a-5p. Bioengineered 2021; 12:2469-2479. [PMID: 34232111 PMCID: PMC8806644 DOI: 10.1080/21655979.2021.1935402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The function of lncRNA CRNDE and its role in prostate cancer (PC) remains unclear. The aim of this study was to determine the expression level of lncRNA CRNDE in PC tissues and to elucidate its role in PC. The expression levels of lncRNA CRNDE were measured by quantitative reverse transcription polymerase chain reaction. The role of lncRNA CRNDE in PC cells was studied using loss-of-function assays in vitro. Cell proliferation, migration, invasion, and apoptosis were assessed via Cell Counting Kit-8, colony formation, flow cytometry, wound healing, and transwell chamber assays. A luciferase reporter assay was used to characterize the interaction between lncRNA CRNDE and miR-146a-5p. In PC tissues, the expression level of lncRNA CRNDE was upregulated. Moreover, knockdown of lncRNA CRNDE suppressed PC cell proliferation and migration and induced apoptosis in vitro. miR-146a-5p was verified as a direct target of lncRNA CRNDE. Moreover, the inhibition of miR-146a-5p partially counteracted the effects of lncRNA CRNDE on PC cell proliferation, migration, and invasion. In conclusion, lncRNA CRNDE may serve as a cancer promoter in PC by targeting miR-146a-5p. Therefore, lncRNA CRNDE could be a promising target for the clinical treatment of PC.
Collapse
Affiliation(s)
- Dewang Fu
- Department of Urology Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li'e Zang
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhaowei Li
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chenghui Fan
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Huamao Jiang
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tongyi Men
- Department of Urology Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
12
|
Yao W, Yan Q, Du X, Hou J. TNK2-AS1 upregulated by YY1 boosts the course of osteosarcoma through targeting miR-4319/WDR1. Cancer Sci 2020; 112:893-905. [PMID: 33164271 PMCID: PMC7893995 DOI: 10.1111/cas.14727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Mounting research papers have suggested that long non-coding RNAs (lncRNAs) elicit important functions in the progression of osteosarcoma (OS). This study focused on the role of TNK2-AS1 in OS. TNK2-AS1 was powerfully expressed in OS tissues and cell lines. In addition, TNK2-AS1 downregulation inhibited proliferative, migratory, and invasive capacities while promoting apoptosis in OS cells. miR-4319 was removed by TNK2-AS1 and therefore TNK2-AS1 elevated WDR1 expression in OS cells. miR-4319 had an inhibitory influence on OS progression, while WDR1 was a contributor to OS progression. Rescue assays certified that TNK2-AS1 promoted malignant phenotypes in vitro and the growth in vivo of OS cells by upregulating WDR1. In depth, we found that YY1 accelerated the transcription of TNK2-AS1 in OS cells, and that its role in OS also depended on TNK2-AS1-regulated WDR1. In conclusion, TNK2-AS1 was positively modulated by YY1 and aggravated the development of OS by 'sponging' miR-4319 to elevate WDR1. The findings highlighted that TNK2-AS1 might be a promising target for the treatment of OS.
Collapse
Affiliation(s)
- Weitao Yao
- Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qiang Yan
- Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xinhui Du
- Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jingyu Hou
- Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
13
|
Long non-coding RNA LINC00858 aggravates the oncogenic phenotypes of ovarian cancer cells through miR-134-5p/RAD18 signaling. Arch Gynecol Obstet 2020; 302:1243-1254. [PMID: 32875345 DOI: 10.1007/s00404-020-05722-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/28/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE Ovarian cancer is a common gynecological cancer. Herein, we focused on the function and probable mechanisms of LINC00858 in ovarian cancer. METHODS Real-time quantitative polymerase chain reaction (RT-qPCR) was employed for detecting the expression of LINC00858, miR-134-5p and RAD18 E3 ubiquitin protein ligase (RAD18). Cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) and apoptosis were detected by cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), transwell, terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) and western bolt experiments, as appropriate. Interplays between LINC00858, miR-134-5p and RAD18 were detected by RNA immunoprecipitation (RIP), RNA pull down and luciferase reporter assays. RESULTS LINC00858 were up-regulated in ovarian cancer tissues and cells, and its expression was elevated in advanced samples compared to early ones. Knocking down LINC00858 inhibited cell proliferation, motility and EMT, but accelerated cell apoptosis in ovarian cancer. Moreover, could be sponged by LINC00858 sponged miR-134-5p to enhance RAD18 expression in ovarian cancer. Also, silenced RAD18 could also restrain oncogenic behaviors of ovarian cancer cells. Rescue experiments showed that overexpressing RAD18 reversed the effects caused by knocking down LINC00858 on cellular processes. CONCLUSION LINC00858 sequestered miR-134-5p to elevate RAD18 expression, resulting in aggravated development of ovarian cancer. This might provide promising targets for treating patients with ovarian cancer.
Collapse
|
14
|
Kushlinskii NE, Fridman MV, Braga EA. Long Non-Coding RNAs as Competitive Endogenous RNAs in Osteosarcoma. Mol Biol 2020; 54:684-707. [DOI: 10.1134/s0026893320050052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 01/06/2025]
|
15
|
Wu J, Meng X, Gao R, Jia Y, Chai J, Zhou Y, Wang J, Xue X, Dang T. Long non-coding RNA LINC00858 inhibits colon cancer cell apoptosis, autophagy, and senescence by activating WNK2 promoter methylation. Exp Cell Res 2020; 396:112214. [PMID: 32768499 DOI: 10.1016/j.yexcr.2020.112214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/09/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Accumulating evidence shows the involvement of long non-coding RNAs (lncRNAs) in tumorigenesis of many types of human cancers. However, the role of LINC00858 in colon cancer has not been fully elucidated. Therefore, we investigated the involvement of LINC00858 in the progression of colon cancer and identified its downstream targets. After examining the expression of LINC00858 in colon cancer tissues and cell lines, we then identified the possible interaction between LINC00858 and WNK lysine deficient protein kinase 2 (WNK2) by fluorescence in situ hybridization, RNA immunoprecipitation, chromatin immunoprecipitation, and RNA pull-down assays. Next, the role of the LINC00858/WNK2 axis was explored by evaluating the apoptosis, autophagy, and senescence of colon cancer cells in vitro after ectopic expression and depletion experiments in HCT116 cells. Moreover, a mouse xenograft model of HCT116 cells was established to verify the function of the LINC00858/WNK2 axis in vivo. There was high expression of LINC00858 and low expression of WNK2 in colon cancer tissues and cell lines. Silencing of LINC00858 promoted apoptosis, senescence, and autophagy in colon cancer cells. Additionally, the enrichment of WNK2 was promoted when LINC00858 bound to DNA methyltransferases. Furthermore, in vivo assays demonstrated that silencing of LINC00858 resulted in inhibited tumor growth by upregulating WNK2. In summary, LINC00858 acts as a tumor-promoting lncRNA in colon cancer by downregulating WNK2. Our results may provide novel targets for the treatment for colon cancer.
Collapse
Affiliation(s)
- Jinbao Wu
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Xianmei Meng
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Rui Gao
- Anesthesiology Department, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Yanbin Jia
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China; Nursing College of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Jianyuan Chai
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Yi Zhou
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Jing Wang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Xiaohui Xue
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Tong Dang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China.
| |
Collapse
|
16
|
Zhang Y, Pu Y, Wang J, Li Z, Wang H. Research progress regarding the role of long non-coding RNAs in osteosarcoma. Oncol Lett 2020; 20:2606-2612. [PMID: 32782578 PMCID: PMC7400499 DOI: 10.3892/ol.2020.11807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma is a malignant tumor that occurs in children and adolescents. Although treatments for osteosarcoma have improved, the likelihood of survival remains low for most patients with metastasis and recurrence. Elucidating the mechanism underlying the development of osteosarcoma and chemotherapy resistance will be important to improve diagnosis and treatment. Long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides in length and do not encode for proteins, have been shown to play a regulatory role in the occurrence and development of osteosarcoma, and are expected to serve as biomarkers and molecular targets. This review discusses the progress in the study of the role of lncRNAs in osteosarcoma, and highlights the recent developments in this field.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Yanchuan Pu
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Jin Wang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Zicai Li
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Hulin Wang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| |
Collapse
|
17
|
LINC00858 knockdown inhibits gastric cancer cell growth and induces apoptosis through reducing WNK2 promoter methylation. Cell Oncol (Dordr) 2020; 43:709-723. [PMID: 32447640 DOI: 10.1007/s13402-020-00518-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Emerging evidence indicates a regulatory role of long non-coding RNAs (lncRNAs) in the development of gastric cancer (GC), but the mechanisms underlying their function have remained largely unknown. Recent microarray-based expression profiling has led to the identification of a novel differentially expressed lncRNA, LINC00858, in GC. Subsequently, LINC00858 was found to be highly expressed in GC tissues and cells. This study was designed to clarify the functional role of LINC00858 in GC, including its effect on methylation of the WNK2 gene promoter and its downstream MAPK signaling pathway. METHODS After exogenous over-expression and knockdown of LINC00858 and the addition of a MAPK pathway inhibitor in GC cells, we explored the effects of LINC00858 and the MAPK signaling pathway on GC cell behavior using various in vitro and in vivo assays. RESULTS LINC00858 was found to negatively regulate WNK2 expression by enhancing its promoter methylation and to activate the MAPK signaling pathway. Moreover, we found that knockdown of LINC00858 or inhibition of the MAPK signaling pathway resulted in decreased GC cell growth, migration and invasion, as well as decreased cell cycle progression, along with increased apoptosis and decreased tumorigenicity. CONCLUSIONS Together, these findings indicate that silencing of LINC00858 increases WNK2 expression and inhibits the MAPK signaling pathway, thereby inhibiting GC growth and development. Our data highlight LINC00858 as a potential target in GC therapy.
Collapse
|
18
|
Wu M, Shang X, Sun Y, Wu J, Liu G. Integrated analysis of lymphocyte infiltration-associated lncRNA for ovarian cancer via TCGA, GTEx and GEO datasets. PeerJ 2020; 8:e8961. [PMID: 32419983 PMCID: PMC7211406 DOI: 10.7717/peerj.8961] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
Background Abnormal expression of long non-coding RNAs (lncRNA) play a significant role in the incidence and progression of high-grade serous ovarian cancer (HGSOC), which is a leading cause of mortality among gynecologic malignant tumor patients. In this study, our aim is to identify lncRNA-associated competing endogenous RNA (ceRNA ) axes that could define more reliable prognostic parameters of HGSOC, and to investigate the lncRNAs’ potential mechanism of in lymphocyte infiltration. Methods The RNA-seq and miRNA expression profiles were downloaded from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database; while for obtaining the differentially expressed lncRNAs (DELs), miRNAs (DEMs), and genes (DEGs), we used edgeR, limma and DESeq2. After validating the RNA, miRNA and gene expressions, using integrated three RNA expression profiles (GSE18520, GSE27651, GSE54388) and miRNA profile (GSE47841) from the Gene Expression Omnibus (GEO) database, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analyses through ClusterProfiler. The prognostic value of these genes was determined with Kaplan–Meier survival analysis and Cox regression analysis. The ceRNA network was constructed using Cytoscape. The correlation between lncRNAs in ceRNA network and immune infiltrating cells was analyzed by using Tumor IMmune Estimation Resource (TIMER), and gene markers of tumor-infiltrating immune cells were identified using Spearman’s correlation after removing the influence of tumor purity. Results A total of 33 DELs (25 upregulated and eight downregulated), 134 DEMs (76 upregulated and 58 downregulated), and 1,612 DEGs (949 upregulated and 663 downregulated) were detected that could be positively correlated with overall survival (OS) of HGSOC. With the 1,612 analyzed genes, we constructed a ceRNA network, which indicated a pre-dominant involvement of the immune-related pathways. Furthermore, our data revealed that LINC00665 influenced the infiltration level of macrophages and dendritic cells (DCs). On the other hand, FTX and LINC00665, which may play their possible roles through the ceRNA axis, demonstrated a potential to inhibit Tregs and prevent T-cell exhaustion. Conclusion We defined several prognostic biomarkers for the incidence and progression of HGSOC and constructed a network for ceRNA axes; among which three were indicated to have a positive correlation with lymphocyte infiltration, namely: FTX-hsa-miR-150-5p-STK11, LINC00665-hsa-miR449b-5p-VAV3 and LINC00665-hsa-miR449b-5p-RRAGD.
Collapse
Affiliation(s)
- Meijing Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaobin Shang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guoyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
Xu T, Wu K, Zhang L, Zheng S, Wang X, Zuo H, Wu X, Tao G, Jiang B, Zhang L. Long non-coding RNA LINC00858 exerts a tumor-promoting role in colon cancer via HNF4α and WNK2 regulation. Cell Oncol (Dordr) 2020; 43:297-310. [PMID: 31884577 DOI: 10.1007/s13402-019-00490-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are known to be frequently dysregulated in many types of human cancer. As yet, however, their roles in colon carcinogenesis have not been fully elucidated. In the current study, we assessed whether lncRNA LINC00858 may be involved in the progression of colon cancer and, in addition, investigated its downstream targets. METHODS LINC00858 expression in patient-derived colon cancer tissues and in colon cancer cell lines was determined using RT-qPCR. Also, relationships between LINC00858 expression and various clinicopathological characteristics were analyzed. The subcellular localization of LINC00858 was determined using fluorescence in situ hybridization. Interactions between LINC00858 and its downstream targets were first predicted by bioinformatic analysis and, subsequently, confirmed by RNA pull-down, RNA immunoprecipitation, chromatin immunoprecipitation and dual luciferase reporter assays. After in vitro upregulation of LINC00858 and/or silencing of WNK2 and hepatocyte nuclear factor 4α (HNF4α), the biological behavior of colon cancer cells was assessed using 5-ethynyl-2'-deoxyuridine (EdU) incorporation, Transwell invasion and tube formation assays. In vivo cancer growth was evaluated in nude mice. RESULTS We found that LINC00858 was highly expressed in primary colon cancer tissues and colon cancer cell lines, and was mainly located in the nucleus. High LINC00858 expression was found to correlate with a poor differentiation, advanced TNM stages and lymph node metastasis. Exogenous overexpression of LINC00858 promoted cell proliferation, invasion and migration of colon cancer cells, and facilitated angiogenesis and tumor growth. In addition, we found that LINC00858 can bind to and upregulate the nuclear transcription factor HNF4α, leading to WNK2 expression downregulation. This, in turn, resulted in the promotion of colon cancer cell growth. CONCLUSIONS From our data we conclude that LINC00858 acts as a tumor-promoting lncRNA in colon cancer by upregulating HNF4α and downregulating WNK2. Our results may provide novel targets for the treatment for colon cancer.
Collapse
Affiliation(s)
- Ting Xu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, People's Republic of China
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Kun Wu
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 6, Huanghe West Road, Huai'an, 223300, Jiangsu Province, People's Republic of China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Shutao Zheng
- Clinical Medical Research Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Xiaopeng Wang
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 6, Huanghe West Road, Huai'an, 223300, Jiangsu Province, People's Republic of China
| | - Hao Zuo
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 6, Huanghe West Road, Huai'an, 223300, Jiangsu Province, People's Republic of China
| | - Xu Wu
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 6, Huanghe West Road, Huai'an, 223300, Jiangsu Province, People's Republic of China
| | - Guoquan Tao
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 6, Huanghe West Road, Huai'an, 223300, Jiangsu Province, People's Republic of China
| | - Baofei Jiang
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 6, Huanghe West Road, Huai'an, 223300, Jiangsu Province, People's Republic of China.
| | - Li Zhang
- VIP Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, 830054, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
20
|
Ai W, Li F, Yu HH, Liang ZH, Zhao HP. Up-regulation of long noncoding RNA LINC00858 is associated with poor prognosis in gastric cancer. J Gene Med 2020; 22:e3179. [PMID: 32119160 DOI: 10.1002/jgm.3179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The present study aimed to investigated the expression pattern of long noncoding RNA LINC00858 (LINC00858) in gastric cancer (GC) patients and its feasibility as a new prognostic biomarker. METHODS We examined LINC00858 expression in GC tissues and matched normal tissues from 189 patients using a quantitative reverse transcription-polymerase chain reaction. The correlations of LINC00858 levels in GC patients with clinicopathologic features were analyzed using a chi-squared test. The influence of LINC00858 on the overall survival rate of GC patients was precisely calculated using Kaplan-Meier methods (log rank tests). Multivariate Cox regression assays were carried out for the identification of the independent risk factors for GC. RESULTS We observed that LINC00858 was distinctly up-regulated in GC tissues compared to adjacent non-tumor specimens (p < 0.01). Higher expression of LINC00858 in GC was found to be associated with TNM stage (p = 0.003) and lymphatic metastasis (p = 0.007). Using Kaplan-Meier assays, we found that patients with high expression levels of LINC00858 had a distinctly poor overall survival and disease-free survival compared to those with low expression levels of LINC00858 (p = 0.0102). Multivariate analyses confirmed that LINC00858 (p < 0.05) was an independent prognosis factor for GC patients. CONCLUSIONS The data obtained in our study indicate that LINC00858 may be used as a novel prognostic indicator in GC patients.
Collapse
Affiliation(s)
- Wen Ai
- Gastrointestinal Surgery, The first affiliated hospital of Shandong First medical university, Jinan, Shandong, China
| | - Feng Li
- Gastrointestinal Surgery, The first affiliated hospital of Shandong First medical university, Jinan, Shandong, China
| | - Hai-Hua Yu
- Gastrointestinal Surgery, The first affiliated hospital of Shandong First medical university, Jinan, Shandong, China
| | - Zhi-Hua Liang
- Gastrointestinal Surgery, The first affiliated hospital of Shandong First medical university, Jinan, Shandong, China
| | - Hong-Peng Zhao
- Gastrointestinal Surgery, The first affiliated hospital of Shandong First medical university, Jinan, Shandong, China
| |
Collapse
|
21
|
Zhan J, Tong J, Fu Q. Long non‑coding RNA LINC00858 promotes TP53‑wild‑type colorectal cancer progression by regulating the microRNA‑25‑3p/SMAD7 axis. Oncol Rep 2020; 43:1267-1277. [PMID: 32323793 PMCID: PMC7058075 DOI: 10.3892/or.2020.7506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/21/2020] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in colorectal cancer (CRC) progression, however the mechanisms remain largely unknown. The present study aimed to reveal the role and possible molecular mechanisms of a new LNCRNA, LINC00858, in CRC. LINC00858 was increased in CRC tumor tissues, and patients with high LINC00858 expression had a shorter survival time. Knockdown of LINC00858 expression suppressed cell proliferation and induced G0/G1 cell cycle arrest and apoptosis in TP53-wild-type CRC cells. Subsequently, using Starbase v2.0 database, miR-25-3p was confirmed to interact with LINC00858 and was downregulated by LINC00858. Reduction of miR-25-3p expression with an inhibitor significantly attenuated the biological effects of LINC00858 knockdown in CRC cells. Furthermore, using TargetScan, SMAD7 was validated to interact with miR-25-3p and was downregulated by miR-25-3p. Lastly, the ectopic overexpression of SMAD7 rescued the suppressive effects of LINC00858 knockdown in CRC cells. Collectively, the results from the present study, to the best of our knowledge, firstly demonstrated a novel LINC00858/miR-25-3p/SMAD7 regulatory axis that promoted CRC progression, indicating LINC00858 as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Jidong Zhan
- Department of Internal Medicine, The Hospital of University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jin Tong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qiang Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
22
|
Li SQ, Chen Q, Qin HX, Yu YQ, Weng J, Mo QR, Yin XF, Lin Y, Liao WJ. Long Intergenic Nonprotein Coding RNA 0152 Promotes Hepatocellular Carcinoma Progression by Regulating Phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin Signaling Pathway through miR-139/PIK3CA. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1095-1107. [PMID: 31954697 DOI: 10.1016/j.ajpath.2019.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks as the fifth most common cancer worldwide, and it is the primary histologic subtype of liver cancer, with high incidence and poor prognosis. Recently, numerous long noncoding RNAs have been reported to be associated with the tumorigenesis of HCC; however, the underlying mechanisms of long intergenic nonprotein coding RNA 0152 (LINC00152) action in HCC are poorly understood. Herein, we identified a significant up-regulation of LINC00152 in both HCC tissues and cell lines. Functional studies showed that knockdown of LINC00152 inhibited cell proliferation, migration, and invasion, but promoted cell apoptosis, indicating its oncogenic functions in HCC tumorigenesis. Mechanistically, LINC00152 functioned as an efficient miR-139 sponge, thereby releasing the suppression of PIK3CA (a target gene of miR-139). Anti-miR-139 rescued the inhibition of cell proliferation, migration, and invasion induced by LINC00152 knockdown. Similarly, PIK3CA-overexpressing plasmid also reversed miR-139-mediated biological functions in HCC cells. Taken together, our study revealed a crucial regulatory network of LINC00152/miR-139/PIK3CA axis in the tumorigenesis of HCC, implying that LINC00152 may be a biomarker and novel therapeutic target for further clinical therapy of HCC.
Collapse
Affiliation(s)
- Shu-Qun Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, PR China
| | - Qian Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, PR China
| | - Hui-Xia Qin
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, PR China
| | - Ya-Qun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, PR China
| | - Jun Weng
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, PR China
| | - Qing-Rong Mo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, PR China
| | - Xiu-Fen Yin
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, PR China
| | - Yan Lin
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, PR China
| | - Wei-Jia Liao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, PR China.
| |
Collapse
|
23
|
Zhan W, Liao X, Chen Z, Li L, Tian T, Yu L, Li R. LINC00858 promotes colorectal cancer by sponging miR-4766-5p to regulate PAK2. Cell Biol Toxicol 2020; 36:333-347. [PMID: 31902050 DOI: 10.1007/s10565-019-09506-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES LncRNAs (long noncoding RNAs) have been reported to critically regulate colorectal cancer (CRC). We prospectively investigated effects and mechanisms of lncRNA LINC00858 on regulation of CRC progression. METHODS Expression of LINC00858 and its target were analyzed by quantitative real-time polymerase chain reaction and in situ hybridization. MTT and bromodeoxyuridine/5-bromo-2'-deoxyuridine (BrdU) staining to assess cell proliferation ability. Flow cytometry, wound healing, and transwell assays were conducted to evaluate cell apoptosis, migration, and invasion, respectively. Interaction between LINC00858 and its target was confirmed by luciferase activity assay and RNA immunoprecipitation. Subcutaneous xenotransplanted tumor model was established and employed to detect tumorigenic functions of LINC00858, and further evaluated by qRT-PCR, western blot, immunohistochemistry, and hematoxylin and eosin staining. RESULTS With a predicted poor prognosis, LINC00858 was upregulated in CRC patients. LINC00858 knockdown suppressed cell proliferation, invasion, and migration abilities, meanwhile induced cell apoptosis. Moreover, LINC00858 could target and inhibit the miR-4766-5p expression, thus promoting CRC progression. miR-4766-5p further suppressed serine/threonine kinase PAK2. Interestingly, interference of LINC00858 suppressed tumorigenic ability of CRC in vivo by downregulating PAK2. CONCLUSIONS LINC00858 promoted CRC progression by sponging miR-4766 to upregulate PAK2, shedding lights on LINC00858 as a potential therapeutic target candidate in CRC treatment from bench to clinic.
Collapse
Affiliation(s)
- Wei Zhan
- Surgery of Colorectal, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, Guizhou, China
| | - Xin Liao
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, Guizhou, China
| | - Zhongsheng Chen
- Graduate Student of Surgery, Guizhou Medical University, Guiyang City, 550004, Guizhou, China
| | - Lianghe Li
- Graduate Student of Surgery, Guizhou Medical University, Guiyang City, 550004, Guizhou, China
| | - Tian Tian
- Graduate Student of Surgery, Guizhou Medical University, Guiyang City, 550004, Guizhou, China
| | - Lei Yu
- Department of Pathology, Guiyang Maternal and Child Health Hospital, Guiyang City, 550004, Guizhou, China
| | - Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang, 550002, People's Republic of China.
| |
Collapse
|
24
|
Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomed Pharmacother 2020; 121:109627. [DOI: 10.1016/j.biopha.2019.109627] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
|
25
|
Wang Q, Zhu Y, Zuo G, Chen X, Cheng J, Zhang S. LINC00858 promotes retinoblastoma cell proliferation, migration and invasion by inhibiting miR-3182. Exp Ther Med 2019; 19:999-1005. [PMID: 32010262 PMCID: PMC6966175 DOI: 10.3892/etm.2019.8294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/02/2019] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to determine the role of long intergenic non-protein coding RNA 858 (LINC00858) in retinoblastoma (RB) and investigate the underlying molecular mechanisms. RB tissues and paracancerous tissues of 27 RB cases were obtained. RB cell lines (SO-RB50, Y79, HXO-RB44 and WERI-Rb1) and a normal retinal epithelial cell line (ARPE-19) were cultured for in vitro experiments. Batches of SO-RB50 and Y79 cells were assigned to groups transfected with small interfering RNA targeting LINC00858 (si-LINC00858 group), microRNA (miR)-3182 mimics or inhibitor, or the respective controls. A Cell Counting Kit-8 and Transwell assays were performed to assess the effect of the transfections on the proliferation, migration and invasion of SO-RB50 and Y79 cells. A luciferase reporter assay was performed using SO-RB50 cells to demonstrate the direct binding of LINC00858 and miR-3182. Reverse transcription-quantitative PCR was employed to detect LINC00858 and miR-3182 expression. Pearson correlation analysis was used to assess the correlation between the expression of LINC00858 and miR-3182. The results indicated that RB tissues and cells exhibited aberrantly elevated LINC00858 expression (P<0.05). Compared with those in the control-transfected group, SO-RB50 and Y79 cells of the si-LINC00858 group had a lower cell proliferation, as well as a lower number of migrated and invaded cells (all P<0.05). miR-3182 was proven to be a target gene of LINC00858, to be abnormally downregulated in RB tissues and cells (P<0.05) and to be negatively correlated with LINC00858 expression. Compared with those in the si-LINC00858 + inhibitor-negative control group, SO-RB50 and Y79 cells of the si-LINC00858 + miR-3182 inhibitor group exhibited a significantly higher relative proliferation, migration and invasion (all P<0.05). In conclusion, LINC00858 promoted RB cell proliferation, migration and invasion, at least partially by inhibiting miR-3182.
Collapse
Affiliation(s)
- Qi Wang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yanni Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Guojin Zuo
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiaoming Chen
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jinkui Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Shu Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
26
|
Liu J, Tang T, Wang GD, Liu B. LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease. Biosci Rep 2019; 39:BSR20181722. [PMID: 31064820 PMCID: PMC6629946 DOI: 10.1042/bsr20181722] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background: As one of the most common liver disorders worldwide, non-alcoholic fatty liver disease (NAFLD) begins with the abnormal accumulation of triglyceride (TG) in the liver. Long non-coding RNA-H19 was reported to modulate hepatic metabolic homeostasis in NAFLD. However, its molecular mechanism of NAFLD was not fully clear.Methods:In vitro and in vivo models of NAFLD were established by free fatty acid (FFA) treatment of hepatocytes and high-fat feeding mice, respectively. Hematoxylin and Eosin (H&E) and Oil-Red O staining detected liver tissue morphology and lipid accumulation. Immunohistochemistry (IHC) staining examined peroxisome proliferator-activated receptor γ (PPARγ) level in liver tissues. ELISA assay assessed TG secretion. Luciferase assay and RNA pull down were used to validate regulatory mechanism among H19, miR-130a and PPARγ. The gene expression in hepatocytes and liver tissues was detected by quantitative real-time PCR (qRT-PCR) and Western blotting.Results: H19 and PPARγ were up-regulated, while miR-130a was down-regulated in NAFLD mouse and cellular model. H&E and Oil-Red O staining indicated an increased lipid accumulation. Knockdown of H19 inhibited steatosis and TG secretion in FFA-induced hepatocytes. H19 could bind to miR-130a, and miR-130a could directly inhibit PPARγ expression. Meanwhile, miR-130a inhibited lipid accumulation by down-regulating NAFLD-related genes PPARγ, SREBP1, SCD1, ACC1 and FASN. Overexpression of miR-130a and PPARγ antagonist GW9662 inhibited lipogenesis and TG secretion, and PPARγ agonist GW1929 reversed this change induced by miR-130a up-regulation.Conclusion: Knockdown of H19 alleviated hepatic lipogenesis via directly regulating miR-130a/PPARγ axis, which is a novel mechanistic role of H19 in the regulation of NAFLD.
Collapse
Affiliation(s)
- Jun Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Tao Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Guo-Dong Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, School of Pharmacy, Wannan Medical College, Wuhu 241002, P.R. China
| | - Bo Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| |
Collapse
|
27
|
Sha QK, Chen L, Xi JZ, Song H. Long non-coding RNA LINC00858 promotes cells proliferation, migration and invasion by acting as a ceRNA of miR-22-3p in colorectal cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1057-1066. [PMID: 30931636 DOI: 10.1080/21691401.2018.1544143] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Though long non-coding RNA LINC00858 (LINC00858) has been shown to be involved in tumours of other tissues, its involvement in colorectal cancer (CRC) is still unknown. We aimed to investigated expression and mechanism LINC00858 in human CRC. In this study, we firstly found that LINC00858 expression was significantly up-regulated in both CRC tissues and cell lines by both online data and RT-PCR assay. Then, clinical assay revealed that high LINC00858 expression was significantly associated with advanced clinical progression and poor prognosis. Multivariate analysis demonstrated that high LINC00858 expression was an independent poor prognostic factor for CRC patients. Moreover, lost-of-function assay indicated that knockdown of LINC00858 suppressed CRC cells proliferation, migration and invasion, and promoted apoptosis. Mechanistically, bioinformatics analysis, dual-luciferase reporter assays, and western blot assays showed that LINC00858 functioned as competing endogenous RNA to repress miR-22-3p, which controlled its down-stream target YWHAZ. Then, we suggested that LINC00858 exerted its function through the miR-22-3p/YWHAZ axis. To our knowledge, this is the first report which showed the role of LINC00858 in the progression of CRC. Our findings indicated that LINC00858 played an important role in CRC, and may serve as a novel prognostic factor and therapeutic target.
Collapse
Affiliation(s)
- Qian-Kun Sha
- a Department of Pharmacy , Chongqing Yangdu Biology Institute , Chongqing , Chongqing , China
| | - Lin Chen
- b Department of Pharmacy , Chongqing Health Center for Women and Children , Chongqing , Chongqing , China
| | - Jia-Zhuang Xi
- c Department of Surgery , Chongqing Dazu District People's Hospital , Chongqing , Chongqing , China
| | - Hang Song
- d Department of Surgery , Chongqing No.324 hospital , Chongqing , Chongqing , China
| |
Collapse
|
28
|
HIF-1α induced long noncoding RNA FOXD2-AS1 promotes the osteosarcoma through repressing p21. Biomed Pharmacother 2019; 117:109104. [PMID: 31228799 DOI: 10.1016/j.biopha.2019.109104] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/26/2019] [Accepted: 06/06/2019] [Indexed: 01/08/2023] Open
Abstract
Emerging literature indicates the essential roles of long noncoding RNA (lncRNA) in the osteosarcoma (OS). However, the regulatory function and mechanism of FOXD2-AS1 in the OS is still elusive. In present research, the level of FOXD2-AS1 was significantly up-regulated in the OS tissue and cell lines compared to corresponding controls. The aberrant high-expression of FOXD2-AS1 indicated the poor clinical prognosis of OS patients. Transcription factor HIF-1α could bind with the promoter region of FOXD2-AS1 to activate the transcription in OS cells. Functionally, the knockdown of FOXD2-AS1 could repress the malignant biological properties of OS cells in vitro and vivo, including proliferation, invasion, apoptosis and tumor growth. Mechanistically, FOXD2-AS1 inhibited the expression of p21 via interacting with EZH2 to silence p21 gene expression. Overall, we conclude that FOXD2-AS1, induced by transcription factor HIF-1α, acts as an oncogene in the OS tumorigenesis and FOXD2-AS1 interacts with EZH2 to silence p21 protein. This finding could provide a novel insight and potential therapeutic target for the OS.
Collapse
|
29
|
Hu XH, Dai J, Shang HL, Zhao ZX, Hao YD. SP1-mediated upregulation of lncRNA ILF3-AS1 functions a ceRNA for miR-212 to contribute to osteosarcoma progression via modulation of SOX5. Biochem Biophys Res Commun 2019; 511:510-517. [PMID: 30819403 DOI: 10.1016/j.bbrc.2019.02.110] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 12/23/2022]
Abstract
Long noncoding RNA ILF3-AS1 (ILF3-AS1) has been reported to be abnormally expressed in several tumors. However, its expression pattern and function in osteosarcoma have not been investigated. In this study, we showed that ILF3-AS1 expression was significantly up-regulated in both osteosarcoma tissues and cell lines. We first reported that ILF3-AS1 upregulation was induced by nuclear transcription factor SP1. Clinical assays revealed that higher expression of ILF3-AS1 was associated with advanced clinical stage, distant metastasis and shorter overall survival. in multivariate analysis, ILF3-AS1 expression level was found to be an independent prognostic factor for osteosarcoma patients. Functional investigations showed that knockdown of ILF3-AS1 suppressed the proliferation, migration and invasion of osteosarcoma cells, and promoted apoptosis. Bioinformatic software predicted that miR-212 both targeted the 3'-UTR of ILF3-AS1 and SOX5, which was confirmed using luciferase reporter assay, RT-PCR and Western blot. Taken together, ILF3-AS1 displayed its tumor-promotive roles in the progression of osteosarcoma through miR-212/SOX5 axis. Our findings help to elucidate the tumorigenesis of osteosarcoma, and future study will provide a novel therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Xiao-Hui Hu
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Jian Dai
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Hou-Lai Shang
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Ze-Xue Zhao
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Yue-Dong Hao
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China.
| |
Collapse
|
30
|
Fei D, Sui G, Lu Y, Tan L, Dongxu Z, Zhang K. The long non-coding RNA-ROR promotes osteosarcoma progression by targeting miR-206. J Cell Mol Med 2019; 23:1865-1872. [PMID: 30565392 PMCID: PMC6378210 DOI: 10.1111/jcmm.14087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/02/2018] [Accepted: 11/22/2018] [Indexed: 01/02/2023] Open
Abstract
The long intergenic non-protein coding RNA regulator of reprogramming (lncRNA-ROR) has been reported to play crucial regulatory roles in the pathogenesis and progression of multiple cancers. However, whether ROR is associated with the initiation and development of osteosarcoma (OS) remains unclear. Here, we found that ROR expression level was significantly up-regulated in OS tissue samples compared to adjacent normal tissues, and the elevated ROR was closely correlated with advanced tumour-node-metastasis (TNM) stage and lymph node metastasis and poor overall survival rate. Functional assays showed that ROR knockdown suppressed the OS cell proliferation, colony formation, migration and invasion in vitro, and retarded tumour growth in vivo. In addition, miR-206 was verified to be a target miRNA of ROR using bioinformatics online program and luciferase report assay. miR-206 inhibition partially rescued the inhibitory effects on OS cells induced by ROR knockdown. In conclusion, these results suggested that ROR function as an oncogene in OS by sponging miR-206 and might be a potential therapeutic target for patients with OS.
Collapse
Affiliation(s)
- Dan Fei
- Ultrasonographic DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Guoqing Sui
- Ultrasonographic DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Yang Lu
- Ultrasonographic DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Long Tan
- Ultrasonographic DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Zhao Dongxu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Kewei Zhang
- Department of Thoracic SurgeryThe First Hospital of Jilin UniversityChangchunP.R. China
| |
Collapse
|
31
|
Zheng L, Hu N, Zhou X. TCF3-activated LINC00152 exerts oncogenic role in osteosarcoma through regulating miR-1182/CDK14 axis. Pathol Res Pract 2019; 215:373-380. [DOI: 10.1016/j.prp.2018.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Accepted: 12/25/2018] [Indexed: 10/27/2022]
|
32
|
The circular RNA circ-ITCH suppresses ovarian carcinoma progression through targeting miR-145/RASA1 signaling. Biochem Biophys Res Commun 2018; 505:222-228. [PMID: 30243714 DOI: 10.1016/j.bbrc.2018.09.060] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 09/10/2018] [Indexed: 11/23/2022]
Abstract
As the leading cause of death for gynecological cancers, ovarian cancer (OC) ranks fifth overall for cancer-related death among women. Emerging evidence has indicated that circular RNA (circRNA), recognized as functional non-coding transcripts in eukaryotic cells, may be involved in many physiological or pathological processes. It was reported that circ-ITCH is downregulated in multi cancers and serves as a powerful tumor suppressor among through a competing endogenous RNA (ceRNA) pathway. However, the existence and the role of circ-ITCH in OC was not reported. Here, we found a broad down-regulation of circ-ITCH in OC tissues and cells, which correlates with a worse prognosis in OC patients. Functional studies suggest that circ-ITCH overexpression inhibits the cell viability and motility by CCK8, cell cycle, wound healing assay and invasion assay. It also inhibits the tumorigenesis ability in xenograft NOD mice in vivo. Mechanically, we demonstrated that circ-TCH acts as a ceRNA to sponge miR-145, increases the level of RASA1, and inhibits the malignant progression of OC cells via the circ-ITCH-miR-145-RASA1 axis in vitro and in vivo. Taken together, our findings provide a novel tumor suppressive role regarding circ-ITCH function in the malignant progression of OC.
Collapse
|