1
|
Clarke RA, Govindaraju H, Beretta M, Olzomer E, Lawther AJ, Walker AK, Fang Z, Eapen V, Hyams TC, Killingsworth M, Bridge W, Turner N, Siddiqui KS. Immp2l Enhances the Structure and Function of Mitochondrial Gpd2 Dehydrogenase. Int J Mol Sci 2024; 25:990. [PMID: 38256063 PMCID: PMC10815762 DOI: 10.3390/ijms25020990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
'Inner mitochondrial membrane peptidase 2 like' (IMMP2L) is a nuclear-encoded mitochondrial peptidase that has been conserved through evolutionary history, as has its target enzyme, 'mitochondrial glycerol phosphate dehydrogenase 2' (GPD2). IMMP2L is known to cleave the mitochondrial transit peptide from GPD2 and another nuclear-encoded mitochondrial respiratory-related protein, cytochrome C1 (CYC1). However, it is not known whether IMMP2L peptidase activates or alters the activity or respiratory-related functions of GPD2 or CYC1. Previous investigations found compelling evidence of behavioural change in the Immp2lKD-/- KO mouse, and in this study, EchoMRI analysis found that the organs of the Immp2lKD-/- KO mouse were smaller and that the KO mouse had significantly less lean mass and overall body weight compared with wildtype littermates (p < 0.05). Moreover, all organs analysed from the Immp2lKD-/- KO had lower relative levels of mitochondrial reactive oxygen species (mitoROS). The kidneys of the Immp2lKD-/- KO mouse displayed the greatest decrease in mitoROS levels that were over 50% less compared with wildtype litter mates. Mitochondrial respiration was also lowest in the kidney of the Immp2lKD-/- KO mouse compared with other tissues when using succinate as the respiratory substrate, whereas respiration was similar to the wildtype when glutamate was used as the substrate. When glycerol-3-phosphate (G3P) was used as the substrate for Gpd2, we observed ~20% and ~7% respective decreases in respiration in female and male Immp2lKD-/- KO mice over time. Together, these findings indicate that the respiratory-related functions of mGpd2 and Cyc1 have been compromised to different degrees in different tissues and genders of the Immp2lKD-/- KO mouse. Structural analyses using AlphaFold2-Multimer further predicted that the interaction between Cyc1 and mitochondrial-encoded cytochrome b (Cyb) in Complex III had been altered, as had the homodimeric structure of the mGpd2 enzyme within the inner mitochondrial membrane of the Immp2lKD-/- KO mouse. mGpd2 functions as an integral component of the glycerol phosphate shuttle (GPS), which positively regulates both mitochondrial respiration and glycolysis. Interestingly, we found that nonmitochondrial respiration (NMR) was also dramatically lowered in the Immp2lKD-/- KO mouse. Primary mouse embryonic fibroblast (MEF) cell lines derived from the Immp2lKD-/- KO mouse displayed a ~27% decrease in total respiration, comprising a ~50% decrease in NMR and a ~12% decrease in total mitochondrial respiration, where the latter was consistent with the cumulative decreases in substrate-specific mediated mitochondrial respiration reported here. This study is the first to report the role of Immp2l in enhancing Gpd2 structure and function, mitochondrial respiration, nonmitochondrial respiration, organ size and homeostasis.
Collapse
Affiliation(s)
- Raymond A. Clarke
- Discipline of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.W.); (V.E.)
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (Z.F.); (T.C.H.); (M.K.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Hemna Govindaraju
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (H.G.); (N.T.)
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.B.); (E.O.); (W.B.)
| | - Ellen Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.B.); (E.O.); (W.B.)
| | - Adam J. Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia;
| | - Adam K. Walker
- Discipline of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.W.); (V.E.)
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia;
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Zhiming Fang
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (Z.F.); (T.C.H.); (M.K.)
| | - Valsamma Eapen
- Discipline of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.W.); (V.E.)
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (Z.F.); (T.C.H.); (M.K.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Tzipi Cohen Hyams
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (Z.F.); (T.C.H.); (M.K.)
| | - Murray Killingsworth
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (Z.F.); (T.C.H.); (M.K.)
- NSW Health Pathology, Liverpool Hospital Campus, Liverpool, NSW 2107, Australia
| | - Wallace Bridge
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.B.); (E.O.); (W.B.)
| | - Nigel Turner
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (H.G.); (N.T.)
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.B.); (E.O.); (W.B.)
| |
Collapse
|
2
|
Lawther AJ, Zieba J, Fang Z, Furlong TM, Conn I, Govindaraju H, Choong LLY, Turner N, Siddiqui KS, Bridge W, Merlin S, Hyams TC, Killingsworth M, Eapen V, Clarke RA, Walker AK. Antioxidant Behavioural Phenotype in the Immp2l Gene Knock-Out Mouse. Genes (Basel) 2023; 14:1717. [PMID: 37761857 PMCID: PMC10531238 DOI: 10.3390/genes14091717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is strongly associated with autism spectrum disorder (ASD) and the Inner mitochondrial membrane protein 2-like (IMMP2L) gene is linked to autism inheritance. However, the biological basis of this linkage is unknown notwithstanding independent reports of oxidative stress in association with both IMMP2L and ASD. To better understand IMMP2L's association with behaviour, we developed the Immp2lKD knockout (KO) mouse model which is devoid of Immp2l peptidase activity. Immp2lKD -/- KO mice do not display any of the core behavioural symptoms of ASD, albeit homozygous Immp2lKD -/- KO mice do display increased auditory stimulus-driven instrumental behaviour and increased amphetamine-induced locomotion. Due to reports of increased ROS and oxidative stress phenotypes in an earlier truncated Immp2l mouse model resulting from an intragenic deletion within Immp2l, we tested whether high doses of the synthetic mitochondrial targeted antioxidant (MitoQ) could reverse or moderate the behavioural changes in Immp2lKD -/- KO mice. To our surprise, we observed that ROS levels were not increased but significantly lowered in our new Immp2lKD -/- KO mice and that these mice had no oxidative stress-associated phenotypes and were fully fertile with no age-related ataxia or neurodegeneration as ascertained using electron microscopy. Furthermore, the antioxidant MitoQ had no effect on the increased amphetamine-induced locomotion of these mice. Together, these findings indicate that the behavioural changes in Immp2lKD -/- KO mice are associated with an antioxidant-like phenotype with lowered and not increased levels of ROS and no oxidative stress-related phenotypes. This suggested that treatments with antioxidants are unlikely to be effective in treating behaviours directly resulting from the loss of Immp2l/IMMP2L activity, while any behavioural deficits that maybe associated with IMMP2L intragenic deletion-associated truncations have yet to be determined.
Collapse
Affiliation(s)
- Adam J. Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Jerzy Zieba
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Department of Psychology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Zhiming Fang
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Teri M. Furlong
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Illya Conn
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Hemna Govindaraju
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Laura L. Y. Choong
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wallace Bridge
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sam Merlin
- Medical Science, School of Science, Western Sydney University, Campbelltown, Sydney, NSW 2751, Australia
| | - Tzipi Cohen Hyams
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Murray Killingsworth
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- NSW Health Pathology, Liverpool Hospital Campus, 1 Campbell Street, Liverpool, NSW 2107, Australia
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Raymond A. Clarke
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Adam K. Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
3
|
Baek J, Sas K, He C, Nair V, Giblin W, Inoki A, Zhang H, Yingbao Y, Hodgin J, Nelson RG, Brosius FC, Kretzler M, Stemmer PM, Lombard DB, Pennathur S. The deacylase sirtuin 5 reduces malonylation in nonmitochondrial metabolic pathways in diabetic kidney disease. J Biol Chem 2023; 299:102960. [PMID: 36736426 PMCID: PMC9996370 DOI: 10.1016/j.jbc.2023.102960] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Early diabetic kidney disease (DKD) is marked by dramatic metabolic reprogramming due to nutrient excess, mitochondrial dysfunction, and increased renal energy requirements from hyperfiltration. We hypothesized that changes in metabolism in DKD may be regulated by Sirtuin 5 (SIRT5), a deacylase that removes posttranslational modifications derived from acyl-coenzyme A and has been demonstrated to regulate numerous metabolic pathways. We found decreased malonylation in the kidney cortex (∼80% proximal tubules) of type 2 diabetic BKS db/db mice, associated with increased SIRT5 expression. We performed a proteomics analysis of malonylated peptides and found that proteins with significantly decreased malonylated lysines in the db/db cortex were enriched in nonmitochondrial metabolic pathways: glycolysis and peroxisomal fatty acid oxidation. To confirm relevance of these findings in human disease, we analyzed diabetic kidney transcriptomic data from a cohort of Southwestern American Indians, which revealed a tubulointerstitial-specific increase in Sirt5 expression. These data were further corroborated by immunofluorescence data of SIRT5 from nondiabetic and DKD cohorts. Furthermore, overexpression of SIRT5 in cultured human proximal tubules demonstrated increased aerobic glycolysis. Conversely, we observed reduced glycolysis with decreased SIRT5 expression. These findings suggest that SIRT5 may lead to differential nutrient partitioning and utilization in DKD. Taken together, our findings highlight a previously unrecognized role for SIRT5 in metabolic reprogramming in DKD.
Collapse
Affiliation(s)
- Judy Baek
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelli Sas
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chenchen He
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - William Giblin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ayaka Inoki
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hongyu Zhang
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yang Yingbao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Frank C Brosius
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Matthias Kretzler
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
4
|
Guo AH, Baliira R, Skinner ME, Kumar S, Andren A, Zhang L, Goldsmith RS, Michan S, Davis NJ, Maccani MW, Day SM, Sinclair DA, Brody MJ, Lyssiotis CA, Stein AB, Lombard DB. Sirtuin 5 levels are limiting in preserving cardiac function and suppressing fibrosis in response to pressure overload. Sci Rep 2022; 12:12258. [PMID: 35851833 PMCID: PMC9293976 DOI: 10.1038/s41598-022-16506-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
Heart failure (HF) is the inability of the heart to pump blood sufficiently to meet the metabolic demands of the body. HF with reduced systolic function is characterized by cardiac hypertrophy, ventricular fibrosis and remodeling, and decreased cardiac contractility, leading to cardiac functional impairment and death. Transverse aortic constriction (TAC) is a well-established model for inducing hypertrophy and HF in rodents. Mice globally deficient in sirtuin 5 (SIRT5), a NAD+-dependent deacylase, are hypersensitive to cardiac stress and display increased mortality after TAC. Prior studies assessing SIRT5 functions in the heart have all employed loss-of-function approaches. In this study, we generated SIRT5 overexpressing (SIRT5OE) mice, and evaluated their response to chronic pressure overload using TAC. Compared to littermate controls, SIRT5OE mice were protected against adverse functional consequences of TAC, left ventricular dilation and impaired ejection fraction. Transcriptomic analysis revealed that SIRT5 suppresses key HF sequelae, including the metabolic switch from fatty acid oxidation to glycolysis, immune activation, and fibrotic signaling pathways. We conclude that SIRT5 is a limiting factor in the preservation of cardiac function in response to experimental pressure overload.
Collapse
Affiliation(s)
- Angela H Guo
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rachael Baliira
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mary E Skinner
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Surinder Kumar
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anthony Andren
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert S Goldsmith
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
- Pharmacology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shaday Michan
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Rejuvenate Bio Inc, San Diego, CA, 92121, USA
| | - Norma J Davis
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Merissa W Maccani
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sharlene M Day
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew J Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adam B Stein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
- Institute of Gerontology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, 708 Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA.
| |
Collapse
|
5
|
Yuan T, Keijer J, Guo AH, Lombard DB, de Boer VCJ. An optimized desuccinylase activity assay reveals a difference in desuccinylation activity between proliferative and differentiated cells. Sci Rep 2020; 10:17030. [PMID: 33046741 PMCID: PMC7552388 DOI: 10.1038/s41598-020-72833-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Succinylation is a novel post-translational modification identified on many proteins and is involved in multiple biological processes. Succinylation levels are dynamically regulated, balanced by succinylation and desuccinylation processes, and are closely connected to metabolic state in vivo. Sirtuins have been shown to possess NAD+-dependent desuccinylation activity in vitro and in vivo, among which the desuccinylation activity of SIRT5 is most extensively studied. Our understanding of the response of succinylation levels to different metabolic conditions, is hampered by the lack of a fast NAD+-dependent desuccinylation assay in a physiological context. In the present study, we therefore optimized and validated a fluorescence-based assay for measuring NAD+-dependent desuccinylation activity in cell lysates. Our results demonstrated that shorter and stricter reaction time was critical to approach the initial rate of NAD+-dependent desuccinylation activity in crude cell lysate systems, as compared to the desuccinylation reaction of purified His-SIRT5. Analysis of desuccinylation activity in SIRT5 knockout HEK293T cells confirmed the relevance of SIRT5 in cellular desuccinylation activity, as well as the presence of other NAD+-dependent desuccinylase activities. In addition, we were able to analyse desuccinylation and deacetylation activity in multiple cell lines using this assay. We showed a remarkably higher desuccinylase activity, but not deacetylase activity, in proliferative cultured muscle and adipose cells in comparison with their differentiated counterparts. Our results reveal an alteration in NAD+-dependent desuccinylation activity under different metabolic states.
Collapse
Affiliation(s)
- Taolin Yuan
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands
| | - Angela H Guo
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vincent C J de Boer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands.
| |
Collapse
|
6
|
Xu J, Kitada M, Koya D. The impact of mitochondrial quality control by Sirtuins on the treatment of type 2 diabetes and diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165756. [PMID: 32147421 DOI: 10.1016/j.bbadis.2020.165756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/23/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
The incidence of type 2 diabetes mellitus (T2DM) and diabetic kidney disease (DKD) has significantly increased worldwide in recent decades, and improved treatments for T2DM and DKD are urgently needed. The pathogenesis of aging-related disorders, such as T2DM and DKD, involves multiple mechanisms, including inflammation, autophagy impairment, and oxidative stress, which are closely associated with mitochondrial dysfunction. Therefore, mitochondrial quality control may be a novel therapeutic target for T2DM and DKD. Previous reports have shown that members of the mammalian Sirtuin family, SIRT 1-7, which are recognized as antiaging molecules, play a crucial role in the regulation of mitochondrial function and quality control through the modulation of oxidative stress, inflammation and autophagy. In this review, we summarized the research published in recent years to highlight the role of Sirtuins in mitochondrial quality control as a therapeutic target for T2DM and DKD.
Collapse
Affiliation(s)
- Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan; Department of Endocrinology and Metabolism, The Affiliated Hospital of Guizhou Medical University, NO. 28, Guiyi Street, Guiyang, Guizhou 550004, China
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan; Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan.
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan; Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
7
|
Bowman CE, Wolfgang MJ. Role of the malonyl-CoA synthetase ACSF3 in mitochondrial metabolism. Adv Biol Regul 2019; 71:34-40. [PMID: 30201289 PMCID: PMC6347522 DOI: 10.1016/j.jbior.2018.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022]
Abstract
Malonyl-CoA is a central metabolite in fatty acid biochemistry. It is the rate-determining intermediate in fatty acid synthesis but is also an allosteric inhibitor of the rate-setting step in mitochondrial long-chain fatty acid oxidation. While these canonical cytoplasmic roles of malonyl-CoA have been well described, malonyl-CoA can also be generated within the mitochondrial matrix by an alternative pathway: the ATP-dependent ligation of malonate to Coenzyme A by the malonyl-CoA synthetase ACSF3. Malonate, a competitive inhibitor of succinate dehydrogenase of the TCA cycle, is a potent inhibitor of mitochondrial respiration. A major role for ACSF3 is to provide a metabolic pathway for the clearance of malonate by the generation of malonyl-CoA, which can then be decarboxylated to acetyl-CoA by malonyl-CoA decarboxylase. Additionally, ACSF3-derived malonyl-CoA can be used to malonylate lysine residues on proteins within the matrix of mitochondria, possibly adding another regulatory layer to post-translational control of mitochondrial metabolism. The discovery of ACSF3-mediated generation of malonyl-CoA defines a new mitochondrial metabolic pathway and raises new questions about how the metabolic fates of this multifunctional metabolite intersect with mitochondrial metabolism.
Collapse
Affiliation(s)
- Caitlyn E Bowman
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|