1
|
Hou W, Yu B, Li Y, Yan X, Su Q, Fang X, Zhou X, Yu Z. PC (16:0/14:0) ameliorates hyperoxia-induced bronchopulmonary dysplasia by upregulating claudin-1 and promoting alveolar type II cell repair. Int J Biochem Cell Biol 2024; 172:106587. [PMID: 38740281 DOI: 10.1016/j.biocel.2024.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Bronchopulmonary dysplasia (BPD) remains a significant challenge in neonatal care, the pathogenesis of which potentially involves altered lipid metabolism. Given the critical role of lipids in lung development and the injury response, we hypothesized that specific lipid species could serve as therapeutic agents in BPD. This study aimed to investigate the role of the lipid Phosphatidylcholine (PC) (16:0/14:0) in modulating BPD pathology and to elucidate its underlying mechanisms of action. Our approach integrated in vitro and in vivo methodologies to assess the effects of PC (16:0/14:0) on the histopathology, cellular proliferation, apoptosis, and molecular markers in lung tissue. In a hyperoxia-induced BPD rat model, we observed a reduction in alveolar number and an enlargement in alveolar size, which were ameliorated by PC (16:0/14:0) treatment. Correspondingly, in BPD cell models, PC (16:0/14:0) intervention led to increased cell viability, enhanced proliferation, reduced apoptosis, and elevated surfactant protein C (SPC) expression. RNA sequencing revealed significant gene expression differences between BPD and PC (16:0/14:0) treated groups, with a particular focus on Cldn1 (encoding claudin 1), which was significantly enriched in our analysis. Our findings suggest that PC (16:0/14:0) might protect against hyperoxia-induced alveolar type II cell damage by upregulating CLDN1 expression, potentially serving as a novel therapeutic target for BPD. This study not only advances our understanding of the role of lipids in BPD pathogenesis, but also highlights the significance of PC (16:0/14:0) in the prevention and treatment of BPD, offering new avenues for future research and therapeutic development.
Collapse
Affiliation(s)
- Weiwei Hou
- Department of Neonatology, Nanjing Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, Jiangsu 210008, China; Division of Neonatology, Department of Pediatrics, Northern Jiangsu People's Hospital afiliated to Yangzhou University, 98 West Nantong Road, Yangzhou, Jiangsu 225001, China
| | - Boshi Yu
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China.
| | - Yubai Li
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China
| | - Xudong Yan
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China
| | - Qian Su
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China
| | - Xiaoyan Fang
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China
| | - Xiaoguang Zhou
- Department of Neonatology, Nanjing Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, Jiangsu 210008, China.
| | - Zhangbin Yu
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China.
| |
Collapse
|
2
|
Dimitrijević MG, Roschger C, Lang K, Zierer A, Paunović MG, Obradović AD, Matić MM, Pocrnić M, Galić N, Ćirić A, Joksović MD. Discovery of a new class of potent pyrrolo[3,4-c]quinoline-1,3-diones based inhibitors of human dihydroorotate dehydrogenase: Synthesis, pharmacological and toxicological evaluation. Bioorg Chem 2024; 147:107359. [PMID: 38613925 DOI: 10.1016/j.bioorg.2024.107359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Twenty N-substituted pyrrolo[3,4-c]quinoline-1,3-diones 3a-t were synthesized by a cyclization reaction of Pfitzinger's quinoline ester precursor with the selected aromatic, heteroaromatic and aliphatic amines. The structures of all derivatives were confirmed by IR, 1H NMR, 13C NMR and HRMS spectra, while their purity was determined using HPLC techniques. Almost all compounds were identified as a new class ofpotent inhibitors against hDHODH among which 3a and 3t were the most active ones with the same IC50 values of 0.11 μM, about seven times better than reference drug leflunomide. These two derivatives also exhibited very low cytotoxic effects toward healthy HaCaT cells and the optimal lipophilic properties with logP value of 1.12 and 2.07 respectively, obtained experimentally at physiological pH. We further evaluated the comparative differences in toxicological impact of the three most active compounds 3a, 3n and 3t and reference drug leflunomide. The rats were divided into five groups and were treated intraperitoneally, control group (group I) with a single dose of leflunomide (20 mg/kg) group II and the other three groups, III, IV and V were treated with 3a, 3n and 3t (20 mg/kg bw) separately. The investigation was performed in liver, kidney and blood by examining serum biochemical parameters and parameters of oxidative stress.
Collapse
Affiliation(s)
- Marina G Dimitrijević
- University of Kragujevac, Faculty of Sciences, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Cornelia Roschger
- University Clinic for Cardiac-, Vascular- and Thoracic Surgery, Medical Faculty, Johannes Kepler University Linz, Krankenhausstraße 7a, 4020 Linz, Austria
| | - Kevin Lang
- University Clinic for Cardiac-, Vascular- and Thoracic Surgery, Medical Faculty, Johannes Kepler University Linz, Krankenhausstraße 7a, 4020 Linz, Austria
| | - Andreas Zierer
- University Clinic for Cardiac-, Vascular- and Thoracic Surgery, Medical Faculty, Johannes Kepler University Linz, Krankenhausstraße 7a, 4020 Linz, Austria
| | - Milica G Paunović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, P.O. Box 60, Kragujevac 34000, Serbia
| | - Ana D Obradović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, P.O. Box 60, Kragujevac 34000, Serbia
| | - Miloš M Matić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, P.O. Box 60, Kragujevac 34000, Serbia
| | - Marijana Pocrnić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Nives Galić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Andrija Ćirić
- University of Kragujevac, Faculty of Sciences, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Milan D Joksović
- University of Kragujevac, Faculty of Sciences, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
3
|
Yang X, Jin Z, Wang X, Wu J, Yu W, Yao S, Zhang L, Gan C. Nesfatin-1 alleviates hyperoxia-induced lung injury in newborn mice by inhibiting oxidative stress through regulating SIRT1/PGC-1α pathway. Cytokine 2023; 169:156239. [PMID: 37301191 DOI: 10.1016/j.cyto.2023.156239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a pulmonary disease commonly observed in premature infants and it is reported that oxidative stress is a critical induction factor in BPD and is considered as a promising target for treating BPD. Nesfatin-1 is a brain-gut peptide with inhibitory effects on food intake, which is recently evidenced to show suppressive effect on oxidative stress. The present study aims to explore the therapeutic effect and mechanism of Nesfatin-1 in BPD mice. AECIIs were extracted from newborn rats and exposed to hyperoxia for 24 h, followed by treatment with 5 and 10 nM Nesfatin-1. Declined cell viability, increased apoptotic rate, upregulated Bax, downregulated Bcl-2, increased release of ROS and MDA, and suppressed SOD activity were observed in hyperoxia-treated AECIIs, which were extremely reversed by Nesfatin-1. Newborn rats were exposed to hyperoxia, followed by treated with 10 μg/kg Nesfatin-1 and 20 μg/kg Nesfatin-1. Severe pathological changes, elevated MDA level, and declined SOD activity were observed in lung tissues of BPD mice, which were rescued by Nesfatin-1. Furthermore, the protective effect of Nesfatin-1 on hyperoxia-challenged AECIIs was abolished by silencing SIRT1. Collectively, Nesfatin-1 alleviated hyperoxia-induced lung injury in newborn mice by inhibiting oxidative stress through regulating SIRT1/PGC-1α pathway.
Collapse
Affiliation(s)
- Xiaoting Yang
- School of Medicine, Quzhou College of Technology, Jiang Yuan Road, Ke Chen District, Quzhou, Zhejiang 324000, China
| | - Zhan Jin
- School of Medicine, Quzhou College of Technology, Jiang Yuan Road, Ke Chen District, Quzhou, Zhejiang 324000, China
| | - Xi Wang
- Department of Urology, Quzhou People's Hospital, Min Jiang Road, Ke Chen District, Quzhou, Zhejiang 324000, China
| | - Junmei Wu
- Department of Burns Surgery, Quzhou Hospital of Zhejiang Medical Health Group, Wen Chang Road, Ke Chen District, Quzhou, Zhejiang 324000, China
| | - Wenfu Yu
- School of Medicine, Quzhou College of Technology, Jiang Yuan Road, Ke Chen District, Quzhou, Zhejiang 324000, China
| | - Shuihong Yao
- School of Medicine, Quzhou College of Technology, Jiang Yuan Road, Ke Chen District, Quzhou, Zhejiang 324000, China
| | - Lixin Zhang
- School of Medicine, Quzhou College of Technology, Jiang Yuan Road, Ke Chen District, Quzhou, Zhejiang 324000, China
| | - Chunchun Gan
- School of Medicine, Quzhou College of Technology, Jiang Yuan Road, Ke Chen District, Quzhou, Zhejiang 324000, China.
| |
Collapse
|
4
|
Adamczuk G, Humeniuk E, Iwan M, Natorska-Chomicka D, Adamczuk K, Korga-Plewko A. The Mitochondria-Independent Cytotoxic Effect of Leflunomide on RPMI-8226 Multiple Myeloma Cell Line. Molecules 2021; 26:5653. [PMID: 34577124 PMCID: PMC8469018 DOI: 10.3390/molecules26185653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Leflunomide, an anti-inflammatory agent, has been shown to be effective in multiple myeloma (MM) treatment; however, the mechanism of this phenomenon has not been fully elucidated. The aim of the study was to assess the role of mitochondria and dihydroorotate dehydrogenase (DHODH) inhibition in the cytotoxicity of leflunomide in relation to the MM cell line RPMI 8226. The cytotoxic effect of teriflunomide-an active metabolite of leflunomide-was determined using MTT assay, apoptosis detection, and cell cycle analysis. To evaluate DHODH-dependent toxicity, the cultures treated with teriflunomide were supplemented with uridine. Additionally, the level of cellular thiols as oxidative stress symptom was measured as well as mitochondrial membrane potential and protein tyrosine kinases (PTK) activity. The localization of the compound in cell compartments was examined using HPLC method. Teriflunomide cytotoxicity was not abolished in uridine presence. Observed apoptosis occurred in a mitochondria-independent manner, there was also no decrease in cellular thiols level. Teriflunomide arrested cell cycle in the G2/M phase which is not typical for DHODH deficiency. PTK activity was decreased only at the highest drug concentration. Interestingly, teriflunomide was not detected in the mitochondria. The aforementioned results indicate DHODH- and mitochondria-independent mechanism of leflunomide toxicity against RPMI 8226 cell line.
Collapse
Affiliation(s)
- Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (E.H.); (A.K.-P.)
| | - Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (E.H.); (A.K.-P.)
| | - Magdalena Iwan
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (M.I.); (D.N.-C.)
| | - Dorota Natorska-Chomicka
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (M.I.); (D.N.-C.)
| | - Kamila Adamczuk
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (E.H.); (A.K.-P.)
| |
Collapse
|