1
|
Hushmandi K, Saadat SH, Raei M, Daneshi S, Aref AR, Nabavi N, Taheriazam A, Hashemi M. Implications of c-Myc in the pathogenesis and treatment efficacy of urological cancers. Pathol Res Pract 2024; 259:155381. [PMID: 38833803 DOI: 10.1016/j.prp.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Urological cancers, including prostate, bladder, and renal cancers, are significant causes of death and negatively impact the quality of life for patients. The development and progression of these cancers are linked to the dysregulation of molecular pathways. c-Myc, recognized as an oncogene, exhibits abnormal levels in various types of tumors, and current evidence supports the therapeutic targeting of c-Myc in cancer treatment. This review aims to elucidate the role of c-Myc in driving the progression of urological cancers. c-Myc functions to enhance tumorigenesis and has been documented to increase growth and metastasis in prostate, bladder, and renal cancers. Furthermore, the dysregulation of c-Myc can result in a diminished response to therapy in these cancers. Non-coding RNAs, β-catenin, and XIAP are among the regulators of c-Myc in urological cancers. Targeting and suppressing c-Myc therapeutically for the treatment of these cancers has been explored. Additionally, the expression level of c-Myc may serve as a prognostic factor in clinical settings.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Terpe P, Ruhs S, Dubourg V, Bucher M, Gekle M. The synergism of cytosolic acidosis and reduced NAD +/NADH ratio is responsible for lactic acidosis-induced vascular smooth muscle cell impairment in sepsis. J Biomed Sci 2024; 31:3. [PMID: 38195466 PMCID: PMC10775599 DOI: 10.1186/s12929-023-00992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND During sepsis, serve vascular dysfunctions lead to life-threatening multiple organ failure, due to vascular smooth muscle cells (VSMC) impairments, resulting in vasoplegia, hypotension and hypoperfusion. In addition, septic patients have an altered cell metabolism that leads to lactic acidosis. Septic patients suffering from lactic acidosis have a high risk of mortality. In addition, septic survivors are at risk of secondary vascular disease. The underlying mechanisms of whether and how lactic acidosis leads to the changes in VSMCs is not well understood. The aim of this study was to comprehensively investigate the effect of lactic acidosis on VSMCs and additionally compare the effects with those induced by pure acidosis and sodium lactate. METHODS Primary human aortic smooth muscle cells (HAoSMCs) were treated for 48 h with lactic acidosis (LA_pH 6.8), hydrochloric acid (HCl_pH 6.8), sodium lactate (Na+-lactate_pH 7.4) and the respective controls (ctrl._pH 7.4; hyperosmolarity control: mannitol_pH 7.4) and comparatively analyzed for changes in (i) transcriptome, (ii) energy metabolism, and (iii) phenotype. RESULTS Both types of acidosis led to comparable and sustained intracellular acidification without affecting cell viability. RNA sequencing and detailed transcriptome analysis revealed more significant changes for lactic acidosis than for hydrochloric acidosis, with lactate being almost ineffective, suggesting qualitative and quantitative synergism of acidosis and lactate. Bioinformatic predictions in energy metabolism and phenotype were confirmed experimentally. Lactic acidosis resulted in strong inhibition of glycolysis, glutaminolysis, and altered mitochondrial respiration which reduced cellular ATP content, likely due to increased TXNIP expression and altered NAD+/NADH ratio. Hydrochloric acidosis induced significantly smaller effects without changing the NAD+/NADH ratio, with the ATP content remaining constant. These metabolic changes led to osteo-/chondrogenic/senescent transdifferentiation of VSMCs, with the effect being more pronounced in lactic acidosis than in pure acidosis. CONCLUSIONS Overall, lactic acidosis exerted a much stronger effect on energy metabolism than pure acidosis, whereas lactate had almost no effect, reflecting the qualitative and quantitative synergism of acidosis and lactate. As a consequence, lactic acidosis may lead to acute functional impairments of VSMC, sustained perturbations of the transcriptome and cellular dedifferentiation. Moreover, these effects may contribute to the acute and prolonged vascular pathomechanisms in septic patients.
Collapse
Affiliation(s)
- Philipp Terpe
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
- Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120, Halle (Saale), Germany
| | - Stefanie Ruhs
- Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120, Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| | - Michael Bucher
- Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120, Halle (Saale), Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| |
Collapse
|
3
|
Gong H, Zhang P, Hu X, Zhang B. Integrated multiomic data analysis reveals the clinical significance of TXNIP and contributing to immune microenvironment in triple negative breast cancer. Transl Oncol 2024; 39:101808. [PMID: 37897832 PMCID: PMC10630669 DOI: 10.1016/j.tranon.2023.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a type of breast cancer with the worst clinical outcome. TNBC is not sensitive to typical endocrine therapy and targeted therapy. Thioredoxin interacting protein (TXNIP), known as a tumor suppressor, is related to oxidative stress and energy metabolism. However, the clinical significance of TXNIP in TNBC and mechanism in immunity have not been fully reported. In this study, we found that the expression of TXNIP was downregulated obviously in TNBC tissues and negatively correlated with tumor grade by comprehensive bioinformatics analysis and immunohistochemistry staining of 108 TNBC tissues. Through in vivo and in vitro experiments, we identified TXNIP as a tumor suppressor in TNBC. By bulk mRNA and scRNA analysis, we found that TXNIP could enhance immune response in TNBC and was a potential biomarker for cancer immunity and immunotherapy. We also performed the drug susceptibility analysis to reveal the therapeutic value of TXNIP. In conclusion, our findings demonstrated that TXNIP was a tumor suppressor in TNBC and was involved in tumor malignancy progression. TXNIP was a potential biomarker for immunotherapy and promising molecular therapeutic target.
Collapse
Affiliation(s)
- Han Gong
- The 1st Department of Thoracic Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 4100013, China; Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - PeiHe Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xingming Hu
- The 1st Department of Thoracic Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 4100013, China.
| | - Bin Zhang
- The 1st Department of Thoracic Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 4100013, China; Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
4
|
Zhou M, He J, Li Y, Jiang L, Ran J, Wang C, Ju C, Du D, Xu X, Wang X, Li H, He F, Wen H. N 6-methyladenosine modification of REG1α facilitates colorectal cancer progression via β-catenin/MYC/LDHA axis mediated glycolytic reprogramming. Cell Death Dis 2023; 14:557. [PMID: 37626036 PMCID: PMC10457312 DOI: 10.1038/s41419-023-06067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Aerobic glycolysis has been considered as a hallmark of colorectal cancer (CRC). However, the potential functional regulators of glycolysis in CRC remains to be elucidated. In the current study, we found that Regenerating islet-derived protein 1-alpha (REG1α) was significantly increased in both CRC tissues and serum, and positively associated with CRC patients' lymph node metastasis, advanced tumor stage, and unfavorable prognosis. Ectopic expression of REG1α contributed to various tumorigenic properties, including cell proliferation, cell cycle, migration, invasion, and glycolysis. In contrast, REG1α deficiency in CRC cells attenuated malignant properties and glucose metabolism. Mechanically, REG1α promoted CRC proliferation and metastasis via β-catenin/MYC axis-mediated glycolysis upregulation. Moreover, the malignant behaviors governed by REG1α could be effectively abolished by silencing of Wnt/β-catenin/MYC axis or glycolysis process using specific inhibitors. Besides, REG1α expression was mediated by METTL3 in an m6A-dependent manner. Overall, our work defines a novel regulatory model of the METTL3/REG1α/β-catenin/MYC axis in CRC, which indicates that REG1α could function as a novel biomarker and a potential therapeutic target for patients with CRC.
Collapse
Affiliation(s)
- Mingxia Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingxia Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Libin Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaxuan Ran
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chang Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxi Ju
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dan Du
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinyu Xu
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuexin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongle Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongtao Wen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Liu T, Ren S, Sun C, Zhao P, Wang H. Glutaminolysis and peripheral CD4 + T cell differentiation: from mechanism to intervention strategy. Front Immunol 2023; 14:1221530. [PMID: 37545506 PMCID: PMC10401425 DOI: 10.3389/fimmu.2023.1221530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
To maintain the body's regular immune system, CD4+ T cell homeostasis is crucial, particularly T helper (Th1, Th17) cells and T regulatory (Treg) cells. Abnormally differentiated peripheral CD4+ T cells are responsible for the occurrence and development of numerous diseases, including autoimmune diseases, transplantation rejection, and irritability. Searching for an effective interventional approach to control this abnormal differentiation is therefore especially important. As immunometabolism progressed, the inherent metabolic factors underlying the immune cell differentiation have gradually come to light. Mounting number of studies have revealed that glutaminolysis plays an indelible role in the differentiation of CD4+ T cells. Besides, alterations in the glutaminolysis can also lead to changes in the fate of peripheral CD4+ T cells. All of this indicate that the glutaminolysis pathway has excellent potential for interventional regulation of CD4+ T cells differentiation. Here, we summarized the process by which glutaminolysis regulates the fate of CD4+ T cells during differentiation and further investigated how to reshape abnormal CD4+ T cell differentiation by targeting glutaminolysis.
Collapse
Affiliation(s)
- Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Pengyu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| |
Collapse
|
6
|
Vízkeleti L, Spisák S. Rewired Metabolism Caused by the Oncogenic Deregulation of MYC as an Attractive Therapeutic Target in Cancers. Cells 2023; 12:1745. [PMID: 37443779 PMCID: PMC10341379 DOI: 10.3390/cells12131745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
MYC is one of the most deregulated oncogenes on multiple levels in cancer. As a node transcription factor, MYC plays a diverse regulatory role in many cellular processes, including cell cycle and metabolism, both in physiological and pathological conditions. The relentless growth and proliferation of tumor cells lead to an insatiable demand for energy and nutrients, which requires the rewiring of cellular metabolism. As MYC can orchestrate all aspects of cellular metabolism, its altered regulation plays a central role in these processes, such as the Warburg effect, and is a well-established hallmark of cancer development. However, our current knowledge of MYC suggests that its spatial- and concentration-dependent contribution to tumorigenesis depends more on changes in the global or relative expression of target genes. As the direct targeting of MYC is proven to be challenging due to its relatively high toxicity, understanding its underlying regulatory mechanisms is essential for the development of tumor-selective targeted therapies. The aim of this review is to comprehensively summarize the diverse forms of MYC oncogenic deregulation, including DNA-, transcriptional- and post-translational level alterations, and their consequences for cellular metabolism. Furthermore, we also review the currently available and potentially attractive therapeutic options that exploit the vulnerability arising from the metabolic rearrangement of MYC-driven tumors.
Collapse
Affiliation(s)
- Laura Vízkeleti
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Sándor Spisák
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| |
Collapse
|
7
|
Feng L, Ding R, Qu X, Li Y, Shen T, Wang L, Li R, Zhang J, Ru Y, Bu X, Wang Y, Li M, Song W, Shen L, Zhang P. BCR-ABL triggers a glucose-dependent survival program during leukemogenesis through the suppression of TXNIP. Cell Death Dis 2023; 14:287. [PMID: 37095099 PMCID: PMC10125982 DOI: 10.1038/s41419-023-05811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Imatinib is highly effective in the treatment of chronic myelogenous leukemia (CML), but the primary and acquired imatinib resistance remains the big hurdle. Molecular mechanisms for CML resistance to tyrosine kinase inhibitors, beyond point mutations in BCR-ABL kinase domain, still need to be addressed. Here, we demonstrated that thioredoxin-interacting protein (TXNIP) is a novel BCR-ABL target gene. Suppression of TXNIP was responsible for BCR-ABL triggered glucose metabolic reprogramming and mitochondrial homeostasis. Mechanistically, Miz-1/P300 complex transactivates TXNIP through the recognition of TXNIP core promoter region, responding to the c-Myc suppression by either imatinib or BCR-ABL knockdown. TXNIP restoration sensitizes CML cells to imatinib treatment and compromises imatinib resistant CML cell survival, predominantly through the blockage of both glycolysis and glucose oxidation which results in the mitochondrial dysfunction and ATP production. In particular, TXNIP suppresses expressions of the key glycolytic enzyme, hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA), potentially through Fbw7-dependent c-Myc degradation. In accordance, BCR-ABL suppression of TXNIP provided a novel survival pathway for the transformation of mouse bone marrow cells. Knockout of TXNIP accelerated BCR-ABL transformation, whereas TXNIP overexpression suppressed this transformation. Combination of drug inducing TXNIP expression with imatinib synergistically kills CML cells from patients and further extends the survival of CML mice. Thus, the activation of TXNIP represents an effective strategy for CML treatment to overcome resistance.
Collapse
Affiliation(s)
- Lin Feng
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ruxin Ding
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xuan Qu
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuanchun Li
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Tong Shen
- Department of Digestive Surgery, Xi'an International Medical Center, Xi'an, China
| | - Lei Wang
- Xi'an Beihuan Hospital, Xi'an, China
| | - Ruikai Li
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Juan Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northwest University, Xi'an, China
| | - Yi Ru
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xin Bu
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Yang Wang
- Tongchuan People's Hospital, Tongchuan, China
| | - Min Li
- Xi'an Eastern Hospital, Xi'an, China
| | - Wenqi Song
- Jiamusi Maternal and Child Health Care Hospital, Jiamusi, Heilongjiang, China
| | - Liangliang Shen
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.
| | - Pengxia Zhang
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China.
| |
Collapse
|
8
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
9
|
Papež M, Jiménez Lancho V, Eisenhut P, Motheramgari K, Borth N. SLAM-seq reveals early transcriptomic response mechanisms upon glutamine deprivation in Chinese hamster ovary cells. Biotechnol Bioeng 2023; 120:970-986. [PMID: 36575109 DOI: 10.1002/bit.28320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Mammalian cells frequently encounter subtle perturbations during recombinant protein production. Identifying the genetic factors that govern the cellular stress response can facilitate targeted genetic engineering to obtain production cell lines that demonstrate a higher stress tolerance. To simulate nutrient stress, Chinese hamster ovary (CHO) cells were transferred into a glutamine(Q)-free medium and transcriptional dynamics using thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) along with standard RNA-seq of stressed and unstressed cells were investigated. The SLAM-seq method allows differentiation between actively transcribed, nascent mRNA, and total (previously present) mRNA in the sample, adding an additional, time-resolved layer to classic RNA-sequencing. The cells tackle amino acid (AA) limitation by inducing the integrated stress response (ISR) signaling pathway, reflected in Atf4 overexpression in the early hours post Q deprivation, leading to subsequent activation of its targets, Asns, Atf3, Ddit3, Eif4ebp1, Gpt2, Herpud1, Slc7a1, Slc7a11, Slc38a2, Trib3, and Vegfa. The GCN2-eIF2α-ATF4 pathway is confirmed by a significant halt in transcription of translation-related genes at 24 h post Q deprivation. The downregulation of lipid synthesis indicates the inhibition of the mTOR pathway, further confirmed by overexpression of Sesn2. Furthermore, SLAM-seq detects short-lived transcription factors, such as Egr1, that would have been missed in standard experimental designs with RNA-seq. Our results describe the successful establishment of SLAM-seq in CHO cells and therefore facilitate its future use in other scenarios where dynamic transcriptome profiling in CHO cells is essential.
Collapse
Affiliation(s)
- Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Graz, Austria
| | | | - Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Graz, Austria
| | | | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Graz, Austria
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
10
|
Akl MG, Widenmaier SB. Immunometabolic factors contributing to obesity-linked hepatocellular carcinoma. Front Cell Dev Biol 2023; 10:1089124. [PMID: 36712976 PMCID: PMC9877434 DOI: 10.3389/fcell.2022.1089124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major public health concern that is promoted by obesity and associated liver complications. Onset and progression of HCC in obesity is a multifactorial process involving complex interactions between the metabolic and immune system, in which chronic liver damage resulting from metabolic and inflammatory insults trigger carcinogenesis-promoting gene mutations and tumor metabolism. Moreover, cell growth and proliferation of the cancerous cell, after initiation, requires interactions between various immunological and metabolic pathways that provide stress defense of the cancer cell as well as strategic cell death escape mechanisms. The heterogenic nature of HCC in addition to the various metabolic risk factors underlying HCC development have led researchers to focus on examining metabolic pathways that may contribute to HCC development. In obesity-linked HCC, oncogene-induced modifications and metabolic pathways have been identified to support anabolic demands of the growing HCC cells and combat the concomitant cell stress, coinciding with altered utilization of signaling pathways and metabolic fuels involved in glucose metabolism, macromolecule synthesis, stress defense, and redox homeostasis. In this review, we discuss metabolic insults that can underlie the transition from steatosis to steatohepatitis and from steatohepatitis to HCC as well as aberrantly regulated immunometabolic pathways that enable cancer cells to survive and proliferate in the tumor microenvironment. We also discuss therapeutic modalities targeted at HCC prevention and regression. A full understanding of HCC-associated immunometabolic changes in obesity may contribute to clinical treatments that effectively target cancer metabolism.
Collapse
Affiliation(s)
- May G. Akl
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Physiology, University of Alexandria, Alexandria, Egypt
| | - Scott B. Widenmaier
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
11
|
An Update on the Metabolic Landscape of Oncogenic Viruses. Cancers (Basel) 2022; 14:cancers14235742. [PMID: 36497226 PMCID: PMC9738352 DOI: 10.3390/cancers14235742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Viruses play an important role in cancer development as about 12% of cancer types are linked to viral infections. Viruses that induce cellular transformation are known as oncoviruses. Although the mechanisms of viral oncogenesis differ between viruses, all oncogenic viruses share the ability to establish persistent chronic infections with no obvious symptoms for years. During these prolonged infections, oncogenic viruses manipulate cell signaling pathways that control cell cycle progression, apoptosis, inflammation, and metabolism. Importantly, it seems that most oncoviruses depend on these changes for their persistence and amplification. Metabolic changes induced by oncoviruses share many common features with cancer metabolism. Indeed, viruses, like proliferating cancer cells, require increased biosynthetic precursors for virion production, need to balance cellular redox homeostasis, and need to ensure host cell survival in a given tissue microenvironment. Thus, like for cancer cells, viral replication and persistence of infected cells frequently depend on metabolic changes. Here, we draw parallels between metabolic changes observed in cancers or induced by oncoviruses, with a focus on pathways involved in the regulation of glucose, lipid, and amino acids. We describe whether and how oncoviruses depend on metabolic changes, with the perspective of targeting them for antiviral and onco-therapeutic approaches in the context of viral infections.
Collapse
|
12
|
Katturajan R, Nithiyanandam S, Parthasarathy M, Valsala Gopalakrishnan A, Sathiyamoorthi E, Lee J, Ramesh T, Iyer M, Prince SE, Ganesan R. Immunomodulatory Role of Thioredoxin Interacting Protein in Cancer's Impediments: Current Understanding and Therapeutic Implications. Vaccines (Basel) 2022; 10:1902. [PMID: 36366411 PMCID: PMC9699629 DOI: 10.3390/vaccines10111902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 10/30/2023] Open
Abstract
Cancer, which killed ten million people in 2020, is expected to become the world's leading health problem and financial burden. Despite the development of effective therapeutic approaches, cancer-related deaths have increased by 25.4% in the last ten years. Current therapies promote apoptosis and oxidative stress DNA damage and inhibit inflammatory mediators and angiogenesis from providing temporary relief. Thioredoxin-binding protein (TXNIP) causes oxidative stress by inhibiting the function of the thioredoxin system. It is an important regulator of many redox-related signal transduction pathways in cells. In cancer cells, it functions as a tumor suppressor protein that inhibits cell proliferation. In addition, TXNIP levels in hemocytes increased after immune stimulation, suggesting that TXNIP plays an important role in immunity. Several studies have provided experimental evidence for the immune modulatory role of TXNIP in cancer impediments. TXNIP also has the potential to act against immune cells in cancer by mediating the JAK-STAT, MAPK, and PI3K/Akt pathways. To date, therapies targeting TXNIP in cancer are still under investigation. This review highlights the role of TXNIP in preventing cancer, as well as recent reports describing its functions in various immune cells, signaling pathways, and promoting action against cancer.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sangeetha Nithiyanandam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Manisha Parthasarathy
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Coimbatore 641003, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon 24253, Korea
| |
Collapse
|
13
|
Zhou J, Li T, Chen H, Jiang Y, Zhao Y, Huang J, Chen Z, Tang X, Huang Z, Yang Z. ADAMTS10 inhibits aggressiveness via JAK/STAT/c-MYC pathway and reprograms macrophage to create an anti-malignant microenvironment in gastric cancer. Gastric Cancer 2022; 25:1002-1016. [PMID: 35925524 DOI: 10.1007/s10120-022-01319-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND A disintegrin and metalloproteinase with thrombospondin motifs 10 (ADAMTS10) plays a role in extracellular matrix and correlates with Weill-Marchesani syndrome. However, its role in gastric cancer remains unknown. Thus, we started this research to unveil the role of ADAMTS10 in gastric cancer (GC). METHODS The expression of ADAMTS10 in GC was analyzed by immunohistochemical staining and quantitative RT-PCR (qRT-PCR). The effects of ADAMTS10 inhibiting GC cell progression were conducted by functional experiments in vitro and in vivo. Flow cytometry was used to discover changing of cell cycle, apoptosis and ROS by ADAMTS10 in GC cell. Western blot was applied to identify targets of ADAMTS10. Western blot, qRT-PCR and flow cytometry were applied to discover the effect of ADAMT10 on THP1. RESULTS ADAMTS10 expression was downregulated in GC tissue and patients with low ADAMTS10 levels had poorer overall survival. ADAMTS10 overexpression altered cell cycle, promoted apoptosis, and inhibited proliferation, migration, and invasion in vitro and in vivo. ADAMTS10 regulated TXNIP and ROS through the JAK/STAT/c-MYC pathway. Decreasing TXNIP and ROS reversed the inhibitory effect of ADAMTS10 on cell migration and invasion in vitro. ADAMTS10 secreted by GC cells was absorbed by THP1 and regulated TXNIP and ROS in THP1. ADAMTS10 secreted by GC cells inhibited macrophage M2 polarization. CONCLUSIONS These results suggest that ADAMTS10 targets TXNIP and ROS via the JAK/STAT/c-MYC pathway and that may play important roles in GC progression and macrophage polarization which indicates that ADAMTS10 can be a potential survival marker for gastric cancer.
Collapse
Affiliation(s)
- Junyi Zhou
- Department of Gastrointestinal Surgery Section 2, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Tuoyang Li
- Department of Gastrointestinal Surgery Section 2, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Hao Chen
- Department of Gastrointestinal Surgery Section 2, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yingming Jiang
- Department of Gastrointestinal Surgery Section 2, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yandong Zhao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Department of Pathology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Jintuan Huang
- Department of Gastrointestinal Surgery Section 2, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Zijian Chen
- Department of Gastrointestinal Surgery Section 2, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xiaocheng Tang
- Department of Gastrointestinal Surgery Section 2, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhenze Huang
- Department of Gastrointestinal Surgery Section 2, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Zuli Yang
- Department of Gastrointestinal Surgery Section 2, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
14
|
Li J, Pan J, Liu Y, Luo X, Yang C, Xiao W, Li Q, Yang L, Zhang X. 3‑Bromopyruvic acid regulates glucose metabolism by targeting the c‑Myc/TXNIP axis and induces mitochondria‑mediated apoptosis in TNBC cells. Exp Ther Med 2022; 24:520. [PMID: 35837063 PMCID: PMC9257941 DOI: 10.3892/etm.2022.11447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022] Open
Abstract
Aerobic glycolysis is commonly observed in tumor cells, including triple-negative breast cancer (TNBC) cells, and the rate of aerobic glycolysis is higher in TNBC cells than in non-TNBC cells. Hexokinase 2 (HK2) is a key enzyme in the glycolytic pathway and a target of the transcription factor c-Myc, which is highly expressed in TNBC and promotes aerobic glycolysis by enhancing HK2 expression. As an inhibitor of HK2, 3-bromopyruvic acid (3-BrPA) exhibits good therapeutic efficacy in intrahepatic and extrahepatic tumors and inhibits the proliferation of human tumor cells with high expression levels of c-Myc in vivo and in vitro. In addition, 3-BrPA combines with photodynamic therapy to inhibit TNBC cell migration. Thioredoxin-interacting protein (TXNIP) competes with c-Myc to reduce glucose consumption in tumor cells to restrain cell proliferation. A comparative analysis was performed in the present study in TNBC (HCC1143) and non-TNBC (MCF-7) cell lines to explore the effect of 3-BrPA on energy metabolism in TNBC cells and to investigate the possible mechanism of action. Cell viability and apoptosis were detected through Cell Counting Kit-8 and flow cytometry assays, respectively. Expression levels of HK2, glucose transporter 1, TXNIP, c-Myc and mitochondria-regulated apoptosis pathway proteins were measured through western blotting. 3-BrPA inhibited cell proliferation, downregulated c-Myc and HK2 expression, and upregulated TXNIP expression in TNBC cells, but it doesn't have the same effect on non-TNBC cells. Furthermore, 3-BrPA induced the typical manifestations of mitochondrial-mediated apoptosis such as decreasing Bcl-2 expression and increasing Bax, Cyt-C and Caspase-3 expression. The present results suggested that 3-BrPA promoted TXNIP protein expression and reduced HK2 expression in TNBC cells by downregulating c-Myc expression, inhibiting glycolysis including suppressing lactate generation, intracellular ATP generation and HK activity, inducing mitochondrial-mediated apoptosis and eventually suppressing TNBC cell proliferation. These findings may reveal a novel therapeutic target for the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jianmin Pan
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yang Liu
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaohui Luo
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Cheng Yang
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wangfa Xiao
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qishang Li
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lihui Yang
- Department of Nursing, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaodong Zhang
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
15
|
TXNIP: A Double-Edged Sword in Disease and Therapeutic Outlook. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7805115. [PMID: 35450411 PMCID: PMC9017576 DOI: 10.1155/2022/7805115] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) was originally named vitamin D3 upregulated protein-1 (VDUP1) because of its ability to bind to thioredoxin (TRX) and inhibit TRX function and expression. TXNIP is an alpha-arrestin protein that is essential for redox homeostasis in the human body. TXNIP may act as a double-edged sword in the cell. The balance of TXNIP is crucial. A study has shown that TXNIP can travel between diverse intracellular locations and bind to different proteins to play different roles under oxidative stress. The primary function of TXNIP is to induce apoptosis or pyroptosis under oxidative stress. TXNIP also inhibits proliferation and migration in cancer cells, although TXNIP levels decrease, and function diminishes in various cancers. In this review, we summarized the main structure, binding proteins, pathways, and the role of TXNIP in diseases, aiming to explore the double-edged sword role of TXNIP, and expect it to be helpful for future treatment using TXNIP as a therapeutic target.
Collapse
|
16
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
17
|
Liu RX, Tang W, Zheng BY, Yang Y, Li ZY, Gui T, Zhang HT, Liu N, Zha ZG, Li JX. YAP/miR-524-5p axis negatively regulates TXNIP expression to promote chondrosarcoma cell growth. Biochem Biophys Res Commun 2021; 590:20-26. [PMID: 34968780 DOI: 10.1016/j.bbrc.2021.12.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022]
Abstract
Chondrosarcoma (CHS) is the second most common bone malignant tumor and currently has limited treatment options. We have recently demonstrated that thioredoxin interacting protein (TXNIP) plays a crucial role in the oncogenesis of bone sarcoma, yet its implication in CHS is underdetermined. In the present study, we first found that knockdown of TXNIP promotes the proliferation of CHS cell largely through increasing their glycolytic metabolism, which is well-known as Warburg effect for providing energy. Consistent with our previous report that YAP is fundamental for CHS cell growth, herein we revealed that YAP functioned as an upstream molecule of TXNIP, and that YAP negatively regulated TXNIP mRNA and protein expression both in vitro and in vivo. Mechanistically, although knockdown of YAP upregulated both the nuclear and cytoplasmic TXNIP expression, we did not observe any obvious interaction between YAP and TXNIP; instead, miRNA-524-5p was demonstrated to be required for YAP-regulated TXNIP expression and thus controlling CHS cell growth. Together, our study reveals that TXNIP is a tumor suppressor in terms of CHS, and that the YAP/miRNA-524-5p/TXNIP signaling axis may provide a novel clue for CHS targeted therapy.
Collapse
Affiliation(s)
- Ri-Xu Liu
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Wang Tang
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Bo-Yuan Zheng
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Yong Yang
- Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China; Department of Joint Surgery, The Affiliated Shunde Hospital of Jinan University, Foshan, 528305, China
| | - Zhen-Yan Li
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Tao Gui
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Huan-Tian Zhang
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Ning Liu
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Zhen-Gang Zha
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China.
| | - Jing-Xiang Li
- NanFang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Mukha A, Kahya U, Linge A, Chen O, Löck S, Lukiyanchuk V, Richter S, Alves TC, Peitzsch M, Telychko V, Skvortsov S, Negro G, Aschenbrenner B, Skvortsova II, Mirtschink P, Lohaus F, Hölscher T, Neubauer H, Rivandi M, Labitzky V, Lange T, Franken A, Behrens B, Stoecklein NH, Toma M, Sommer U, Zschaeck S, Rehm M, Eisenhofer G, Schwager C, Abdollahi A, Groeben C, Kunz-Schughart LA, Baretton GB, Baumann M, Krause M, Peitzsch C, Dubrovska A. GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics 2021; 11:7844-7868. [PMID: 34335968 PMCID: PMC8315064 DOI: 10.7150/thno.58655] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is one of the curative treatment options for localized prostate cancer (PCa). The curative potential of radiotherapy is mediated by irradiation-induced oxidative stress and DNA damage in tumor cells. However, PCa radiocurability can be impeded by tumor resistance mechanisms and normal tissue toxicity. Metabolic reprogramming is one of the major hallmarks of tumor progression and therapy resistance. Specific metabolic features of PCa might serve as therapeutic targets for tumor radiosensitization and as biomarkers for identifying the patients most likely to respond to radiotherapy. The study aimed to characterize a potential role of glutaminase (GLS)-driven glutamine catabolism as a prognostic biomarker and a therapeutic target for PCa radiosensitization. Methods: We analyzed primary cell cultures and radioresistant (RR) derivatives of the conventional PCa cell lines by gene expression and metabolic assays to identify the molecular traits associated with radiation resistance. Relative radiosensitivity of the cell lines and primary cell cultures were analyzed by 2-D and 3-D clonogenic analyses. Targeting of glutamine (Gln) metabolism was achieved by Gln starvation, gene knockdown, and chemical inhibition. Activation of the DNA damage response (DDR) and autophagy was assessed by gene expression, western blotting, and fluorescence microscopy. Reactive oxygen species (ROS) and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) were analyzed by fluorescence and luminescence probes, respectively. Cancer stem cell (CSC) properties were investigated by sphere-forming assay, CSC marker analysis, and in vivo limiting dilution assays. Single circulating tumor cells (CTCs) isolated from the blood of PCa patients were analyzed by array comparative genome hybridization. Expression levels of the GLS1 and MYC gene in tumor tissues and amino acid concentrations in blood plasma were correlated to a progression-free survival in PCa patients. Results: Here, we found that radioresistant PCa cells and prostate CSCs have a high glutamine demand. GLS-driven catabolism of glutamine serves not only for energy production but also for the maintenance of the redox state. Consequently, glutamine depletion or inhibition of critical regulators of glutamine utilization, such as GLS and the transcription factor MYC results in PCa radiosensitization. On the contrary, we found that a combination of glutamine metabolism inhibitors with irradiation does not cause toxic effects on nonmalignant prostate cells. Glutamine catabolism contributes to the maintenance of CSCs through regulation of the alpha-ketoglutarate (α-KG)-dependent chromatin-modifying dioxygenase. The lack of glutamine results in the inhibition of CSCs with a high aldehyde dehydrogenase (ALDH) activity, decreases the frequency of the CSC populations in vivo and reduces tumor formation in xenograft mouse models. Moreover, this study shows that activation of the ATG5-mediated autophagy in response to a lack of glutamine is a tumor survival strategy to withstand radiation-mediated cell damage. In combination with autophagy inhibition, the blockade of glutamine metabolism might be a promising strategy for PCa radiosensitization. High blood levels of glutamine in PCa patients significantly correlate with a shorter prostate-specific antigen (PSA) doubling time. Furthermore, high expression of critical regulators of glutamine metabolism, GLS1 and MYC, is significantly associated with a decreased progression-free survival in PCa patients treated with radiotherapy. Conclusions: Our findings demonstrate that GLS-driven glutaminolysis is a prognostic biomarker and therapeutic target for PCa radiosensitization.
Collapse
Affiliation(s)
- Anna Mukha
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
| | - Uğur Kahya
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
| | - Annett Linge
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Oleg Chen
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Department of Cell Signaling, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Vasyl Lukiyanchuk
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
| | - Susan Richter
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Tiago C Alves
- Department for Clinical Pathobiochemistry, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Vladyslav Telychko
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Giulia Negro
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Bertram Aschenbrenner
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Fabian Lohaus
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Tobias Hölscher
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Düsseldorf, Germany
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Düsseldorf, Germany
| | - Vera Labitzky
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Düsseldorf, Germany
| | - Bianca Behrens
- General, Visceral and Paediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nikolas H Stoecklein
- General, Visceral and Paediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Marieta Toma
- Institute of Pathology, University of Bonn, Bonn, Germany
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Ulrich Sommer
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Sebastian Zschaeck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Maximilian Rehm
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Graeme Eisenhofer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Christian Schwager
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Heidelberg, Germany
| | - Christer Groeben
- Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Leoni A Kunz-Schughart
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Claudia Peitzsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| |
Collapse
|
19
|
Yu W, Yang X, Zhang Q, Sun L, Yuan S, Xin Y. Targeting GLS1 to cancer therapy through glutamine metabolism. Clin Transl Oncol 2021; 23:2253-2268. [PMID: 34023970 DOI: 10.1007/s12094-021-02645-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022]
Abstract
Glutamine metabolism is one of the hallmarks of cancers which is described as an essential role in serving as a major energy and building blocks supply to cell proliferation in cancer cells. Many malignant tumor cells always display glutamine addiction. The "kidney-type" glutaminase (GLS1) is a metabolism enzyme which plays a significant part in glutaminolysis. Interestingly, GLS1 is often overexpressed in highly proliferative cancer cells to fulfill enhanced glutamine demand. So far, GLS1 has been proved to be a significant target during the carcinogenesis process, and emerging evidence reveals that its inhibitors could provide a benefit strategy for cancer therapy. Herein, we summarize the prognostic value of GLS1 in multiple cancer type and its related regulatory factors which are associated with antitumor activity. Moreover, this review article highlights the remarkable reform of discovery and development for GLS1 inhibitors. On the basis of case studies, our perspectives for targeting GLS1 and development of GLS1 antagonist are discussed in the final part.
Collapse
Affiliation(s)
- Wei Yu
- China Pharmaceutical University, Nanjing, 21000, Jiangsu, China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
| | - XiangYu Yang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Qian Zhang
- China Pharmaceutical University, Nanjing, 21000, Jiangsu, China
| | - Li Sun
- China Pharmaceutical University, Nanjing, 21000, Jiangsu, China
| | - ShengTao Yuan
- China Pharmaceutical University, Nanjing, 21000, Jiangsu, China.
| | - YongJie Xin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
20
|
Mazzio E, Badisa R, Mack N, Cassim S, Zdralevic M, Pouyssegur J, Soliman KFA. Whole-transcriptome Analysis of Fully Viable Energy Efficient Glycolytic-null Cancer Cells Established by Double Genetic Knockout of Lactate Dehydrogenase A/B or Glucose-6-Phosphate Isomerase. Cancer Genomics Proteomics 2021; 17:469-497. [PMID: 32859627 DOI: 10.21873/cgp.20205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Nearly all mammalian tumors of diverse tissues are believed to be dependent on fermentative glycolysis, marked by elevated production of lactic acid and expression of glycolytic enzymes, most notably lactic acid dehydrogenase (LDH). Therefore, there has been significant interest in developing chemotherapy drugs that selectively target various isoforms of the LDH enzyme. However, considerable questions remain as to the consequences of biological ablation of LDH or upstream targeting of the glycolytic pathway. MATERIALS AND METHODS In this study, we explore the biochemical and whole transcriptomic effects of CRISPR-Cas9 gene knockout (KO) of lactate dehydrogenases A and B [LDHA/B double KO (DKO)] and glucose-6-phosphate isomerase (GPI KO) in the human colon cancer cell line LS174T, using Affymetrix 2.1 ST arrays. RESULTS The metabolic biochemical profiles corroborate that relative to wild type (WT), LDHA/B DKO produced no lactic acid, (GPI KO) produced minimal lactic acid and both KOs displayed higher mitochondrial respiration, and minimal use of glucose with no loss of cell viability. These findings show a high biochemical energy efficiency as measured by ATP in glycolysis-null cells. Next, transcriptomic analysis conducted on 48,226 mRNA transcripts reflect 273 differentially expressed genes (DEGS) in the GPI KO clone set, 193 DEGS in the LDHA/B DKO clone set with 47 DEGs common to both KO clones. Glycolytic-null cells reflect up-regulation in gene transcripts typically associated with nutrient deprivation / fasting and possible use of fats for energy: thioredoxin interacting protein (TXNIP), mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), PPARγ coactivator 1α (PGC-1α), and acetyl-CoA acyltransferase 2 (ACAA2). Other changes in non-ergometric transcripts in both KOs show losses in "stemness", WNT signaling pathway, chemo/radiation resistance, retinoic acid synthesis, drug detoxification, androgen/estrogen activation, and extracellular matrix reprogramming genes. CONCLUSION These findings demonstrate that: 1) The "Warburg effect" is dispensable, 2) loss of the LDHAB gene is not only inconsequential to viability but fosters greater mitochondrial energy, and 3) drugs that target LDHA/B are likely to be ineffective without a plausible combination second drug target.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Ramesh Badisa
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Nzinga Mack
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Shamir Cassim
- Department of Medical Biology, Centre Scientifique de Monaco, Monaco, Monaco
| | - Masa Zdralevic
- University Côte d'Azur, IRCAN, CNRS, Centre A. Lacassagne, Nice, France
| | - Jacques Pouyssegur
- Department of Medical Biology, Centre Scientifique de Monaco, Monaco, Monaco .,University Côte d'Azur, IRCAN, CNRS, Centre A. Lacassagne, Nice, France
| | - Karam F A Soliman
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
21
|
Ge H, Tian M, Pei Q, Tan F, Pei H. Extracellular Matrix Stiffness: New Areas Affecting Cell Metabolism. Front Oncol 2021; 11:631991. [PMID: 33718214 PMCID: PMC7943852 DOI: 10.3389/fonc.2021.631991] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, in-depth studies have shown that extracellular matrix stiffness plays an important role in cell growth, proliferation, migration, immunity, malignant transformation, and apoptosis. Most of these processes entail metabolic reprogramming of cells. However, the exact mechanism through which extracellular matrix stiffness leads to metabolic reprogramming remains unclear. Insights regarding the relationship between extracellular matrix stiffness and metabolism could help unravel novel therapeutic targets and guide development of clinical approaches against a myriad of diseases. This review provides an overview of different pathways of extracellular matrix stiffness involved in regulating glucose, lipid and amino acid metabolism.
Collapse
Affiliation(s)
- Heming Ge
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mengxiang Tian
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fengbo Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Haiping Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Cardoso HJ, Figueira MI, Vaz CV, Carvalho TMA, Brás LA, Madureira PA, Oliveira PJ, Sardão VA, Socorro S. Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5α-dihydrotestosterone regulation. Cell Oncol (Dordr) 2021; 44:385-403. [PMID: 33464483 DOI: 10.1007/s13402-020-00575-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Resistance to androgen-deprivation therapies and progression to so-called castrate-resistant prostate cancer (CRPC) remain challenges in prostate cancer (PCa) management and treatment. Among other alterations, CRPC has been associated with metabolic reprogramming driven by androgens. Here, we investigated the role of androgens in regulating glutaminolysis in PCa cells and determined the relevance of this metabolic route in controlling the survival and growth of androgen-sensitive (LNCaP) and CRPC (DU145 and PC3) cells. METHODS PCa cells (LNCaP, DU145 and PC3) and 3-month old rats were treated with 5α-dihydrotestosterone (DHT). Alternatively, LNCaP cells were exposed to the glutaminase inhibitor BPTES, alone or in combination with the anti-androgen bicalutamide. Biochemical, Western blot and extracellular flux assays were used to evaluate the viability, proliferation, migration and metabolism of PCa cells in response to DHT treatment or glutaminase inhibition. RESULTS We found that DHT up-regulated the expression of the glutamine transporter ASCT2 and glutaminase, both in vitro in LNCaP cells and in vivo in rat prostate cells. BPTES diminished the viability and migration of PCa cells, while increasing caspase-3 activity. CRPC cells were found to be more dependent on glutamine and more sensitive to glutaminase inhibition. BPTES and bicalutamide co-treatment had an additive effect on suppressing LNCaP cell viability. Finally, we found that inhibition of glutaminolysis differentially affected glycolysis and lipid metabolism in both androgen-sensitive and CRPC cells. CONCLUSION Our data reveal glutaminolysis as a central metabolic route controlling PCa cell fate and highlight the relevance of targeting glutaminase for CRPC treatment.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Centre for Biomedical Research (CBMR), Campus of Gambelas, University of Algarve, Faro, Portugal
| | - Marília I Figueira
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Luís A Brás
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Patrícia A Madureira
- Centre for Biomedical Research (CBMR), Campus of Gambelas, University of Algarve, Faro, Portugal.,Brain Tumour Research Centre of Excellence, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
23
|
Zhang J, Tian X, Yin H, Xiao S, Yi S, Zhang Y, Zeng F. TXNIP induced by MondoA, rather than ChREBP, suppresses cervical cancer cell proliferation, migration and invasion. J Biochem 2020; 167:371-377. [PMID: 31782782 DOI: 10.1093/jb/mvz105] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/10/2019] [Indexed: 01/18/2023] Open
Abstract
Evidence has indicated the associations between thioredoxin-interacting protein (TXNIP) and cancers. However, the role of TXNIP in cervical cancer remains unclear. Hence, this study aims to investigate the role of TXNIP in regulating cervical cancer cell proliferation, migration and invasion. TXNIP expression can be regulated by either MondoA or ChREBP in a cell- or tissue- dependent manner. Thus, we also explored whether TXNIP expression in cervical cancer can be regulated by MondoA or ChREBP. Our results showed that TXNIP expression was decreased in cervical cancer cells (HeLa, SiHa, CaSki, MS751, C-33A). Furthermore, TXNIP overexpression inhibited cell proliferation, migration and invasion in HeLa cells, whereas TXNIP silencing exerted the opposite effect in C-33A cells. Moreover, TXNIP expression could be induced by MondoA, rather than ChREBP in HeLa cells. Additionally, MondoA overexpression inhibited cell proliferation, migration and invasion through upregulating TXNIP in HeLa cells. In summary, TXNIP induced by MondoA, rather than ChREBP, suppresses cervical cancer cell proliferation, migration and invasion. Our findings provide new ideas for the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Junhua Zhang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Xingbo Tian
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Huifang Yin
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Shuijing Yi
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Youzhong Zhang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Fei Zeng
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| |
Collapse
|
24
|
Cardoso HJ, Carvalho TMA, Fonseca LRS, Figueira MI, Vaz CV, Socorro S. Revisiting prostate cancer metabolism: From metabolites to disease and therapy. Med Res Rev 2020; 41:1499-1538. [PMID: 33274768 DOI: 10.1002/med.21766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/24/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa), one of the most commonly diagnosed cancers worldwide, still presents important unmet clinical needs concerning treatment. In the last years, the metabolic reprogramming and the specificities of tumor cells emerged as an exciting field for cancer therapy. The unique features of PCa cells metabolism, and the activation of specific metabolic pathways, propelled the use of metabolic inhibitors for treatment. The present work revises the knowledge of PCa metabolism and the metabolic alterations that underlie the development and progression of the disease. A focus is given to the role of bioenergetic sources, namely, glucose, lipids, and glutamine sustaining PCa cell survival and growth. Moreover, it is described as the action of oncogenes/tumor suppressors and sex steroid hormones in the metabolic reprogramming of PCa. Finally, the status of PCa treatment based on the inhibition of metabolic pathways is presented. Globally, this review updates the landscape of PCa metabolism, highlighting the critical metabolic alterations that could have a clinical and therapeutic interest.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
25
|
Jaganjac M, Milkovic L, Sunjic SB, Zarkovic N. The NRF2, Thioredoxin, and Glutathione System in Tumorigenesis and Anticancer Therapies. Antioxidants (Basel) 2020; 9:E1151. [PMID: 33228209 PMCID: PMC7699519 DOI: 10.3390/antiox9111151] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer remains an elusive, highly complex disease and a global burden. Constant change by acquired mutations and metabolic reprogramming contribute to the high inter- and intratumor heterogeneity of malignant cells, their selective growth advantage, and their resistance to anticancer therapies. In the modern era of integrative biomedicine, realizing that a personalized approach could benefit therapy treatments and patients' prognosis, we should focus on cancer-driving advantageous modifications. Namely, reactive oxygen species (ROS), known to act as regulators of cellular metabolism and growth, exhibit both negative and positive activities, as do antioxidants with potential anticancer effects. Such complexity of oxidative homeostasis is sometimes overseen in the case of studies evaluating the effects of potential anticancer antioxidants. While cancer cells often produce more ROS due to their increased growth-favoring demands, numerous conventional anticancer therapies exploit this feature to ensure selective cancer cell death triggered by excessive ROS levels, also causing serious side effects. The activation of the cellular NRF2 (nuclear factor erythroid 2 like 2) pathway and induction of cytoprotective genes accompanies an increase in ROS levels. A plethora of specific targets, including those involved in thioredoxin (TRX) and glutathione (GSH) systems, are activated by NRF2. In this paper, we briefly review preclinical research findings on the interrelated roles of the NRF2 pathway and TRX and GSH systems, with focus given to clinical findings and their relevance in carcinogenesis and anticancer treatments.
Collapse
Affiliation(s)
| | | | | | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (L.M.); (S.B.S.)
| |
Collapse
|
26
|
Chen Y, Ning J, Cao W, Wang S, Du T, Jiang J, Feng X, Zhang B. Research Progress of TXNIP as a Tumor Suppressor Gene Participating in the Metabolic Reprogramming and Oxidative Stress of Cancer Cells in Various Cancers. Front Oncol 2020; 10:568574. [PMID: 33194655 PMCID: PMC7609813 DOI: 10.3389/fonc.2020.568574] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is a thioredoxin-binding protein that can mediate oxidative stress, inhibit cell proliferation, and induce apoptosis by inhibiting the function of the thioredoxin system. TXNIP is important because of its wide range of functions in cardiovascular diseases, neurodegenerative diseases, cancer, diabetes, and other diseases. Increasing evidence has shown that TXNIP expression is low in tumors and that it may act as a tumor suppressor in various cancer types such as hepatocarcinoma, breast cancer, and lung cancer. TXNIP is known to inhibit the proliferation of breast cancer cells by affecting metabolic reprogramming and can affect the invasion and migration of breast cancer cells through the TXNIP-HIF1α-TWIST signaling axis. TXNIP can also prevent the occurrence of bladder cancer by inhibiting the activation of ERK, which inhibits apoptosis in bladder cancer cells. In this review, we find that TXNIP can be regulated by binding to transcription factors or other binding proteins and can also be downregulated by epigenetic changes or miRNA. In addition, we also summarize emerging insights on TXNIP expression and its functional role in different kinds of cancers, as well as clarify its participation in metabolic reprogramming and oxidative stress in cancer cells, wherein it acts as a putative tumor suppressor gene to inhibit the proliferation, invasion, and migration of different tumor cells as well as promote apoptosis in these cells. TXNIP may therefore be of basic and clinical significance for finding novel molecular targets that can facilitate the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Yiting Chen
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jieling Ning
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenjie Cao
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuanglian Wang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Du
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahui Jiang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Xueping Feng
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
27
|
Ding M, Bu X, Li Z, Xu H, Feng L, Hu J, Wei X, Gao J, Tao Y, Cai B, Liu Y, Qu X, Shen L. NDRG2 ablation reprograms metastatic cancer cells towards glutamine dependence via the induction of ASCT2. Int J Biol Sci 2020; 16:3100-3115. [PMID: 33162818 PMCID: PMC7645990 DOI: 10.7150/ijbs.48066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/21/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Metastasis is the most common cause of lethal outcome in various types of cancers. Although the cell proliferation related metabolism rewiring has been well characterized, less is known about the association of metabolic changes with tumor metastasis. Herein, we demonstrate that metastatic tumor obtained a mesenchymal phenotype, which is obtained by the loss of tumor suppressor NDRG2 triggered metabolic switch to glutamine metabolism. Methods: mRNA-seq and gene expression profile analysis were performed to define the differential gene expressions in primary MEC1 and metastatic MC3 cells and the downstream pathways of NDRG2. NDRG2 regulation of Fbw7-dependent c-Myc stability were determined by immunoprecipitation and protein half-life assay. Luciferase reporter and ChIP assays were used to determine the roles of Akt and c-Myc in mediating NDRG2-dependent regulation of ASCT2 in in both tumor and NDRG2-knockout MEF cells. Finally, the effect of the NDRG2/Akt/c-Myc/ASCT2 signaling on glutaminolysis and tumor metastasis were evaluated by functional experiments and clinical samples. Results: Based on the gene expression profile analysis, we identified metastatic tumor cells acquired the mesenchymal-like characteristics and displayed the increased dependency on glutamine utilization. Further, the gain of NDRG2 function blocked epithelial-mesenchymal transition (EMT) and glutaminolysis, potentially through suppression of glutamine transporter ASCT2 expression. The ASCT2 restoration reversed NDRG2 inhibitory effect on EMT program and tumor metastasis. Mechanistic study indicates that NDRG2 promoted Fbw7-dependent c-Myc degradation by inhibiting Akt activation, and subsequently decreased c-Myc-mediated ASCT2 transcription, in both tumor and NDRG2-knockout MEF cells. Supporting the biological significance, the reciprocal relationship between NDRG2 and ASCT2 were observed in multiple types of tumor tissues, and associated with tumor malignancy. Conclusions: NDRG2-dependent repression of ASCT2 presumably is the predominant route by which NDRG2 rewires glutaminolysis and blocks metastatic tumor survival. Targeting glutaminolytic pathway may provide a new strategy for the treatment of metastatic tumors.
Collapse
Affiliation(s)
- Mingchao Ding
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.,State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases&Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, No. 145 Changle Xi Road, Xi'an, 710032, China
| | - Xin Bu
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhehao Li
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jiamusi University, Jiamusi, 154002, China
| | - Haokun Xu
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, the Fourth Military Medical University, Xi'an 710032, China
| | - Lin Feng
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Junbi Hu
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinxin Wei
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jiamusi University, Jiamusi, 154002, China
| | - Jiwei Gao
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yanyan Tao
- Xi'an Peihua University, Xi'an, 710125, China
| | - Bolei Cai
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases&Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, No. 145 Changle Xi Road, Xi'an, 710032, China
| | - Yanpu Liu
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases&Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, No. 145 Changle Xi Road, Xi'an, 710032, China
| | - Xuan Qu
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Liangliang Shen
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
28
|
Metabolic Constrains Rule Metastasis Progression. Cells 2020; 9:cells9092081. [PMID: 32932943 PMCID: PMC7563739 DOI: 10.3390/cells9092081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis formation accounts for the majority of tumor-associated deaths and consists of different steps, each of them being characterized by a distinctive adaptive phenotype of the cancer cells. Metabolic reprogramming represents one of the main adaptive phenotypes exploited by cancer cells during all the main steps of tumor and metastatic progression. In particular, the metabolism of cancer cells evolves profoundly through all the main phases of metastasis formation, namely the metastatic dissemination, the metastatic colonization of distant organs, the metastatic dormancy, and ultimately the outgrowth into macroscopic lesions. However, the metabolic reprogramming of metastasizing cancer cells has only recently become the subject of intense study. From a clinical point of view, the latter steps of the metastatic process are very important, because patients often undergo surgical removal of the primary tumor when cancer cells have already left the primary tumor site, even though distant metastases are not clinically detectable yet. In this scenario, to precisely elucidate if and how metabolic reprogramming drives acquisition of cancer-specific adaptive phenotypes might pave the way to new therapeutic strategies by combining chemotherapy with metabolic drugs for better cancer eradication. In this review we discuss the latest evidence that claim the importance of metabolic adaptation for cancer progression.
Collapse
|
29
|
Xie M, Xie R, Xie S, Wu Y, Wang W, Li X, Xu Y, Liu B, Zhou Y, Wang T, Gao L, Pan T. Thioredoxin interacting protein (TXNIP) acts as a tumor suppressor in human prostate cancer. Cell Biol Int 2020; 44:2094-2106. [PMID: 32639616 DOI: 10.1002/cbin.11418] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/16/2020] [Accepted: 07/05/2020] [Indexed: 12/15/2022]
Abstract
Prostate cancer (PCa) is one of the most common malignant tumors in the world. Thioredoxin interacting protein (TXNIP) is downregulated in a variety of human tumors and plays an important role in tumor suppression. However, the expression level and biological functions of TXNIP in PCa have not been identified yet. Therefore, this study aims to investigate the expression and biological functions of TXNIP in PCa. We reported that the expression of TXNIP was significantly decreased in PCa and associated with clinicopathological features. Overexpression of TXNIP could significantly inhibited PC-3 cells proliferation, migration, invasion, and glucose uptake. Additionally, overexpression of TXNIP could remarkably block cell cycle in the G0/G1 phase and promoted cell apoptosis. Furthermore, TXNIP expression correlated inversely with GLUT1 expression in PCa. Taken together, our results for the first time revealed that TXNIP was decreased in PCa. Moreover, TXNIP might act as a tumor suppressor of PCa and correlated with tumor occurrence and development. Our findings cast a new light on better understanding the occurrence and development of PCa and indicated that TXNIP might be favorable for PCa molecular target therapy.
Collapse
Affiliation(s)
- Ming Xie
- Department of Urology, Central Theater Command General Hospital of The Chinese People's Liberation Army, Wuhan, Hubei, China.,Wuhan Clinical Medical College, The First School of Clinical Medicine, Southern Medical University, Wuhan, Hubei, China
| | - Ruiyan Xie
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sen Xie
- Department of Urology, Central Theater Command General Hospital of The Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Yiyi Wu
- Department of Urology, Central Theater Command General Hospital of The Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Wei Wang
- Department of Urology, Central Theater Command General Hospital of The Chinese People's Liberation Army, Wuhan, Hubei, China.,Wuhan Clinical Medical College, The First School of Clinical Medicine, Southern Medical University, Wuhan, Hubei, China
| | - Xiang Li
- Department of Urology, Central Theater Command General Hospital of The Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Yuanyu Xu
- Department of Urology, Central Theater Command General Hospital of The Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Bo Liu
- Department of Urology, Central Theater Command General Hospital of The Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Yu Zhou
- Department of Urology, Central Theater Command General Hospital of The Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Central Theater Command General Hospital of The Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Lei Gao
- Department of Urology, Central Theater Command General Hospital of The Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Tiejun Pan
- Department of Urology, Central Theater Command General Hospital of The Chinese People's Liberation Army, Wuhan, Hubei, China.,Wuhan Clinical Medical College, The First School of Clinical Medicine, Southern Medical University, Wuhan, Hubei, China
| |
Collapse
|
30
|
Aquila S, Santoro M, Caputo A, Panno ML, Pezzi V, De Amicis F. The Tumor Suppressor PTEN as Molecular Switch Node Regulating Cell Metabolism and Autophagy: Implications in Immune System and Tumor Microenvironment. Cells 2020; 9:cells9071725. [PMID: 32708484 PMCID: PMC7408239 DOI: 10.3390/cells9071725] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Recent studies conducted over the past 10 years evidence the intriguing role of the tumor suppressor gene Phosphatase and Tensin Homolog deleted on Chromosome 10 PTEN in the regulation of cellular energy expenditure, together with its capability to modulate proliferation and survival, thus expanding our knowledge of its physiological functions. Transgenic PTEN mice models are resistant to oncogenic transformation, present decreased adiposity and reduced cellular glucose and glutamine uptake, together with increased mitochondrial oxidative phosphorylation. These acquisitions led to a novel understanding regarding the role of PTEN to counteract cancer cell metabolic reprogramming. Particularly, PTEN drives an “anti-Warburg state” in which less glucose is taken up, but it is more efficiently directed to the mitochondrial Krebs cycle. The maintenance of cellular homeostasis together with reduction of metabolic stress are controlled by specific pathways among which autophagy, a catabolic process strictly governed by mTOR and PTEN. Besides, a role of PTEN in metabolic reprogramming and tumor/stroma interactions in cancer models, has recently been established. The genetic inactivation of PTEN in stromal fibroblasts of mouse mammary glands, accelerates breast cancer initiation and progression. This review will discuss our novel understanding in the molecular connection between cell metabolism and autophagy by PTEN, highlighting novel implications regarding tumor/stroma/immune system interplay. The newly discovered action of PTEN opens innovative avenues for investigations relevant to counteract cancer development and progression.
Collapse
Affiliation(s)
- Saveria Aquila
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Marta Santoro
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Annalisa Caputo
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence:
| |
Collapse
|
31
|
MAGE-C2/CT10 promotes growth and metastasis through upregulating c-Myc expression in prostate cancer. Mol Cell Biochem 2020; 476:1-10. [PMID: 32935296 PMCID: PMC7867546 DOI: 10.1007/s11010-020-03814-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/20/2020] [Indexed: 11/24/2022]
Abstract
Prostate cancer (PC) is the most common reproductive cancer in men and the third leading cause of cancer death among men worldwide. Recently targeted therapy showed a significant therapeutic effect on PC, whereas finding more PC therapeutic target is still urgently needed. Melanoma-associated antigen-encoding C2 (MAGE-C2/CT10), which have significant homology with the MAGE-C1/CT-7 gene, was known to be involved in the development of a variety of tumors. However, the role and mechanism of MAGE-C2/CT10 in prostate cancer remains unclear. Herein, we found the high levels of MAGE-C2/CT10 in highly metastatic prostate cancer. Our findings confirmed that the depletion of MAGE-C2/CT10 suppressed the growth of PC cells, and restrained PC cell migration and invasion in vitro. We noticed MAGE-C2/CT10 could stimulate c-Myc expression via FBP1, and further contributed to PC cell proliferation and motility. Performing in vivo assays, we demonstrated MAGE-C2/CT10 promoted tumor growth and metastasis of PC cells in mice. Collectively, we found the abnormal expression of MAGE-C2/CT10 in PC, and revealed the regulatory mechanism underlying MAGE-C2/CT10 promoting PC progression and metastasis.
Collapse
|
32
|
Shi X, Zhou R, Zheng L, Jiang M. Prognostic significance of C-MYC dysregulation in esophageal squamous cell carcinoma: a meta-analysis. Biomark Med 2020; 14:599-609. [PMID: 32462905 DOI: 10.2217/bmm-2019-0294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aim: The clinicopathological and prognostic significance of C-MYC dysregulation (amplification or overexpression) in esophageal squamous cell carcinoma (ESCC) remains controversial. Therefore, we performed this meta-analysis to elucidate this relationship. Materials & methods: Available studies were retrieved from PubMed, Web of Science, EMBASE and the Cochrane Library, and ten studies with a total of 1432 patients were included in this meta-analysis. Results: Pooled results showed that C-MYC dysregulation was significantly associated with poor overall survival (hazard ratio: 1.405 [95% CI: 1.170-1.639]; p < 0.001) and lymph node metastasis (odds ratio: 1.798 [95% CI: 1.125-2.873]; p = 0.014). Subgroup analysis confirmed the results and more prominent predictive effects were observed in the C-MYC amplification group. Conclusion: C-MYC dysregulation is a promising biomarker for ESCC prognosis.
Collapse
Affiliation(s)
- Xuejiao Shi
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Renhua Zhou
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Leizhen Zheng
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Mawei Jiang
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| |
Collapse
|
33
|
Zhang X, Fu T, He Q, Gao X, Luo Y. Glucose-6-Phosphate Upregulates Txnip Expression by Interacting With MondoA. Front Mol Biosci 2020; 6:147. [PMID: 31993438 PMCID: PMC6962712 DOI: 10.3389/fmolb.2019.00147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/03/2019] [Indexed: 11/13/2022] Open
Abstract
The major metabolic fates of glucose in cells are glycolysis and the pentose phosphate pathway, and they share the first step: converting glucose to glucose-6-phosphate (G6P). Here, we show that G6P can be sensed by the transcription factor MondoA/Mlx to modulate Txnip expression. Endogenous knockdown and EMSA (gel migration assay) analyses both confirmed that G6P is the metabolic intermediate that activates the heterocomplex MondoA/Mlx to elicit the expression of Txnip. Additionally, the three-dimensional structure of MondoA is modeled, and the binding mode of G6P to MondoA is also predicted by in silico molecular docking and binding free energy calculation. Finally, free energy decomposition and mutational analyses suggest that certain residues in MondoA, GKL139-141 in particular, mediate its binding with G6P to activate MondoA, which signals the upregulation of the expression of Txnip.
Collapse
Affiliation(s)
- Xueyun Zhang
- Department of Biochemistry, School of Medicine, Cancer Institute of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou, China
| | - Tao Fu
- Department of Biochemistry, School of Medicine, Cancer Institute of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou, China
| | - Qian He
- Department of Biochemistry, School of Medicine, Cancer Institute of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou, China
| | - Xiang Gao
- Department of Biochemistry, School of Medicine, Cancer Institute of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou, China
| | - Yan Luo
- Department of Biochemistry, School of Medicine, Cancer Institute of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou, China
| |
Collapse
|
34
|
Feng L, Li J, Bu X, Zuo Y, Shen L, Qu X. BRAF V600E dictates cell survival via c-Myc-dependent induction of Skp2 in human melanoma. Biochem Biophys Res Commun 2020; 524:28-35. [PMID: 31980175 DOI: 10.1016/j.bbrc.2019.12.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
BRAFV600E mutation is frequently observed in melanoma, and contributes to tumor malignancy. Despite inhibition of BRAF causes a profound cell growth inhibition and a strong clinical benefit in BRAFV600E melanoma, acquired drug resistance is still the major hurdle. In this study, we demonstrate that BRAFV600E drives cell growth and glycolysis in melanoma cells but does so by a previously unappreciated mechanism that involves direct induction of Skp2. Skp2 is highly expressed in melanoma tissues and particularly in tissues with BRAFV600E mutation. The inhibition of BRAFV600E by either siRNA or inhibitor vemurafenib suppressed Skp2 expression and cell growth. Mechanistic study shows that BRAFV600E suppression of Skp2 is dependent on c-Myc transcription factor via specifically bounding to the E-box region on SKP2 promoter. Further, the overexpression of Skp2 resulted in a markedly increase in cell growth, cell cycle progression and glycolysis which were repressed by BRAFV600E inhibition. Supporting the biological significance, Skp2 is specifically correlated with poor patient outcome in BRAFV600E but did not in BRAFWT melanomas. Thus, as a downstream target of BRAFV600E, Skp2 is critical for responses to BRAF inhibition, indicating targeting Skp2 might be a promising strategy for the treatment of BRAFi resistant melanomas.
Collapse
Affiliation(s)
- Lin Feng
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jun Li
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xin Bu
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Zuo
- Affiliated Hospital of Xizang Minzu University, Xianyang, 712082, China
| | - Liangliang Shen
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Xuan Qu
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
35
|
Dysregulation of glutaminase and glutamine synthetase in cancer. Cancer Lett 2019; 467:29-39. [DOI: 10.1016/j.canlet.2019.09.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
|
36
|
Liu B. DPY30 functions in glucose homeostasis via integrating activated histone epigenetic modifications. Biochem Biophys Res Commun 2018; 507:286-290. [DOI: 10.1016/j.bbrc.2018.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 01/07/2023]
|