1
|
Wu Z, Shi M, Zhao X, Wu G, Zheng H, Cui Y, Shang Y. LINC00963 Represses Osteogenic Differentiation of hBMSCs via the miR-10b-5p/RAP2A/AKT Axis. Int J Sports Med 2024; 45:856-866. [PMID: 39068933 DOI: 10.1055/a-2323-9749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) is important for human bone formation. Long non-coding RNAs (lncRNAs) are critical regulators in osteogenic differentiation. This study aimed to explore the function and mechanisms of long intergenic non-protein coding RNA 963 (LINC00963) in affecting osteogenesis. Cell differentiation was assessed by alkaline phosphatase (ALP) activity detection and ALP staining assay. Meanwhile, levels of osteogenic marker genes, including RUNX family transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OPN), were detected by RT-qPCR and western blot. Cell proliferation and apoptosis were measured using CCK-8 assay and flow cytometry analysis. RNA immunoprecipitation (RIP), RNA pull-down and luciferase reporter assays were used to investigate the interaction between genes. LINC00963 expression was down-regulated in hBMSCs treated with osteogenic induction. LINC00963 overexpression inhibited hBMSCs differentiation, proliferation, and elevated apoptosis. LINC00963 acted as a competing endogenous RNA (ceRNA) to interact with miR-10b-5p and thereby regulated the expression level of Ras-related protein Rap-2a (RAP2A). LINC00963 regulated RAP2A to inhibit the level of phosphorylated AKT (p-AKT). LINC00963 inhibited hBMSCs differentiation, proliferation, and elevated apoptosis via the miR-10b-5p/RAP2A/AKT signaling, which might help improve the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhixin Wu
- Histology & Embryology Teaching and Researching Section, Xi'an Medical University, Xi'an, China
| | - Mingjuan Shi
- Public Health College, Xi'an Medical University, Xi'an, China
| | - Xuan Zhao
- Histology & Embryology Teaching and Researching Section, Xi'an Medical University, Xi'an, China
| | - Guifu Wu
- Department Endocrinology, Shaanxi Province People Hospital, Xi'an, China
| | - Huiyuan Zheng
- Histology & Embryology Teaching and Researching Section, Xi'an Medical University, Xi'an, China
| | - Yuanyuan Cui
- Histology & Embryology Teaching and Researching Section, Xi'an Medical University, Xi'an, China
| | - Yu Shang
- Clinical College, Xi'an Medical University, Xi'an, China
| |
Collapse
|
2
|
Lu MY, Hsieh PL, Chao SC, Fang CY, Ohiro Y, Liao YW, Yu CC, Chang MT. Targeting MetaLnc9/miR-143/FSCN1 axis inhibits oxidative stress and myofibroblast transdifferentiation in oral submucous fibrosis. J Dent Sci 2024; 19:1416-1425. [PMID: 39035266 PMCID: PMC11259661 DOI: 10.1016/j.jds.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/10/2024] [Indexed: 07/23/2024] Open
Abstract
Background/purpose Persistent activation of myofibroblasts is attributed to various dysregulated biological events conferring multiple types of fibrosis diseases, including oral submucous fibrosis (OSF). Although the significance of non-coding RNAs (ncRNAs) in the occurrence of fibrosis has been appreciated, the detailed mechanisms still have not been fully elucidated. The aim of this study was to identify key dysregulated ncRNAs and elucidate their pro-fibrotic mechanisms in promoting myofibroblast activation and the pathological development of OSF. Materials and methods Expression of non-coding RNAs and mRNAs in OSF cohort was determined using RNA sequencing and qRT-PCR. The molecular axis of pro-fibrotic ncRNAs were exploited via luciferase reporter activity assay and RNA expression rescue experiments. Functional assays, including collagen gel contraction, wound healing ability, cell migration, and reactive oxygen species (ROS) production, were conducted to assess the changes in the myofibroblastic phenotypes of primary human buccal mucosal fibroblasts. Results Herein, we found that long non-coding RNA MetaLnc9 was upregulated in OSF specimens and positively associated with several fibrosis markers. Silencing of MetaLnc9 diminished the features of activated myofibroblasts and the production of ROS. We not only showed that MetaLnc9 functioned as a competitive endogenous RNA of microRNA (miR)-143, but also demonstrated that the pro-fibrosis effect of MetaLnc9 on myofibroblast activities was mediated by suppression of miR-143. Moreover, our data showed that fascin actin-bundling protein 1 (FSCN1) was a direct target of miR-143 and positively related to MetaLnc9. Conclusion Upregulation of MetaLnc9 may enhance the activation of myofibroblasts by sponging miR-143 and titrating its inhibitory property on FSCN1.
Collapse
Affiliation(s)
- Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Fang
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yoichi Ohiro
- Oral and Maxillofacial Surgery, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Min-Te Chang
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
3
|
Hu D, Ma A, Lu H, Gao Z, Yu Y, Fan J, Liu S, Wang Y, Zhang M. LINC00963 Promotes Cisplatin Resistance in Esophageal Squamous Cell Carcinoma by Interacting with miR-10a to Upregulate SKA1 Expression. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04897-4. [PMID: 38507172 DOI: 10.1007/s12010-024-04897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Long non-coding RNA (lncRNA) is associated with a large number of tumor cellular functions together with chemotherapy resistance in a variety of tumors. LINC00963 was identified to regulate the malignant progression of various cancers. However, whether LINC00963 affects drug resistence in esophageal squamous cell carcinoma (ESCC) and the relevant molecular mechanisms have never been reported. This study aims to investigate the effect of LINC00963 on cisplatin resistance in ESCC. After detecting the level of LINC00963 in human esophageal squamous epithelial cells (HET-1 A), ESCC cells (TE-1) and cisplatin resistant cells of ESCC (TE-1/DDP), TE-1/DDP cell line and nude mouse model that interfered with LINC00963 expression were established. Then, the interaction among LINC00963, miR-10a, and SKA1 was clarified by double luciferase and RNA immunoprecipitation (RIP) assays. Meanwhile, the biological behavior changes of TE-1/DDP cells with miR-10a overexpression or SKA1 silencing were observed by CCK-8, flow cytometry, scratch, Transwell, and colony formation tests. Finally, the biological function of the LINC00963/SKA1 axis was elucidated by rescue experiments. LINC00963 was upregulated in TE-1 and TE-1/DDP cell lines. LINC00963 knockdown inhibited SKA1 expression of both cells and impaired tumorigenicity. Moreover, LINC00963 has a target relationship with miR-10a, and SKA1 is a target gene of miR-10a. MiR-10a overexpression or SKA1 silencing decreased the biological activity of TE-1/DDP cells and the expression of SKA1. Furthermore, SKA1 overexpression reverses the promoting effect of LINC00963 on cisplatin resistance of ESCC. LINC00963 regulates TE-1/DDP cells bioactivity and mediates cisplatin resistance through interacting with miR-10a and upregulating SKA1 expression.
Collapse
Affiliation(s)
- Dongxin Hu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Anqun Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Hongda Lu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhen Gao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yue Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jiaming Fan
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Shang Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yancheng Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Mingyan Zhang
- Department of Gastroenterology and Hepatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Road, Huaiyin District, Jinan, Shandong, 250021, China.
| |
Collapse
|
4
|
Xie Q, Tong C, Xiong X. An overview of the co-transcription factor NACC1: Beyond its pro-tumor effects. Life Sci 2024; 336:122314. [PMID: 38030057 DOI: 10.1016/j.lfs.2023.122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Nucleus accumbens-associated protein 1 (NACC1) is a member of the broad complex, tramtrack, bric-a-brac/poxvirus and zinc finger (BTB/POZ) protein families, mainly exerting its biological functions as a transcription co-regulator. NACC1 forms homo- or hetero-dimers through the BTB/POZ or BANP, E5R, and NACC1 (BEN) domain with other transcriptional regulators to regulate downstream signals. Recently, the overexpression of NACC1 has been observed in various tumors and is positively associated with tumor progression, high recurrence rate, indicating poor prognosis. NACC1 also regulates biological processes such as embryonic development, stem cell pluripotency, innate immunity, and related diseases. Our review combines recent research to summarize advancements in the structure, biological functions, and relative molecular mechanisms of NACC1. The future development of NACC1 clinical appliances is also discussed.
Collapse
Affiliation(s)
- Qing Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
5
|
Gu L, Ren X, Ngule C, Xiong X, Song J, Li Z, Yang JM. Co-Targeting Nucleus Accumbens Associate 1 and NF-κB Signaling Synergistically Inhibits Melanoma Growth. Biomedicines 2023; 11:2221. [PMID: 37626718 PMCID: PMC10452158 DOI: 10.3390/biomedicines11082221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Nucleus-accumbens-associated protein-1 (NAC1) is a cancer-related transcriptional factor encoded by the NACC1 gene, which is amplified and overexpressed in various human cancers and has been appreciated as one of the top potential cancer driver genes. NAC1 has therefore been explored as a potential therapeutic target for managing malignant tumors. Here, we show that NAC1 is a negative regulator of NF-κB signaling, and NAC1 depletion enhances the level of the nuclear NF-κB in human melanoma. Furthermore, the inhibition of NF-κB signaling significantly potentiates the antineoplastic activity of the NAC1 inhibition in both the cultured melanoma cells and xenograft tumors. This study identifies a novel NAC1-NF-κB signaling axis in melanoma, offering a promising new therapeutic option to treat melanoma.
Collapse
Affiliation(s)
- Lixiang Gu
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.G.); (X.R.); (C.N.); (J.-M.Y.)
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xingcong Ren
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.G.); (X.R.); (C.N.); (J.-M.Y.)
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chrispus Ngule
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.G.); (X.R.); (C.N.); (J.-M.Y.)
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.G.); (X.R.); (C.N.); (J.-M.Y.)
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.G.); (X.R.); (C.N.); (J.-M.Y.)
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
6
|
Long Non-coding RNA LINC01224 Promotes the Malignant Behaviors of Triple Negative Breast Cancer Cells via Regulating the miR-193a-5p/NUP210 Axis. Mol Biotechnol 2023; 65:624-636. [PMID: 36127622 DOI: 10.1007/s12033-022-00555-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Triple negative breast cancer (TNBC) is a prevalent malignant tumor in women and is characterized by high incidence and mortality. Current evidence has suggested that multiple long noncoding RNAs (lncRNAs) play regulatory roles in TNBC, while the specific mechanism of LINC01224 in TNBC remains unclear. In this study, LINC01224 was highly expressed in TNBC cells. Moreover, LINC01224 downregulation inhibited TNBC cell proliferation, migration, and invasion, and promoted cell apoptosis. Additionally, LINC01224 stabilized NUP210 mRNA through interaction with miR-193a-5p, thereby aggravating the malignant phenotypes of TNBC. Overall, LINC01224 functions as a tumor promoter for TNBC.
Collapse
|
7
|
He J, Wang Z, Wang Y, Liu F, Fu L, Jiang X, Wang P, Chen H, Hu M, Cai H. A systematic review and meta-analysis of long noncoding RNA 00963 expression and prognosis and clinicopathological characteristic in human cancers. Pathol Res Pract 2023; 242:154291. [PMID: 36696806 DOI: 10.1016/j.prp.2022.154291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Numerous studies have indicated that the aberrant expression of LINC00963 is extensively present in various human tumors, and that dysregulation of LINC00963 is implicated in the initiation and progression of human cancers. In this meta-analysis, data from diverse malignancies were analyzed to determine whether LINC00963 expression levels were associated with clinical prognosis and immune infiltration in pan-cancer. MATERIALS AND METHODS The eligible studies were identified from several electronic databases from the inception to July 2022 through systematic research. LINC00963 expression and survival were estimated using pooled odds ratios and hazard ratios with 95% CI. We used the Kaplan-Meier method and COX analysis for survival analysis. In addition, Spearman's correlation analysis was used to uncover any correlation between LINC00963 and microsatellites instability (MSI), tumor mutational burden (TMB), DNA methyltransferases (DNMTs), immune checkpoint biomarkers, and the related genes of mismatch repair (MMR). RESULTS Our findings indicated that overexpression of LINC00963 was related to poor overall survival (OS) (HR =1.32, 95% CI, 1.09-1.59, P = 0.004). The TCGA database also found that abnormal expression of LINC00963 was linked to overall survival in various cancers. Moreover, there is an association between LINC00963 expression and MSI, TMB, and MMR in malignancies of various types. CONCLUSION The results of this study indicate that LINC00963 may serve as a prognostic biomarker and a therapeutic target for cancer. By using it, cancer diagnoses can be improved, treatment targets discovered, and prognostic questions improved.
Collapse
Affiliation(s)
- Jin He
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China; First clinical medical college, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhuo Wang
- First clinical medical college, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yongfeng Wang
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China; First clinical medical college, Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Fangyu Liu
- First clinical medical college, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Liangyin Fu
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Xianglai Jiang
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Pingan Wang
- First clinical medical college, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huan Chen
- First clinical medical college, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ming Hu
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China; First clinical medical college, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China; Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
8
|
LINC00963 promotes the malignancy and metastasis of lung adenocarcinoma by stabilizing Zeb1 and exosomes-induced M2 macrophage polarization. Mol Med 2023; 29:1. [PMID: 36604626 PMCID: PMC9817280 DOI: 10.1186/s10020-022-00598-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Long intergenic non-coding RNA 00963 (LINC00963) is an oncogenic lncRNA in human cancers. However, little is known on how it impacts the pathogenesis of lung adenocarcinoma (LUAD). METHODS Biological effects on proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) were examined by CCK-8, colony formation, EdU incorporation, transwell, and immunofluorescence assays, respectively. Macrophage polarization was evaluated by flow cytometry. Ubiquitination of Zeb1 was examined by co-immunoprecipitation. The location of LINC00963 in LUAD tissues and cell lines was tested by FISH assay. The LINC00963/HNRNPA2B1/Siah1 mRNA complex interaction was verified using RNA pull-down and immunoprecipitation assays. The exact roles of LINC00963 were further validated in metastasis and xenograft models. RESULTS Higher LINC00963 expression in LUAD patients positively correlated with shorter overall survival, higher stages, and metastasis. LINC00963 mainly localized in the cytoplasm and aggravated malignant phenotypes of LUAD cells in vitro and metastasis in vivo. Mechanistically, LINC00963 directly interacted HNRNPA2B1 protein to trigger the degradation of Siah1 mRNA, which inhibited the ubiquitination and degradation of Zeb1. Moreover, exosomal LINC00963 derived from LUAD cells induced M2 macrophage polarization and promoted LUAD growth and metastasis. CONCLUSION By stabilizing Zeb1 in cancer cells and delivering exosomes to induce M2 macrophage polarization, LINC00963 promoted the malignancy and metastasis of LUAD. Targeting LINC00963 may become a valuable therapeutic target for LUAD.
Collapse
|
9
|
Dashti F, Mirazimi SMA, Kazemioula G, Mohammadi M, Hosseini M, Razaghi Bahabadi Z, Mirazimi MS, Abadi MHJN, Shahini A, Afshari M, Mirzaei H. Long non-coding RNAs and melanoma: From diagnosis to therapy. Pathol Res Pract 2023; 241:154232. [PMID: 36528985 DOI: 10.1016/j.prp.2022.154232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Although extremely rare, malignant melanoma is the deadliest type of skin malignancy with the inherent capability to invade other organs and metastasize to distant tissues. In 2021, it was estimated that approximately 106,110 patients may have received the diagnosis of melanoma, with a mortality rate of 7180. Surgery remains the common choice for treatment in patients with melanoma. Despite many advances in the treatment of melanoma, some patients, such as those who have received cytotoxic chemotherapeutic and immunotherapic agents, a significant number of patients may show inadequate treatment response following initiating these treatments. Non-coding RNAs, including lncRNAs, have become recently popular and attracted the attention of many researchers to make new insights into the pathogenesis of many diseases, particularly malignancies. LncRNAs have been thoroughly investigated in multiple cancers such as melanoma and have been shown to play a major role in regulating various physiological and pathological cellular processes. Considering their core regulatory function, these non-coding RNAs may be appropriate candidates for melanoma patients' diagnosis, prognosis, and treatment. In this review, we will cover all the current literature available for lncRNAs in melanoma and will discuss their potential benefits as diagnostic and/or prognostic markers or potent therapeutic targets in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Golnesa Kazemioula
- Department of Medical Genetics, School of Medicine,Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marjan Hosseini
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Mirazimi
- Department of Obstetrics & Gynocology,Isfahan School of Medicine,Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Afshari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
10
|
Ren Y, Kumar A, Das JK, Peng HY, Wang L, Balllard D, Xiong X, Ren X, Zhang Y, Yang JM, Song J. Tumorous expression of NAC1 restrains antitumor immunity through the LDHA-mediated immune evasion. J Immunother Cancer 2022; 10:e004856. [PMID: 36150745 PMCID: PMC9511653 DOI: 10.1136/jitc-2022-004856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND T cell-mediated antitumor immunity has a vital role in cancer prevention and treatment; however, the immune-suppressive tumor microenvironment (TME) constitutes a significant contributor to immune evasion that weakens antitumor immunity. Here, we explore the relationship between nucleus accumbens-associated protein-1 (NAC1), a nuclear factor of the BTB (broad-complex, Tramtrack, bric a brac)/POZ (Poxvirus, and Zinc finger) gene family, and the TME. METHODS Adoptive cell transfer (ACT) of mouse or human tumor antigen (Ag)-specific CD8+ cytotoxic T lymphocytes (CTLs) was tested in an immunocompetent or immunodeficient mouse model of melanoma with or without expression of NAC1. The effects of NAC1 expression on immune evasion in tumor cells were assessed in vitro and in vivo. CRISPR/Cas9, glycolysis analysis, retroviral transduction, quantitative real-time PCR, flow cytometric analysis, immunoblotting, database analyses were used to screen the downstream target and underlying mechanism of NAC1 in tumor cells. RESULTS Tumorous expression of NAC1 negatively impacts the CTL-mediated antitumor immunity via lactate dehydrogenase A (LDHA)-mediated suppressive TME. NAC1 positively regulated the expression of LDHA at the transcriptional level, which led to higher accumulation of lactic acid in the TME. This inhibited the cytokine production and induced exhaustion and apoptosis of CTLs, impairing their cell-killing ability. In the immunocompetent and immunodeficient mice, NAC1 depleted melanoma tumors grew significantly slower and had an elevated infiltration of tumor Ag-specific CTLs following ACT, compared with the control groups. CONCLUSIONS Tumor expression of NAC1 contributes substantially to immune evasion through its regulatory role in LDHA expression and lactic acid production. Thus, therapeutic targeting of NAC1 warrants further exploration as a potential strategy to reinforce cancer immunotherapy, such as the ACT of CTLs.
Collapse
Affiliation(s)
- Yijie Ren
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Anil Kumar
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Jugal K Das
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Hao-Yun Peng
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Liqing Wang
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Darby Balllard
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Xiaofang Xiong
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Xingcong Ren
- Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Yi Zhang
- Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Jin-Ming Yang
- Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Jianxun Song
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| |
Collapse
|
11
|
Ma X, Yu S, Zhao B, Bai W, Cui Y, Ni J, Lyu Q, Zhao J. Development and Validation of a Novel Ferroptosis-Related LncRNA Signature for Predicting Prognosis and the Immune Landscape Features in Uveal Melanoma. Front Immunol 2022; 13:922315. [PMID: 35774794 PMCID: PMC9238413 DOI: 10.3389/fimmu.2022.922315] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/10/2022] [Indexed: 12/18/2022] Open
Abstract
Background Ferroptosis is a newly iron-dependent mode of programmed cell death that is involved in a variety of malignancies. But no research has shown a link between ferroptosis-related long non-coding RNAs (FRLs) and uveal melanoma (UM). We aimed to develop a predictive model for UM and explore its potential function in relation to immune cell infiltration. Methods Identification of FRLs was performed using the Cancer Genome Atlas (TCGA) and FerrDb databases. To develop a prognostic FRLs signature, univariate Cox regression and least absolute shrinkage and selection operator (LASSO) were used in training cohort. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curve analyses were used to assess the reliability of the risk model. The immunological functions of FRLs signature were determined using gene set enrichment analysis (GSEA). Immunological cell infiltration and immune treatment were studied using the ESTIMATE, CIBERSORT, and ssGSEA algorithms. Finally, in vitro assays were carried out to confirm the biological roles of FRLs with known primer sequences (LINC00963, PPP1R14B.AS1, and ZNF667.AS1). Results A five-genes novel FRLs signature was identified. The mean risk score generated by this signature was used to create two risk groups. The high-risk score UM patients had a lower overall survival rate. The area under the curve (AUC) of ROC and K-M analysis further validated the strong prediction capacity of the prognostic signature. Immune cells such as memory CD8 T cells, M1 macrophages, monocytes, and B cells showed a substantial difference between the two groups. GSEA enrichment results showed that the FRLs signature was linked to certain immune pathways. Moreover, UM patients with high-risk scores were highly susceptible to several chemotherapy drugs, such as cisplatin, imatinib, bortezomib, and pazopanib. Finally, the experimental validation confirmed that knockdown of three identified lncRNA (LINC00963, PPP1R14B.AS1, and ZNF667.AS1) suppressed the invasive ability of tumor cells in vitro. Conclusion The five-FRLs (AC104129.1, AC136475.3, LINC00963, PPP1R14B.AS1, and ZNF667.AS1) signature has effects on clinical survival prediction and selection of immunotherapies for UM patients.
Collapse
Affiliation(s)
- Xiaochen Ma
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Sejie Yu
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Bin Zhao
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Wei Bai
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jinglan Ni
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Qinghua Lyu
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Qinghua Lyu, ; Jun Zhao,
| | - Jun Zhao
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Qinghua Lyu, ; Jun Zhao,
| |
Collapse
|
12
|
Xie Z, Zhong C, Shen J, Jia Y, Duan S. LINC00963: A potential cancer diagnostic and therapeutic target. Biomed Pharmacother 2022; 150:113019. [PMID: 35462329 DOI: 10.1016/j.biopha.2022.113019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Long intergenic noncoding RNA 00963 (LINC00963) is located on human chromosome 9q34.11. Aberrantly expressed LINC00963 often exerts oncogenic effects by regulating various cellular processes including proliferation, migration, invasion, EMT, and apoptosis. Overexpressed LINC00963 is associated with cancer clinicopathological features and poor cancer prognosis, and can be used in the diagnosis of hepatocellular carcinoma. LINC00963 can build a complex ceRNA network by competitively binding to 22 miRNAs in 14 cancers. LINC00963 can also directly regulate four downstream protein-coding genes. Specifically, LINC00963 promotes the transition of prostate cancer from an androgen-dependent mode to an androgen-independent mode by participating in the transactivation of EGFR. LINC00963 can bind EZH2 and inhibit p21 expression, thereby promoting glioma cell proliferation and invasion. In non-small cell lung cancer, LINC00963 can recruit NONO and CRTC, forming a positive feedback loop of LINC00963/NONO/CRTC/CREB/LINC00963, thereby promoting cancer cell metastasis. LINC00963 is involved in the PI3K/AKT signaling pathway, Wnt signaling pathway, AMPK signaling pathway, and MAPK signaling pathway. Furthermore, LINC00963 is associated with drug resistance in oral squamous cell carcinoma (cisplatin and 5-fluorouracil) and gastric cancer (oxaliplatin) and predicts neoadjuvant efficacy of taxane-anthracyclines in breast cancer. This work systematically reviewed the clinical value of abnormal expression of LINC00963 in various tumors, demonstrated the complex molecular mechanism of LINC00963, and provided directions for future related research.
Collapse
Affiliation(s)
- Zijun Xie
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China; Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Chenming Zhong
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China; Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jinze Shen
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Yunhua Jia
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China.
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China; Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
13
|
Lu J, Zhu D, Li L. Biological Functions and Molecular Mechanisms of MiR-608 in Cancer. Front Oncol 2022; 12:870983. [PMID: 35387124 PMCID: PMC8977622 DOI: 10.3389/fonc.2022.870983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, microRNAs (miRNAs) have attracted much attention because of their prominent role in cancer. An increasing number of studies have shown that miRNAs play an important role in a variety of tumors. miR-608 has been reported to be decreased in cancers, especially in solid tumors. miR-608 is regarded as a tumor suppressor, which has been verified through a large number of experiments both in vivo and in vitro. miR-608 participates in many biological processes, including cell proliferation, invasion, migration, and apoptosis, by inhibiting transmembrane proteins and many signaling pathways. Here, we summarize the expression profile and biological functions and mechanism of miR-608, suggesting that miR-608 is an ideal diagnostic and prognostic biomarker and a treatment target for cancer.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Zhang L, Gao J, Gong A, Dong Y, Hao X, Wang X, Zheng J, Ma W, Song Y, Zhang J, Xu W. The Long Noncoding RNA LINC00963 Inhibits Corneal Fibrosis Scar Formation by Targeting miR-143-3p. DNA Cell Biol 2022; 41:400-409. [PMID: 35262384 PMCID: PMC9063159 DOI: 10.1089/dna.2021.1034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Corneal fibrosis is a complication of severe corneal injury, one of the major causes of vision loss. The formation of myofibroblasts has emerged as a key stimulative factor of corneal fibrosis. In the current study, we focused on the role of LINC00963 in regulating corneal fibrosis. Transforming growth factor β1 (TGF-β1) was used to induce human corneal stromal cells differentiating into corneal myofibroblasts, and the significant increase of α-smooth muscle actin (α-SMA) was verified by quantitative real-time PCR (qRT-PCR), western blot, and immunofluorescence, respectively. LINC00963 was identified to be one-half decreased compared with nonstimulated human corneal stromal cells, indicating that it might play a role in corneal fibrosis. Interestingly, overexpression of LINC00963 resulted in decreased formation of myofibroblasts indicating that it might exhibit an inhibiting effect. Moreover, bioinformatics tool was applied to predict the downstream target of LINC00963. We investigated that LINC00963 suppressed α-SMA induced by TGF-β1 in corneal fibroblasts, at least in part, by downregulating the expression of miR-143-3p. In addition, either LINC00963 promotion or miR-143-3p inhibition could significantly decrease myofibroblast contractility and collagen I and III secretion, which are the key to contribute to corneal fibrosis. Taken together, our study identified LINC00963 as a promising therapeutic target.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China.,Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Anjing Gong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanhan Dong
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Xiaodan Hao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Xuekang Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China.,Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jian Zheng
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Wenmeng Ma
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Yiying Song
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Jie Zhang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Wang M, Liu W, Liu W, Wang C. Diagnostic and prognostic significance of long noncoding RNA LINC00173 in patients with melanoma. Rev Assoc Med Bras (1992) 2022; 68:170-175. [PMID: 35239877 DOI: 10.1590/1806-9282.20210822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/23/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE A growing volume of literature has suggested long noncoding RNAs (lncRNAs) as important players in tumor progression. In this study, we aimed to investigate the expression and prognostic value of lncRNA LINC00173 (LINC00173) in melanoma. METHODS LINC00173 expression was measured in 163 paired cancerous and noncancerous specimen samples by real-time polymerase chain reaction. The correlations between LINC00173 expression with clinicopathological characteristics and prognosis were analyzed by chi-square test, log-rank test, and multivariate survival analysis. Receiver-operating characteristic curves were used for the assessment of the diagnostic value of LINC00173 for melanoma patients. RESULTS The expression level of LINC00173 in melanoma specimens was distinctly higher than that in adjacent non-neoplasm specimens (p<0.01). Besides, LINC00173 was expressed more frequently in patients with advanced melanoma than in patients with early melanoma. Multivariate assays confirmed that LINC00173 expression level was an independent prognostic predictor of melanoma patients (p<0.05). CONCLUSION Our data indicated that LINC00173 expression could serve as an unfavorable prognostic biomarker for melanoma patients.
Collapse
Affiliation(s)
- Mujun Wang
- The First People's Hospital of Jinan City, Department of Surgery - Jinan, China
| | - Wei Liu
- The First Affiliated Hospital of Shandong First Medical University, Department of Medical Ultrasound - Jinan, China
| | - Wenxing Liu
- Shizhong District People's Hospital of Jinan, Department of Surgery - Jinan, China
| | - Chao Wang
- The First People's Hospital of Jinan City, Department of Surgery - Jinan, China
| |
Collapse
|
16
|
Montico B, Giurato G, Pecoraro G, Salvati A, Covre A, Colizzi F, Steffan A, Weisz A, Maio M, Sigalotti L, Fratta E. The pleiotropic roles of circular and long noncoding RNAs in cutaneous melanoma. Mol Oncol 2022; 16:565-593. [PMID: 34080276 PMCID: PMC8807361 DOI: 10.1002/1878-0261.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma (CM) is a very aggressive disease, often characterized by unresponsiveness to conventional therapies and high mortality rates worldwide. The identification of the activating BRAFV600 mutations in approximately 50% of CM patients has recently fueled the development of novel small-molecule inhibitors that specifically target BRAFV600 -mutant CM. In addition, a major progress in CM treatment has been made by monoclonal antibodies that regulate the immune checkpoint inhibitors. However, although target-based therapies and immunotherapeutic strategies have yielded promising results, CM treatment remains a major challenge. In the last decade, accumulating evidence points to the aberrant expression of different types of noncoding RNAs (ncRNAs) in CM. While studies on microRNAs have grown exponentially leading to significant insights on CM biology, the role of circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) in this tumor is less understood, and much remains to be discovered. Here, we summarize and critically review the available evidence on the molecular functions of circRNAs and lncRNAs in BRAFV600 -mutant CM and CM immunogenicity, providing recent updates on their functional role in targeted therapy and immunotherapy resistance. In addition, we also include an evaluation of several algorithms and databases for prediction and validation of circRNA and lncRNA functional interactions.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
| | - Alessia Covre
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
| | - Francesca Colizzi
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Agostino Steffan
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Michele Maio
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
- NIBIT Foundation OnlusSienaItaly
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Elisabetta Fratta
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| |
Collapse
|
17
|
Duan Y, Wu H, Hao X, Li F, Liu J, Zhu C, Dong Q. Knockdown of long non-coding MIR210HG inhibits cell proliferation, migration, and invasion in hepatoblastoma via the microRNA-608-FOXO6 axis. J Int Med Res 2021; 49:3000605211054695. [PMID: 34918962 PMCID: PMC8725230 DOI: 10.1177/03000605211054695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective Hepatoblastoma is the most common liver tumor. Recent research has found that
long non-coding (lnc)RNAs are involved in multiple types of cancers, but the
potential mechanism of lncRNA MIR210HG in hepatoblastoma remains unknown.
The present study explored the molecular mechanism of MIR210HG in
hepatoblastoma progression. Methods The cell counting kit-8 was used to detect cell viability, and Transwell
assays assessed cell migration and invasion. Luciferase reporter assays
showed the relationship between MIR210HG and microRNA (miR)-608 and between
miR-608 and forkhead box O6 (FOXO6). Functional tests were verified
in vivo by a tumor xenograft model. The expression of
MIR210HG, miR-608, FOXO6, E-cadherin, N-cadherin, and vimentin was
determined by quantitative reverse transcription polymerase chain reaction
and western blotting. Results MIR210HG was shown to be highly expressed in hepatoblastoma tissues and cell
lines. Knockdown of MIR210HG reduced proliferation, migration, and invasion
in liver cancer cells, and suppressed tumor growth in vivo.
MIR210HG competitively combined with miR-608, and miR-608 decreased FOXO6
expression. Conclusion Our study demonstrated that knockdown of MIR210HG inhibits hepatoblastoma
development through binding to miR-608 and downregulating FOXO6. Our results
provide novel insights for hepatoblastoma treatment involving the
MIR210HG–miR608–FOXO6 axis.
Collapse
Affiliation(s)
- Yuhe Duan
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - He Wu
- Department of Pediatric Surgery, Qingdao Women and Children's Hospital, Qingdao, China
| | - Xiwei Hao
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fujiang Li
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Liu
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Dong
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Cao Z, Chen H, Mei X, Li X. Silencing of NACC1 inhibits the proliferation, migration and invasion of nasopharyngeal carcinoma cells via regulating the AKT/mTOR signaling pathway. Oncol Lett 2021; 22:828. [PMID: 34691255 PMCID: PMC8527823 DOI: 10.3892/ol.2021.13088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Nucleus accumbens-associated protein 1 (NACC1) has been reported to serve as an oncogenic role in several types of cancer; however, its role in nasopharyngeal carcinoma (NPC) remains to be determined. The present study aimed to investigate the role of NACC1 in NPC and elucidate the underlying mechanisms. Therefore, NACC1 expression in the normal nasopharyngeal epithelial cell line, NP69, and various NPC cell lines was determined by reverse transcription-quantitative PCR and western blot analyses. NACC1 expression was silenced in the NPC SUNE-1 cell line by transfection with a short hairpin RNA. Cell viability, proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) were then evaluated using MTT, colony formation, wound healing, Transwell and western blot assays, respectively. SC79 was employed to activate AKT expression in NACC1-silenced SUNE-1 cells, and the aforementioned cellular processes were observed. The results revealed that NACC1 expression was upregulated in NPC cell lines. NACC1-knocdown inhibited SUNE-1 cell proliferation, migration, invasion and EMT. Moreover, the levels of phosphorylated AKT and mTOR were decreased upon NACC1 silencing. Mechanistically, the presence of SC79 significantly blocked all the effects of NACC1-knockdown on SUNE-1 cells. The findings of the present study demonstrated that NACC1-knockdown effectively suppressed NPC cell proliferation, migration and invasion by inhibiting the activation of the AKT/mTOR signaling pathway. NACC1 may thus serve as a potential target for the diagnosis and therapy of NPC.
Collapse
Affiliation(s)
- Zhengyong Cao
- Department of Otolaryngology, Chongqing Qijiang District People's Hospital, Chongqing 401420, P.R. China
| | - Hong Chen
- Department of Nephrology, Chongqing Qijiang District People's Hospital, Chongqing 401420, P.R. China
| | - Xiaoli Mei
- Department of Science and Education, Chongqing Qijiang District People's Hospital, Chongqing 401420, P.R. China
| | - Xiaobo Li
- Department of Otolaryngology, Chongqing Qijiang District People's Hospital, Chongqing 401420, P.R. China
| |
Collapse
|
19
|
Zhang R, Niu C, Guan Y, Wu J, Hu L. LINC00963 silencing inhibits the proliferation and migration of high glucose-induced retinal endothelial cells via targeting miR-27b. Exp Ther Med 2021; 22:1274. [PMID: 34594411 PMCID: PMC8456487 DOI: 10.3892/etm.2021.10709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
The association between long intergenic non-protein-coding RNA 963 (LINC00963) and diabetes has not been fully elucidated. Therefore, the present study aimed to investigate the effect of the long non-coding RNA LINC00963 on diabetic retinopathy (DR), in order to provide a new therapeutic target for this condition. Human retinal capillary endothelial cells (HRECs) were induced with high concentrations of glucose to establish a DR model. The expression levels of LINC00963, cell viability, the protein expression levels of proliferating cell nuclear antigen (PCNA) and Ki67, and the migratory capacity of HRECs were determined using reverse transcription-quantitative PCR (RT-qPCR), Cell Counting Kit-8 assay, western blot analysis, and wound healing and Transwell assays, respectively. Furthermore, the Encyclopedia of RNA Interactomes database was used to predict the binding targets of LINC00963, and luciferase reporter assay was used to verify the direct binding of microRNA (miR)-27b to LINC00963. RT-qPCR was also utilized to measure the expression levels of miR-27b, PCNA and Ki67. The results demonstrated that LINC00963 silencing inhibited glucose-induced HREC proliferation and migration, and downregulated PCNA and Ki67 expression. Following transfection with miR-27b inhibitor, cell proliferation and migration were notably enhanced, and the protein expression levels of PCNA and Ki67 were increased. Taken together, the results of the present study suggested that the LINC00963/miR-27b axis may regulate the proliferation and migration of glucose-induced HRECs. Therefore, LINC00963 may be considered as a potential therapeutic target for DR.
Collapse
Affiliation(s)
- Rui Zhang
- Fundus Disease Department, Aier Eye Hospital of Wuhan University, Wuhan, Hubei 430063, P.R. China
| | - Chunhong Niu
- Department of Nursing, The Tianjin 4th Central Hospital, Tianjin 300140, P.R. China
| | - Yuhan Guan
- Department of Nursing, The Tianjin 4th Central Hospital, Tianjin 300140, P.R. China
| | - Jianhua Wu
- Fundus Disease Department, Aier Eye Hospital of Wuhan University, Wuhan, Hubei 430063, P.R. China
| | - Liping Hu
- Fundus Disease Department, Aier Eye Hospital of Wuhan University, Wuhan, Hubei 430063, P.R. China
| |
Collapse
|
20
|
Lv H, Zhou D, Liu G. LncRNA LINC00963 promotes colorectal cancer cell proliferation and metastasis by regulating miR‑1281 and TRIM65. Mol Med Rep 2021; 24:781. [PMID: 34498706 PMCID: PMC8436205 DOI: 10.3892/mmr.2021.12421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Reportedly, long-chain non-coding RNA LINC00963 features prominently in cancer biology. However, functional details of LINC00963 in colorectal cancer (CRC) remain to be elucidated. Reverse transcription-quantitative (RT-q)PCR was performed to examine LINC00963 and microRNA (miR)-1281 expression levels in 53 matched pairs of cancerous and non-cancerous tissues from patients with CRC. Tripartite motif-containing 65 (TRIM65) protein expression in CRC cells was detected via western blot analysis. Furthermore, LINC00963 overexpression plasmid, LINC00963 small interfering RNA, miR-1281 mimics or miR-1281 inhibitors were transfected into CRC cells, and Cell Counting Kit-8, colony formation and Transwell assays were adopted to study the effects of LINC00963 and miR-1281 on the malignant phenotypes of CRC cells. Bioinformatics analysis, dual-luciferase, RNA pull-down and immunoprecipitation assays, RT-qPCR and western blot analysis were performed to investigate the regulatory relationship between LINC00963, miR-1281 and TRIM65. LINC00963 was highly expressed in CRC tissues and cells, while miR-1281 was downregulated. Functionally, LINC00963 facilitated the proliferation, colony formation, migration and invasion of CRC cells, and increased the expression levels of Ki67, matrix metalloproteinase (MMP)2 and MMP9, while miR-1281 had the opposite biological functions. Mechanistically, LINC00963 sponged miR-1281 and repressed its expression in CRC cells, resulting in the upregulation of TRIM65. LINC00963 positively regulates TRIM65 in CRC progression by repressing miR-1281 expression, showing potential as a therapeutic target for treating CRC.
Collapse
Affiliation(s)
- Haidong Lv
- Department of Tumor Surgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Dixia Zhou
- Department of Tumor Surgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Guoqing Liu
- Department of Tumor Surgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
21
|
Xiao Y, Xia Y, Wang Y, Xue C. Pathogenic roles of long noncoding RNAs in melanoma: Implications in diagnosis and therapies. Genes Dis 2021; 10:113-125. [PMID: 37013035 PMCID: PMC10066279 DOI: 10.1016/j.gendis.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma is one of the most dangerous types of cutaneous neoplasms, which are pigment-producing cells of neuroectodermal origin found all over the body. A great deal of research is focused on the mechanisms of melanoma to promote better diagnostic and treatment options for melanoma in its advanced stages. The progression of melanoma involves alteration in different levels of gene expression. With the successful implementation of next-generation sequencing technology, an increasing number of long noncoding RNAs (lncRNAs) sequences have been discovered, and a significant number of them have phenotypic effects in both in vitro and in vivo studies, implying that they play an important role in the occurrence and progression of human cancers, particularly melanoma. A number of evidence indicated that lncRNAs are important regulators in tumor cell proliferation, invasion, apoptosis, immune escape, energy metabolism, drug resistance, epigenetic regulation. To better understand the role of lncRNAs in melanoma tumorigenesis, we categorize melanoma-associated lncRNAs according to their cellular functions and associations with gene expression and signaling pathways in this review. Based on the mechanisms of lncRNA, we discuss the possibility of lncRNA-target treatments, and the application of liquid biopsies to detect lncRNAs in melanoma diagnosis and prognosis.
Collapse
|
22
|
Wang Y, Lou N, Zuo M, Zhu F, He Y, Cheng Z, Wang X. STAT3-induced ZBED3-AS1 promotes the malignant phenotypes of melanoma cells by activating PI3K/AKT signaling pathway. RNA Biol 2021; 18:355-368. [PMID: 34241580 DOI: 10.1080/15476286.2021.1950463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Melanoma is considered as the most frequent primary malignancy occurring in skin. Accumulating studies have suggested that long non-coding RNAs (lncRNAs) play critical parts in multiple cancers. In this study, we explored the molecular mechanism of ZBED3 antisense RNA 1 (ZBED3-AS1) in melanoma. We observed that ZBED3-AS1 expression was remarkably up-regulated in melanoma tissues, and high ZBED3-AS1 level was linked to unsatisfactory survival of melanoma patients. Then, we discovered that ZBED3-AS1 was overexpressed in melanoma cells compared with human epidermal melanocytes. In addition, loss-of-function assays verified that ZBED3-AS1 knockdown restrained cell proliferation, migration, epithelial-mesenchymal transition (EMT), and stemness in melanoma. In addition, signal transducer and activator of transcription 3 (STAT3), which also showed tumour-facilitating functions in melanoma, was confirmed as a transcriptional activator of ZBED3-AS1. Moreover, ZBED3-AS1 enhanced the expression of AT-rich interaction domain 4B (ARID4B) through sequestering miR-381-3p. Importantly, we further confirmed that ZBED3-AS1 promoted the malignant progression of melanoma by regulating miR-381-3p/ARID4B axis to activate the phosphatidylinositol 3-kinase/AKT serine/threonine kinase (PI3K/AKT) signalling pathway. In a word, our research might provide a novel therapeutic target for melanoma.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Nan Lou
- Department of Joint Replacement Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Min Zuo
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Fuqiang Zhu
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Yan He
- Department of Pathology, Longgang Center Hospital of Shenzhen, Guangdong, China
| | - Zhiqiang Cheng
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Xiaomei Wang
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
23
|
Xu WS, Ke F, Xu Y, Zheng Y. LINC00963 regulates gastric cancer cell proliferation, migration, and invasion through miR-146a-5p/NFE2L1 axis. Shijie Huaren Xiaohua Zazhi 2021; 29:690-700. [DOI: 10.11569/wcjd.v29.i13.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long intergenic non-coding RNA 00963 (LINC00963) is up-regulated in tumors, but the function and mechanism of LINC00963 in gastric cancer have not been elucidated. It was predicted using Starbase that microRNA (miR)-146a-5p may be the target gene of LINC00963, and nuclear factor erythroid-2 like 1 (NFE2L1) may be the target gene of miR-146a-5p. We hypothesized that LINC00963 may affect the proliferation, migration and invasion of gastric cancer cells by regulating the miR-146a-5p/NFE2L1 axis.
AIM To explore the effect of LINC00963 on the proliferation, migration, and invasion of gastric cancer cells and the underlying molecular mechanism.
METHODS The cancer tissues and adjacent tissues of 42 patients with gastric cancer were collected, and real-time quantitative PCR (RT-qPCR) was used to detect the expression level of LINC00963 in these tissues. RT-qPCR was also used to detect the expression of LINC00963, miR-146a-5p, and NFE2L1 mRNA in gastric cancer cell lines SNU-1, AGS, and HS-746T. SNU-1 cells were then divided into a normal control group (NC) group, si-LINC00963 group, si-NFE2L1 group, si-NC group, miR-146a-5p group, miR-NC group, si-LINC00963 + pcDNA-NC Group, and si-LINC00963 + pcDNA-NFE2L1 group; CCK-8 was used to detect cell viability, Transwell assay was used to detect cell migration and invasion, and dual luciferase reporter assay was used to detect the targeting relationship among LINC00963, miR-146a-5p, and NFE2L1.
RESULTS The expression level of LINC00963 in gastric cancer tissues and gastric cancer cell lines SNU-1, AGS, and HS-746T was increased, the expression level of miR-146a-5p was decreased in gastric cancer cell lines, and the expression level of NFE2L1 mRNA was increased (P < 0.05). With low expression of LINC00963 and NFE2L1 or high expression of miR-146a-5p, the viability of SNU-1 cells was decreased, and the ability of cell migration and invasion was decreased (P < 0.05). High expression of NFE2L1 can reverse the effect of low expression of LINC00963 on SNU-1 cells. LINC00963 targets and regulates miR-146a-5p, while miR-146a-5p targets and regulates NFE2L1.
CONCLUSION Low expression of LINC00963 inhibits the proliferation, migration, and invasion of gastric cancer cells by regulating the miR-146a-5p/NFE2L1 axis.
Collapse
Affiliation(s)
- Wan-Su Xu
- Department of Oncology Radiotherapy, Quzhou People's Hospital, Quzhou 324000, Zhejiang Province, China
| | - Fei Ke
- Department of Pathology, Quzhou People's Hospital, Quzhou 324000, Zhejiang Province, China
| | - Yi Xu
- Sterilized Supplying Center, Quzhou People's Hospital, Quzhou 324000, Zhejiang Province, China
| | - Yi Zheng
- Sterilized Supplying Center, Quzhou People's Hospital, Quzhou 324000, Zhejiang Province, China
| |
Collapse
|
24
|
Xiao B, Liu L, Li A, Wang P, Xiang C, Li H, Xiao T. Identification and validation of immune-related lncRNA prognostic signatures for melanoma. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1044-1054. [PMID: 34077998 PMCID: PMC8342236 DOI: 10.1002/iid3.468] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Introduction Melanoma is a highly aggressive malignant skin tumor as well as the primary reason for skin cancer‐specific deaths. We first identified immune‐related long noncoding RNA (lncRNA) prognostic signature and found potential immunotherapeutic targets for melanoma cancer. Methods RNA‐seq data and clinical features of melanoma samples were obtained from The Cancer Genome Atlas. Samples of melanoma were randomly assigned to the training and testing cohort. The immune‐related lncRNA signature was then obtained via using univariate, LASSO, and multivariate Cox analysis of patients in the training cohort. Eight significant immune‐related lncRNA signature was then subsequently obtained through correlation analysis between immune‐related genes and lncRNAs. The association between risk score and immune cell infiltration was finally assessed using TIMER and CIBERSORT. Results Three hundred and fifty‐six immune‐related lncRNAs were obtained. Among them, eight immune‐related lncRNAs were identified to build a prognostic risk signature model. The model's performance was then confirmed using the Kaplan–Meier curves, risk plots, and time‐dependent receiver‐operating characteristic curves in the training cohort. The risk score was identified and confirmed as an independent prognostic factor through univariate and multivariate Cox regression analyses. These results were further verified in the testing and whole cohorts. CIBERSORT algorithm showed that the infiltration levels of T cells CD8, M1 macrophages, plasma cells, T cells CD4 memory activated, T cells gamma delta, and mast cells activated were significantly lower in the high‐risk group while the infiltration level of macrophages M0 was significantly lower in the low‐risk group. Conclusion The immune‐related lncRNA signature offers prognostic markers and potential immunotherapeutic targets for melanoma.
Collapse
Affiliation(s)
- Bo Xiao
- Department of OrthopedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Liyan Liu
- Department of OrthopedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Aoyu Li
- Department of OrthopedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Pingxiao Wang
- Department of OrthopedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Cheng Xiang
- Department of OrthopedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Hui Li
- Department of OrthopedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Tao Xiao
- Department of OrthopedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
25
|
Li Z, Jing Q, Wu L, Chen J, Huang M, Qin Y, Wang T. The prognostic and diagnostic value of tissue inhibitor of metalloproteinases gene family and potential function in gastric cancer. J Cancer 2021; 12:4086-4098. [PMID: 34093812 PMCID: PMC8176236 DOI: 10.7150/jca.57808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Tissue inhibitor of metalloproteinases (TIMP) gene family, including TIMP1, TIMP2, TIMP3 and TIMP4, was found to be correlated with serval cancers. Still the diagnostic and prognostic study of it in gastric cancer (GC) have few reports. Methods and materials: In this study, the gene expression and clinical data were acquired from the Cancer Gene Atlas (TCGA), function enrichment was used by several databases for verifying known function. Operating characteristic (ROC) curves with area under the curve (AUC) used to assess diagnostic value. Survival analysis and joint-effects survival analysis was performed by the Kaplan-Meier curve. The results were adjusted by cox-regression model. Nomogram is used to directly predict the survival rate for individual GC patient. The potential mechanism for diagnostic and prognostic value was assessed by gene set enrichment analysis (GSEA). Further functions of gene were verified by cell proliferation, migration and invasion assays in human gastric cancer cell line. Results:TIMP1 was expressed in GC tissue was higher than normal gastric tissue. TIMP3 and TIMP4 have expressed in normal gastric tissue were higher than GC tissue. TIMP1, TIMP3 and TIMP4 have potential diagnostic value (AUC=0.842, 0.729, 0.786 respectively; all P<0.01). Low expression of TIMP2 and TIMP3 associated with favorable overall survival (all P<0.05). TIMP2 and TIMP3, which had significantly affection of prognosis were found having some function such as tRNA processing, cell cycle pathway ncRNA processing. The silencing of TIMP3 could inhibit the migration and invasion of gastric cancer cell. Conclusion: We analyzed the TIMP gene family in GC, and the prognostic and diagnostic value. TIMP1 and TIMP2 could be used as diagnostic biomarkers in GC. TIMP2 and TIMP3 could be used as potential biomarkers for GC's prognosis.
Collapse
Affiliation(s)
- Zhao Li
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qinwen Jing
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Liucheng Wu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jiansi Chen
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Mingwei Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yuzhou Qin
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Tingan Wang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
26
|
Ye J, Liu J, Tang T, Xin L, Bao X, Yan Y. LINC00963 affects the development of colorectal cancer via MiR-532-3p/HMGA2 axis. Cancer Cell Int 2021; 21:87. [PMID: 33536018 PMCID: PMC7860506 DOI: 10.1186/s12935-020-01706-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background LINC00963 is high-expressed in various carcinomas, but its expression and function in colorectal cancer (CRC) have not been explored. This study explored the role and mechanism of LINC00963 in CRC. Methods The expression of LINC00963 in CRC and its relationship with prognosis were examined by starBase and survival analysis. The effects of LINC00963, miR-532-3p and HMGA2 on the biological characteristics and EMT-related genes of CRC cells were studied by RT-qPCR, CCK-8, clone formation experiments, flow cytometry, scratch test, Transwell, and Western blot. Xenograft assay and immunohistochemistry were performed to verify the effect of LINC00963 on tumor growth. The correlation among LINC00963, miR-532-3p, and HMGA2 was analyzed by bioinformatics analysis, luciferase assay, and Pearson test. Results LINC00963 was high-expressed in CRC, and this was associated with poor prognosis of CRC. Silencing LINC00963 inhibited the activity, proliferation, migration, and invasion of CRC cells, MMP-3 and MMP-9 expressions, moreover, it also blocked cell cycle progression, and inhibited tumor growth and Ki67 expression. However, overexpression of LINC00963 showed the opposite effects to silencing LINC00963. LINC00963 targeted miR-532-3p to regulate HMGA2 expression. Down-regulation of miR-532-3p promoted cell proliferation, migration and invasion, and expressions of MMP-3 and MMP-9, and knockdown of HMGA2 reversed the effect of miR-532-3p inhibitor. Up-regulation of miR-532-3p inhibited the biological functions of CRC cells, and overexpression of HMGA2 reversed the miR-532-3p mimic effect. Conclusion LINC00963 affects the development of CRC through the miR-532-3p/HMGA2 axis.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of General Surgery, Shenzhen Longgang Central Hospital, No.6082 Longgang Avenue, Longgang District, Shenzhen, 518116, Guangdong, China
| | - Jidong Liu
- Department of General Surgery, Shenzhen Longgang Central Hospital, No.6082 Longgang Avenue, Longgang District, Shenzhen, 518116, Guangdong, China
| | - Tao Tang
- Department of General Surgery, Shenzhen Longgang Central Hospital, No.6082 Longgang Avenue, Longgang District, Shenzhen, 518116, Guangdong, China
| | - Le Xin
- Department of General Surgery, Shenzhen Longgang Central Hospital, No.6082 Longgang Avenue, Longgang District, Shenzhen, 518116, Guangdong, China
| | - Xing Bao
- Department of General Surgery, Shenzhen Longgang Central Hospital, No.6082 Longgang Avenue, Longgang District, Shenzhen, 518116, Guangdong, China
| | - Yukuang Yan
- Department of General Surgery, Shenzhen Longgang Central Hospital, No.6082 Longgang Avenue, Longgang District, Shenzhen, 518116, Guangdong, China.
| |
Collapse
|
27
|
Wu Y, Cong L, Chen W, Wang X, Qiu F. lncRNA LINC00963 downregulation regulates colorectal cancer tumorigenesis and progression via the miR‑10b/FGF13 axis. Mol Med Rep 2021; 23:211. [PMID: 33495804 PMCID: PMC7830939 DOI: 10.3892/mmr.2021.11850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve a key role in different types of cancer, including colorectal cancer (CRC). The exact roles and mechanisms underlying lncRNA00963 [long intergenic non‑protein coding RNA 963 (LINC00963)] in CRC are not completely understood. The present study aimed to identify the effects and mechanisms underlying LINC00963 in CRC. Firstly, the LINC00963 expression was detected using reverse transcription‑quantitative PCR and the results demonstrated that LINC00963 expression levels were significantly increased in CRC tissues and cell lines compared with healthy tissues and HpoEpiC cells, respectively. Online database analysis indicated that high levels of LINC00963 were associated with low survival rates. The results of functional experiments, such as CCK‑8 assay, colony formation assay, wound healing assay and Transwell invasion assay, indicated that LINC00963 knockdown significantly inhibited CRC cell proliferation, colony formation, migration and invasion compared with the small interfering RNA (si)‑negative control (NC) group. Furthermore, the luciferase reporter indicated that LINC00963 competitively regulated microRNA (miR)‑10b by targeting fibroblast growth factor 13 (FGF13). Compared with si‑NC, LINC00963 knockdown decreased the expression levels of FGF13, vimentin and N‑cadherin, and increased the expression of E‑cadherin as detecting by western blotting. miR‑10b inhibitors partly attenuated si‑LINC00963‑induced inhibition of CRC cell proliferation, migration and invasion. Collectively, the results of the present study suggested a potential role of the LINC00963/miR-10b/FGF13 axis in the tumorigenesis and progression of CRC, indicating a novel lncRNA-based diagnostic or therapeutic target for CRC.
Collapse
Affiliation(s)
- Yujin Wu
- Department of Gastroenterology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| | - Longling Cong
- Department of Gastroenterology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| | - Wenjian Chen
- Department of Gastroenterology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| | - Xuechuan Wang
- Department of Gastroenterology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| | - Fanghua Qiu
- Department of Hospital Infection Control, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| |
Collapse
|
28
|
Lyu B, Dong Y, Kang J. A New Case of de novo Variant c.892C>T (p.Arg298Trp) in NACC1: A First Case Report From China. Front Pediatr 2021; 9:754261. [PMID: 34869110 PMCID: PMC8634650 DOI: 10.3389/fped.2021.754261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The nucleus accumbens associated 1 (NACC1) gene is a transcription factor member of the BTB/POZ family. A de novo heterozygous c.892C>T (p.Arg298Trp) variant in the NACC1 may define a syndrome characterized by intellectual disability, infantile epilepsy, congenital cataract, and feeding difficulties. Case Presentation: We report a new case with a neurodevelopmental disorder characterized by severe intellectual disability, infantile epilepsy, congenital cataract, and feeding difficulties. Brain MRI reveals brain dysplasia. We observe a de novo heterozygous c.892C>T (p.Arg298Trp) variant in the NACC1 gene in this case. Now, the child regularly goes to the hospital for rehabilitation training (once a month). Sodium Valproate (10 mg/kg/day) and Clobazam (10 mg/kg/day) are used in the treatment of epilepsy. A total of three articles were screened, and two papers were excluded. The search revealed one article related to a syndrome caused by a de novo heterozygous c.892C>T (p.Arg298Trp) variant in the NACC1; they screened the main clinical features of eight cases of a syndrome, which were summarized and analyzed. Conclusions: The NACC1 gene is a member of the BTB/POZ family of transcription factors. A de novo heterozygous c.892C>T (p.Arg298Trp) variant in the NACC1 may define a syndrome characterized by intellectual disability, infantile epilepsy, congenital cataract, and feeding difficulties. At present, there is no effective cure. In the future, we need more cases to determine the phenotype-genotype correlation of NACC1 variants. Many questions remain to be answered, and many challenges remain to be faced. Future transcriptional studies may further clarify this rare, recurrent variant, and could potentially lead to targeted therapies.
Collapse
Affiliation(s)
- Baiyu Lyu
- Department of Pediatrics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Dong
- Department of Pediatrics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juan Kang
- Department of Pediatrics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Guo X, Qin Y, Wang L, Dong S, Yan Y, Bian X, Zhao C. A competing endogenous RNA network reveals key lncRNAs associated with sepsis. Mol Genet Genomic Med 2021; 9:e1557. [PMID: 33237630 PMCID: PMC7963432 DOI: 10.1002/mgg3.1557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/17/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This study set out to determine key lncRNAs correlated with sepsis via constructing competing endogenous RNA (ceRNA) network. METHODS Three septic patients and three healthy controls were recruited to obtain lncRNA profiles in this current study. Combined with the mRNA profiles by RNA-sequencing, an integrated analysis of mRNA expression profiles downloaded from GEO was performed to obtain the differentially expressed mRNAs (DEmRNAs). Based on differentially expressed lncRNAs (DElncRNAs) and DEmRNAs acquired in this present study and differentially expressed miRNAs (DEmiRNAs) acquired in previous study, a ceRNA network was constructed. Furthermore, LINC00963 was validated in THP-1 cells by performing loss of function assays. RESULTS In this analysis, a total of 290 DEmRNAs and 46 DElncRNAs were detected in sepsis. Parkinson's disease, Oxidative phosphorylation and Cardiac muscle contraction were significantly enriched KEGG pathways in sepsis. XPO1, CUL4A, and NEDD8 were three hub proteins of sepsis-specific PPI network. A ceRNA network, which contained 16 DElncRNA-DEmiRNA pairs and 82 DEmiRNA-DEmRNA pairs, involving 5 lncRNAs, 10 miRNAs, and 60 mRNAs, was obtained. The function experiments indicated that knockdown of LINC00963 could promote cell proliferation, reduce cytokine expression, and suppress inflammasome activation and phagocytosis in LPS-induced THP-1 cells. CONCLUSION This study determined key lncRNAs involved in sepsis, which may contribute to the development for novel treatment strategy of sepsis.
Collapse
Affiliation(s)
- Xuan Guo
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yanjun Qin
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Lili Wang
- Department of CardiologyHebei General HospitalShijiazhuangChina
| | - Shimin Dong
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yan Yan
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xiaohua Bian
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Caiyan Zhao
- Department of Infectious DiseaseThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
30
|
Zhu H, Tang JH, Zhang SM, Qian JP, Ling X, Wu XY, Yang LX. Long Noncoding RNA LINC00963 Promotes CDC5L-Mediated Malignant Progression in Gastric Cancer. Onco Targets Ther 2020; 13:12999-13013. [PMID: 33376349 PMCID: PMC7764734 DOI: 10.2147/ott.s274708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Background Gastric cancer (GC) is a common cancer with high incidence and mortality worldwide. In recent years, accumulating evidence has shown that long noncoding RNAs (lncRNAs) exert critical roles in the development and progression of cancer by acting as a tumor initiator or suppressor. LINC00963 is a newly reported lncRNA related to cancer, and its role in GC remains unclear. Materials and Methods The expression levels of LINC00963, miR-612, and cell division cycle 5-like protein (CDC5L) were measured using quantitative real-time PCR or Western blot. The biological functions of LINC00963, miR-612, and CDC5L in GC cells were analyzed by transwell and proliferation experiments. The expression of CDC5L in patients with GC was evaluated using the Oncomine database. Bone marrow-derived dendritic cells (DCs) were derived from C57BL/6 mice. Results LINC00963 expression was higher in GC tissues than in adjacent normal tissues. Similar results were found in GC cell lines and normal human gastric epithelial cells. Upregulation of LINC00963 was related to the poor prognosis of patients with GC. Knockdown of LINC00963 inhibited the proliferation, invasion, and metastasis but promoted the apoptosis of GC cells. Furthermore, silencing of LINC00963 in GC cells significantly suppressed the tumor growth of GC. Bioinformatics analysis indicated that LINC00963 could target miR-612 by functioning as a competing endogenous RNA. The expression of miR-612 decreased in GC tissues and cell lines. Meanwhile, LINC00963 expression was negatively associated with miR-612. CDC5L was a direct target of miR-612. miR-612 suppressed the expression of CDC5L in GC tissues and cells. Moreover, LINC00963 inhibited the differentiation and maturation of DCs by regulating miR-612 expression in DCs. Conclusion LINC00963 promoted the progression of GC by competitively binding to miR-612 to regulate the expression of CDC5L and mediated DC-related anti-tumor immune response. Thus, targeting LINC00963 may be a promising therapeutic strategy for GC.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Jin-Hai Tang
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Shi-Meng Zhang
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Jia-Ping Qian
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Xin Ling
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Xiao-Ying Wu
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Ling-Xia Yang
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
31
|
Safa A, Gholipour M, Dinger ME, Taheri M, Ghafouri-Fard S. The critical roles of lncRNAs in the pathogenesis of melanoma. Exp Mol Pathol 2020; 117:104558. [PMID: 33096077 DOI: 10.1016/j.yexmp.2020.104558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) embrace a huge fraction of human transcripts and participate in the pathogenesis of human disorders especially malignant conditions. Malignant melanoma, as the most fatal type of cutaneous malignnacies, is associated with dysregulation of several lncRNAs including PVT1, H19, MALAT1, and CCAT1. Moreover, a portion of lncRNAs are exclusively expressed in melanoma cell lines. Expression levels of several lncRNAs are associated with TNM stage, tumor size and progression of melanoma. Thus, these lncRNAs are regarded as biomarkers for this malignancy. Peripheral transcript levels of a number of lncRNAs, such as PVT1, SNHG5 and SPRY4-IT1, could distinguish melanoma patients from unaffected persons with appropriate sensitivity and specificity values. Moreover, expression levels of numerous lncRNAs in tissue biopsies could differentiate malignant samples from benign samples. Based on the results of both cell line and in vivo studies, lncRNAs regulate critical pathways in the carcinogenesis of melanoma, such as the PI3K/Akt and NF-κB signaling pathways, and are involved in the modulation of response to chemotherapeutic agents. Here we review the existing information on the role of lncRNAs in malignant melanoma.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Sun M, Liu X, Xia L, Chen Y, Kuang L, Gu X, Li T. A nine-lncRNA signature predicts distant relapse-free survival of HER2-negative breast cancer patients receiving taxane and anthracycline-based neoadjuvant chemotherapy. Biochem Pharmacol 2020; 189:114285. [PMID: 33069665 DOI: 10.1016/j.bcp.2020.114285] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Multi-gene prognostic signatures of long non-coding RNAs (lncRNAs) provide new insights into mechanisms of HER2-negative breast cancer development and progression, and predict distant relapse-free survival (DRFS) of patients receiving taxane and anthracycline-based neoadjuvant chemotherapy. The aim of this study was to develop such a multi-lncRNAs signature. Optimal multiple candidate signature lncRNAs associated with DRFS were firstly identified by a univariate Cox proportional hazard regression survival analysis and a robust likelihood-based survival analysis of the GEO dataset GSE25055. A nine-lncRNA prognostic risk score model Risk Score = 0.0289 × EXPLOC100507388 - 0.0814 × EXPLINC00094 - 0.2422 × EXPSMG7-AS1 - 0.2433 × EXPPP14571 + 0.4690 × EXPASAP1-IT1 - 0.2483 × EXPLOC103344931 - 0.2464 × EXPFAM182A + 0.3349 × EXPHCG26 - 0.0216 × EXPLINC00963 was built according to the coefficients of multivariate survival analysis of the association between the candidate lncRNAs and survival. EXPlncRNA was the standardized log2-transformed expression level of the gene. According to this model, higher scores predicted lower survival probability. The area under Receiver operating characteristic (ROC) curve (AUC) was 0.777 to 0.823 from 1- to 7- year survival rate. The model and its individual lncRNAs differentiated survival probability between the higher scores (expression) and the lower scores (expression). The nine-lncRNA signature had the robust prognostic power compared with ER, PR, tumor size (T), lymph node invasion (N), TNM stage, pathologic response, chemosensitivity prediction and PAM50 signature. These results were consistent with those based on the GEO dataset GSE25065. The predictive nomograms integrating both the nine-lncRNA signature classifier and clinical-pathological risk factors were robust in predicting 1-, 3- and 5- year survival probabilities. These results supported that the nine-lncRNA signature was a robust and effective model in predicting DRFS of patients with HER2-negative breast cancer following taxane and anthracycline-based neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaoxiao Liu
- Department of Oncology, Xinchang Hospital Affiliated to Wenzhou Medical University, 117 Gushan Middle Road, Xinchang County 312500, Zhejiang Province, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yuying Chen
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Li Kuang
- Department of Oncology, Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xinsheng Gu
- College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Tian Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; School of Basic Medicine, The Fourth Military Medical University, Xi'an 710000, China.
| |
Collapse
|
33
|
Zuo W, Zhou K, Deng M, Lin Q, Yin Q, Zhang C, Zhou J, Song Y. LINC00963 facilitates acute myeloid leukemia development by modulating miR-608/MMP-15. Aging (Albany NY) 2020; 12:18970-18981. [PMID: 33012724 PMCID: PMC7732318 DOI: 10.18632/aging.103252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/20/2020] [Indexed: 01/24/2023]
Abstract
Despite continuous improvements of AML therapy, the prognosis of AML patients remains unsatisfactory. Recently, lncRNAs have been reported to participate in the development of AML. Our data demonstrated that MMP15 and LINC00963 were upregulated and miR-608 was decreased in AML cells (THP-1, HL-60, HEL and MOLM-13) compared to HS-5 cells. RT-qPCR results showed that LINC00963 levels were higher in the serum and bone marrow of AML cases than in controls. Moreover, overexpression of LINC00963 promoted AML cell growth and EMT progression in both THP-1 and HL-60 cells. Furthermore, miR-608 levels were downregulated in the serum and bone marrow of AML cases compared with controls, and Pearson's correlation analysis indicated that LINC00963 was negatively correlated with miR-608 in the serum and bone marrow of AML samples. In addition, we demonstrated that LINC00963 sponged miR-608 expression and that MMP-15 was a target of miR-608 in AML cells. Finally, rescue experiments indicated that ectopic expression of LINC00963 accelerated cell growth and EMT development by modulating MMP-15. These data demonstrated that LINC00963 acted as an oncogene and may be a potential target for AML treatment.
Collapse
Affiliation(s)
- Wenli Zuo
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Mei Deng
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Quande Lin
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Qingsong Yin
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Chunlei Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Jian Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| |
Collapse
|
34
|
Garofoli M, Volpicella M, Guida M, Porcelli L, Azzariti A. The Role of Non-Coding RNAs as Prognostic Factor, Predictor of Drug Response or Resistance and Pharmacological Targets, in the Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12092552. [PMID: 32911687 PMCID: PMC7565940 DOI: 10.3390/cancers12092552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the most common keratinocyte-derived skin cancer in the Caucasian population. Exposure to UV radiations (UVRs) represents the main risk carcinogenesis, causing a considerable accumulation of DNA damage in epidermal keratinocytes with an uncontrolled hyperproliferation and tumor development. The limited and rarely durable response of CSCC to the current therapeutic options has led researchers to look for new therapeutic strategies. Recently, the multi-omics approaches have contributed to the identification and prediction of the key role of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circularRNAs (circRNAs) and long non-coding RNAs (lncRNAs) in the regulation of several cellular processes in different tumor types, including CSCC. ncRNAs can modulate transcriptional and post-transcriptional events by interacting either with each other or with DNA and proteins, such as transcription factors and RNA-binding proteins. In this review, the implication of ncRNAs in tumorigenesis and their potential role as diagnostic biomarkers and therapeutic targets in human CSCC are reported.
Collapse
Affiliation(s)
- Marianna Garofoli
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy;
| | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Letizia Porcelli
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
| | - Amalia Azzariti
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
- Correspondence: ; Tel.: +39-080-555-5986
| |
Collapse
|
35
|
Li L, Yu H, Ren Q. MiR-218-5p Suppresses the Progression of Retinoblastoma Through Targeting NACC1 and Inhibiting the AKT/mTOR Signaling Pathway. Cancer Manag Res 2020; 12:6959-6967. [PMID: 32821163 PMCID: PMC7418178 DOI: 10.2147/cmar.s246142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/17/2020] [Indexed: 12/23/2022] Open
Abstract
Introduction MicroRNA-218-5p (miR-218-5p) was involved in the progression of multiple tumors as a tumor suppressor miRNA. Its specific role on human retinoblastoma (RB) cells remains unknown. Methods We constructed the miR-218-5p overexpression and knockdown cells to detect their role on RB cell line WERI-Rb-1, and we analyzed its binding sites on TargetScan. CCK8 and clonogenic assays were performed to detect cell viability. Flow cytometry was used for the detection of cell apoptosis. Results Our results showed that the miR-218-5p inhibitor enhanced cell viability and blocked the apoptosis in RB cells. The AKT/mTOR signaling pathway was also inhibited by the miR-218-5p inhibitor. MiR-218-5p mimics lead to diametrically opposite results. Nucleus accumbens-associated 1 (NAC1) encoded by the NACC1 gene is involved in the regulation of many biological functions, including gene transcription, protein degradation of ubiquitin pathway, cell viability, and apoptosis. In this research, dataset analysis suggested that NACC1 might be a downstream target of miR-218-5p. Then, qPCR and Western blot analysis proved that miR-218-5p inhibited the expression of NACC1 in RB cells. NACC1 could promote cell viability and inhibit the apoptosis by activating the AKT/mTOR signaling pathway. MiR-218-5p mimics blocked the enhancement of cell growth induced by NACC1 overexpression as well as the activation of the AKT/mTOR signaling pathway in RB cells. Discussion MiR-218-5p inhibited cell growth by targeting NACC1 and suppressing the AKT/mTOR signaling pathway. MiR-218-5p/NACC1/AKT/mTOR might be a new target axis for the clinical treatment strategy.
Collapse
Affiliation(s)
- Li Li
- Department of Ophthalmology, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei, People's Republic of China
| | - Hua Yu
- Department of Ophthalmology, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei, People's Republic of China
| | - Qian Ren
- Department of Ophthalmology, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
36
|
CCAT1 promotes triple-negative breast cancer progression by suppressing miR-218/ZFX signaling. Aging (Albany NY) 2020; 11:4858-4875. [PMID: 31310241 PMCID: PMC6682511 DOI: 10.18632/aging.102080] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/01/2019] [Indexed: 01/17/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate cancer development and progression. Here, we investigated the role of the lncRNA CCAT1 in triple-negative breast cancer (TNBC). CCAT1 expression was higher in TNBC cells than normal breast epithelial cells. Additionally, CCAT1 expression was higher in TNBC patient tumor tissue than adjacent normal breast tissue. Silencing CCAT1 inhibited TNBC cell proliferation, migration, and invasion in vitro, and tumor growth and progression in vivo. Bioinformatics analysis revealed that microRNA-218 (miR-218) is a potential target of CCAT1. Silencing CCAT1 resulted in an increase in miR-218 expression and inhibited TNBC cell proliferation, migration, and invasion. Silencing miR-218 reversed the effects of CCAT1 knockdown on cell proliferation, migration, and invasion, suggesting that CCAT1 promotes TNBC progression by downregulating miR-218 expression. We identified the zinc finger protein ZFX as a putative downstream target of miR-218 through bioinformatics analysis. ZFX expression was higher in TNBC than normal breast cell lines and higher in TNBC tumor tissue than adjacent normal breast tissue. Overexpression of ZFX reversed the tumor-suppressive effects of miR-218 on TNBC cell proliferation, migration, and invasion. Our data indicate that CCAT1 promotes TNBC progression by targeting the miR-218/ZFX axis.
Collapse
|
37
|
Chen X, Cui Y, Ma Y. Long non-coding RNA BLACAT1 expedites osteosarcoma cell proliferation, migration and invasion via up-regulating SOX12 through miR-608. J Bone Oncol 2020; 25:100314. [PMID: 33005563 PMCID: PMC7519359 DOI: 10.1016/j.jbo.2020.100314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
BLACAT1 promotes cell proliferation, migration and invasion, and dampens cell apoptosis in OS. BLACAT1 sponges miR-608 in OS. SOX12 is the target of miR-608. BLACA1 promotes OS cell growth and migration via targeting miR-608/SOX12 axis.
Background Osteosarcoma is the most common type of bone malignancy. Increasing evidence indicated that long non-coding RNAs (lncRNAs) possess multiple functions in the development of cancer and can be used as indicators of prognosis and diagnosis. LncRNA BLACAT1 has been found to promote the proliferation of breast cancer cells. However, the role of BLACAT1 in osteosarcoma remains largely unknown. Methods QRT-PCR analysis was employed to evaluate mRNA expressions. Western blot was performed to measure relevant protein level. Colony formation and EdU assays were conducted to certify proliferative ability. TUNEL assay was finalized to assess apoptotic cells. Wound-healing and transwell assays were utilized for the exploration of migrating and invasive abilities. The subcellular distribution of BLACAT1 was studied by nucleus-cytoplasm separation assay. Relevant mechanical experiments were combined to elucidate molecular relationship between molecules. Results BLACAT1 was highly expressed in osteosarcoma. BLACAT1 promoted the proliferation and migration of osteosarcoma cells. BLACAT1 acted as a sponge for miR-608 to augment the expression of Sex determining region Y-box protein 12 (SOX12), the direct target of miR-608. Further, inhibiting miR-608 recovered the repressive effect of silenced BLACAT1 on the malignant behaviors of osteosarcoma cells. Conclusion This study highlighted the contribution of BLACAT1/miR-608/SOX12 axis to the progression of osteosarcoma, suggesting novel targets for osteosarcoma therapy.
Collapse
Key Words
- ANOVA, analysis of variance
- ATCC, American type culture collection
- BLACAT1
- DMEM, Dulbecco’s modified Eagle’s medium
- FBS, fetal bovine serum
- FISH, Fluorescence in situ hybridization
- HRP, horseradish peroxidase
- Mut, mutant
- OS, osteosarcoma
- Osteosarcoma
- PVDF, polyvinylidene fluoride
- RIPA, radioimmunoprecipitation assay
- RT-qPCR, RNA extraction and quantitative real-time polymerase chain reaction
- SD, standard deviation
- SDS-PAGE, sulphate-polyacrylamide gel electrophoresis
- SOX, sex-determining region Y (SRY)-box
- SOX12
- SOX12, sex determining region Y-box protein 12
- WT, wild-type
- ceRNAs, competing endogenous RNAs
- lncRNAs, long non-coding RNAs
- mRNA, messenger RNA
- miR-608
- miRNAs, microRNAs
Collapse
Affiliation(s)
- Xiaotao Chen
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining City, Qinghai Province 810007, China
| | - Yubao Cui
- Department of Orthopadics, Hubei Aerospace Hospital, Xiaogan City, Hubei Province 432000, China
| | - Yanming Ma
- Department of Orthopedics, No. 2 Hospital of Yulin City, The South Road of Wenhua, Yuyang District, Yulin City, Shaanxi Province 719000, China
| |
Collapse
|
38
|
Guo R, Qin Y. LEMD1-AS1 Suppresses Ovarian Cancer Progression Through Regulating miR-183-5p/TP53 Axis. Onco Targets Ther 2020; 13:7387-7398. [PMID: 32801762 PMCID: PMC7395824 DOI: 10.2147/ott.s250850] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background/Aims Long noncoding RNAs (lncRNAs) play a critical role in tumorigenesis and progression of ovarian cancer (OC). This study focused on the function and potential mechanism toward LEMD1-AS1 (LEMD1 antisense RNA 1) in the progression of ovarian cancer. Materials and Methods The expression of LEMD1-AS1 in OC tissues was evaluated in TCGA and Gene Expression Omnibus datasets (GSE119056) and confirmed in OC cell lines via qRT-PCR (quantitative real-time polymerase chain reaction). Then, the location of LEMD1-AS1 in the cytoplasmic and nuclear RNAs extracted from OV cells was detected by qRT-PCR. Cell Counting Kit-8 (CCK-8), colony formation, wound-healing and transwell assays were applied to examine cell viability, proliferation, migration and invasion, respectively. Further, the effect of LEMD1-AS1 on OC tumor growth was determined via subcutaneous xenotransplanted tumor model. The potential target for LEMD1-AS1 was validated via dual-luciferase activity assay, RNA pull-down and RNA immunoprecipitation. Results The expression of LEMD1-AS1 was decreased in OC tissues and cell lines. Forced overexpression of LEMD1-AS1 inhibited the proliferation, migration and invasion of ovarian cancer cells and transplanted tumor growth in nude mice. We found that LEMD1-AS1 was mainly located in the cytoplasm of OC cells and contained complementary sites of miR-183-5p. Mechanistically, our results showed that LEMD1-AS1 could directly interact with miR-183-5p and tumor protein p53 (TP53). The anti-tumor role of LEMD1-AS1 on OC progression depended on miR-183-5p-mediated TP53 expression. Conclusion LEMD1-AS1 suppresses OC progression through sponging miR-183-5p and regulation of TP53, suggesting a novel biomarker and target for OC.
Collapse
Affiliation(s)
- Ruowen Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Yide Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| |
Collapse
|
39
|
Sun Z. Circular RNA hsa_circ_0001588 promotes the malignant progression of lung adenocarcinoma by modulating miR-524-3p/NACC1 signaling. Life Sci 2020; 259:118157. [PMID: 32735888 DOI: 10.1016/j.lfs.2020.118157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 01/26/2023]
Abstract
AIMS Previous studies have demonstrated that circular RNAs play significant roles in several tumors, including lung adenocarcinoma; however, specific biological functions and molecular mechanisms underlying this process remain unclear. MATERIALS AND METHODS Here, we conducted real-time quantitative PCR (qRT-PCR) to measure hsa_circ_0001588 expression levels in 60 paired lung adenocarcinoma tissues and cell lines. Furthermore, the association between hsa_circ_0001588 and clinical features of lung adenocarcinoma was analyzed. Functional experiments were conducted to assess the influence of hsa_circ_0001588 on proliferation, migration, and invasion in lung adenocarcinoma cells. We detected possible downstream targets of hsa_circ_0001588 using bioinformatics analysis. Luciferase reporter assays, qRT-PCR, and western blotting assays were performed to verify the molecular mechanism underlying hsa_circ_0001588 functions. KEY FINDINGS We found that hsa_circ_0001588 was prominently upregulated in lung adenocarcinoma tissues and cell lines; elevated expression of hsa_circ_0001588 was positively correlated with poor clinicopathological features of lung adenocarcinoma. Functional experiments revealed that hsa_circ_0001588 acts as an oncogene to promote the proliferation, migration, and invasion of lung adenocarcinoma in vitro. Mechanistically, hsa_circ_0001588 promoted the proliferation, migration, and metastasis of lung adenocarcinoma by binding to miR-524-3p to promote nucleus accumbens-associated protein 1(NACC1) expression. SIGNIFICANCE Together, our results revealed that hsa_circ_0001588 upregulated the expression of NACC1 by combining with miR-524-3p to promote the proliferation, migration, and invasion of lung adenocarcinoma cells, suggesting that hsa_circ_0001588 may be an underlying therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhaoyi Sun
- Department of Thoracic Surgery, People's Hospital of Rizhao, China.
| |
Collapse
|
40
|
Wang Q, Wang Z, Hou G, Huang P. Toosendanin Suppresses Glioma Progression Property and Induces Apoptosis by Regulating miR-608/Notch Axis. Cancer Manag Res 2020; 12:3419-3431. [PMID: 32494206 PMCID: PMC7231786 DOI: 10.2147/cmar.s240268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Background Glioma is one the most common and aggressive primary tumors of adult central nervous system worldwide, which tends to develop dysplasia and metastasis. Recently, toosendanin (TSN) has shown pharmacological effects in several cancers. However, little is known about the underlying mechanism of the effect of TSN on glioma and its relationship between miRNA in glioma. Methods Cell proliferation, cell cycle, cell apoptosis and cell migration were analyzed by CCK-8 cell viability, flow cytometry, wound scratch healing, transwell and Western blotting assays, respectively, in vitro. The regulation relationships between TSN and miR-608 or between miR-608 and Notch1 (Notch2) were examined using qRT-PCR, dual-luciferase and Western blotting assays. The functional effects of TSN through regulating miR-608 and Notch1 (Notch2) were further examined using a xenograft tumor mouse model in vivo. Results After TSN concentration was increased from 50 nM, 100 nM to 150 nM, cell proliferation and cell cycle were gradually reduced, and the cell apoptosis rate was increased in U-138MG or U-251MG cells. Wound-healing and transwell assays results showed that cell migration was significantly inhibited in TSN treatment cells (TSN treatment, 50 nM) compared to control cells. Mechanistic studies revealed that TSN up-regulated the expression of microRNA-608 (miR-608), while down-regulated the expression of miR-608’s target, Notch1 and Notch2. Over-expression of Notch1 and Notch2 partly attenuated TSN-induced tumor suppressive function. Moreover, in vivo experiments revealed that TSN treatment led to a significant inhibition of tumor growth, suggesting that it might be a promising drug for the treatment of glioma. Conclusion In the present study, a novel established functional manner of TSN/miR-608/Notch1 (Notch2) axis was systematically indicated, which might provide prospective intervention ways for glioma therapy.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Pharmacy, Institute of Cancer and Basic Medical Sciences of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,The Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou City, Zhejiang Province 310022, People's Republic of China
| | - Zeng Wang
- Department of Pharmacy, Institute of Cancer and Basic Medical Sciences of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,The Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou City, Zhejiang Province 310022, People's Republic of China
| | - Guilan Hou
- Department of Pharmacy, Institute of Cancer and Basic Medical Sciences of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,The Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou City, Zhejiang Province 310022, People's Republic of China
| | - Ping Huang
- Department of Pharmacy, Institute of Cancer and Basic Medical Sciences of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,The Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou City, Zhejiang Province 310022, People's Republic of China
| |
Collapse
|
41
|
Zhou N, Zhu X, Man L. LINC00963 Functions as an Oncogene in Bladder Cancer by Regulating the miR-766-3p/MTA1 Axis. Cancer Manag Res 2020; 12:3353-3361. [PMID: 32494199 PMCID: PMC7229805 DOI: 10.2147/cmar.s249979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Long non-coding RNAs have been found to be involved in bladder cancer development. This article studied LINC00963 effects on bladder cancer progression to provide a novel treatment target. Patients and Methods Totally 56 bladder cancer patients participated in this research. Bladder cancer cells were transfected. Cell counting kit 8 assay and clone formation experiment were used for cell viability and colony formation detection. Cell migration and invasion were determined by Transwell experiment. LINC00963 distribution was explored by cytoplasmic and nuclear extract isolation and quantitative real-time polymerase chain reaction. Luciferase reporter experiment and RNA pulldown experiment were performed to detect the relationship between these two genes. The cancer genome atlas analysis was used for the detection of metastasis-associated protein 1 (MTA1) expression in bladder cancer. Results LINC00963 was seriously up-regulated in bladder cancer patients. High LINC00963 expression indicated high histological grade and low survival. LINC00963 was obviously up-regulated in bladder cancer cells. Knockdown of LINC00963 significantly reduced bladder cancer cells viability, colony formation, migration and invasion. Luciferase reporter experiment and RNA pulldown experiment revealed that LINC00963 promoted MTA1 expression via directly inhibiting miR-766-3p. MTA1 was up-regulated in bladder cancer patients. MTA1 up-regulation reversed the inhibitory effect of LINC00963 knockdown on bladder cancer cell viability, migration and invasion. Conclusion LINC00963 functions as an oncogene in bladder cancer by regulating the miR-766-3p/MTA1 axis.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Urology, Beijing Jishuitan Hospital, Beijing 100035, People's Republic of China
| | - Xiaofei Zhu
- Department of Urology, Beijing Jishuitan Hospital, Beijing 100035, People's Republic of China
| | - Libo Man
- Department of Urology, Beijing Jishuitan Hospital, Beijing 100035, People's Republic of China
| |
Collapse
|
42
|
Ye F, Xu R, Ge Y, Zheng Y, Liu X, Deng P, Xu X. LINC00963 Confers Oncogenic Properties in Glioma by Regulating the miR-506/BCAT1 Axis. Cancer Manag Res 2020; 12:2339-2351. [PMID: 32273770 PMCID: PMC7108718 DOI: 10.2147/cmar.s246332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background Glioma is a prevalent disease of the central nervous system with a high incidence and mortality rate. Many long noncoding RNAs (lncRNAs) have been determined to be critical regulators of glioma oncogenesis. However, the function and mechanism of LINC00963 in glioma have not been fully elucidated. Methods The expression level of RNA was determined by qRT-PCR, and the protein level was determined by Western blot analysis. A luciferase activity assay was conducted to verify the interaction between miRNA and lncRNA or the target gene. The proliferation, cell cycle distribution, invasion, and migration were evaluated by MTT, EdU, flow cytometry, wound-healing and Transwell invasion assays, respectively. In vivo tumor growth was evaluated in a xenograft nude mouse model. Results We found that LINC00963 was upregulated in glioma cells and tissues and associated with the poor prognosis of patients with glioma. Ectopic expression of LINC00963 promoted cell proliferation, cell cycle progression, migration, and invasion in vitro and tumorigenesis in vivo. Mechanistically, the results of luciferase activity and RNA pulldown assays validated that LINC00963 could act as a molecular sponge of miR-506. Reciprocal repression was found between LINC00963 and miR-506. In addition, BCAT1 was identified as a target of miR-506, and both the mRNA and protein levels of BCAT1 were reduced by miR-506. In tumor tissues, the expression of BCAT1 was negatively and positively correlated with miR-506 and LINC00963 expression, respectively. The reintroduction of BCAT1 in glioma cells abolished the tumor suppressive function of miR-506 by promoting cell viability and motility. The upregulated LINC00963 and BCAT1 were associated with the aggressive phenotypes of tumors. Conclusion Our data revealed that LINC00963 confers oncogenic function in the progression of glioma and that the LINC00963/miR-506/BCAT1 axis may be a novel mechanism and therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Feng Ye
- Department of Neurosurgery, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610021, People's Republic of China
| | - Ronghua Xu
- Department of Neurosurgery, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610021, People's Republic of China
| | - Yuanhong Ge
- Department of Neurosurgery, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610021, People's Republic of China
| | - Yi Zheng
- Department of Neurosurgery, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610021, People's Republic of China
| | - Xiaowei Liu
- Department of Neurosurgery, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610021, People's Republic of China
| | - Pingfu Deng
- Department of Neurosurgery, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610021, People's Republic of China
| | - Xuejun Xu
- Department of Neurosurgery, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610021, People's Republic of China
| |
Collapse
|
43
|
Wu Z, Wang W, Wang Y, Wang X, Sun S, Yao Y, Zhang Y, Ren Z. Long noncoding RNA LINC00963 promotes breast cancer progression by functioning as a molecular sponge for microRNA-625 and thereby upregulating HMGA1. Cell Cycle 2020; 19:610-624. [PMID: 32052688 PMCID: PMC7100992 DOI: 10.1080/15384101.2020.1728024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Extensive research has shown that LINC00963 is aberrantly expressed in human cancers, and that dysregulation of LINC00963 is implicated in the initiation and progression of human cancers. The expression and functions of LINC00963 in breast cancer are still unclear. Our aims were to measure the expression of LINC00963 in breast cancer, determine its effects on malignant behaviors of tumor cells, and uncover the molecular events underlying the actions of LINC00963 in breast cancer. Herein, LINC00963 was found to be overexpressed in breast cancer samples, and its overexpression was correlated with lymph node metastasis, TNM stage and differentiation grade. Patients with breast cancer harboring higher LINC00963 expression showed shorter overall survival than did the patients with lower LINC00963 expression. Functional experiments revealed that depletion of LINC00963 inhibited breast cancer cell proliferation, migration, and invasion and facilitated apoptosis in vitro and impaired tumor growth in vivo. Mechanism investigation revealed that LINC00963 can interact with microRNA-625 (miR-625). LINC00963 worked as a competitive endogenous RNA for miR-625 to weaken the suppressive effect of miR-625 on high mobility group AT-hook 1 (HMGA1) in breast cancer cells. Furthermore, miR-625 inhibition and HMGA1 restoration both abrogated the effects of LINC00963 silencing on breast cancer cells. Our findings indicate that the LINC00963-miR-625-HMGA1 pathway plays an important role in the malignancy of breast cancer in vitro and in vivo. Hence, targeting this pathway may be a novel strategy against breast cancer.
Collapse
Affiliation(s)
- Zhen Wu
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Wei Wang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Yongkun Wang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Xin Wang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Shanping Sun
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Yumin Yao
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Yang Zhang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Zhongxi Ren
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| |
Collapse
|
44
|
Liu W, Yang YJ, An Q. LINC00963 Promotes Ovarian Cancer Proliferation, Migration and EMT via the miR-378g / CHI3L1 Axis. Cancer Manag Res 2020; 12:463-473. [PMID: 32021459 PMCID: PMC6982455 DOI: 10.2147/cmar.s229083] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNAs) are involved in the development and progression of numerous tumors. Nevertheless, their role in ovarian cancer (OC) needs further study. METHODS A pivotal lncRNA that modulated OC to metastasize was determined in this research, and its potential mechanism was inquired by qRT-PCR, CCK-8, EdU, Transwell assay, wound healing assay and Western blot assay. RESULTS In our study, the GSE119054 microarray was analyzed, and LINC00963 showed a significant higher level in ovarian cancer tissues compared with controls. So LINC00963 was selected as research object. It was discovered that LINC00963 displayed a close relationship with unfavorable prognosis, and it was prominently raised in OC tissues of patients with lymph node metastasis. What's more, LINC00963 downregulation in OC cells inhibited cell migration and invasion and inverted EMT triggered by TGF-β1. LINC00963 downregulation also inhibited tumorigenesis in nude mice. In addition, results show that LINC00963 is a cytoplasmic lncRNA that shares the miRNA response elements (MREs) of miR-378g with CHI3L1, which is confirmed by a luciferase reporter assay and AGO2-dependent RNA immunoprecipitation (RIP). CONCLUSION On the whole, our results demonstrate an explicit oncogenic role of LINC00963 in ovarian cancer tumorigenesis via competition with miR-378g, suggesting a new regulatory mechanism of LINC00963 and providing a potential therapeutic target for ovarian cancer patients.
Collapse
Affiliation(s)
- Wei Liu
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Yu-Jia Yang
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Qiang An
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
45
|
Wu S, Chen H, Zuo L, Jiang H, Yan H. Suppression of long noncoding RNA MALAT1 inhibits the development of uveal melanoma via microRNA-608-mediated inhibition of HOXC4. Am J Physiol Cell Physiol 2020; 318:C903-C912. [PMID: 31913701 DOI: 10.1152/ajpcell.00262.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study explored the effects of the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on the development of uveal melanoma. Moreover, the role of the MALAT1/microRNA-608 (miR-608)/homeobox C4 (HOXC4) axis was assessed by evaluating the proliferation, invasion, and migration, as well as the cell cycle distribution of uveal melanoma in vitro after knocking down MALAT1 or HOXC4 and/or overexpression of miR-608 in uveal melanoma cells (MUM-2B and C918). Moreover, the effects of the MALAT1/miR-608/HOXC4 axis in uveal melanoma in vivo were further evaluated by injecting the C918 cells into the NOD/SCID mice. HOXC4 was found to be a gene upregulated in uveal melanoma, while knockdown of its expression resulted in suppression of uveal melanoma cell migration, proliferation, and invasion, as well as cell cycle progression. In addition, the upregulation of miR-608 reduced the expression of HOXC4 in the uveal melanoma cells, which was rescued by overexpression of MALAT1. Hence, MALAT1 could upregulate the HOXC4 by binding to miR-608. The suppressed progression of uveal melanoma in vitro by miR-608 was rescued by overexpression of MALAT1. Additionally, in vivo assays demonstrated that downregulation of MALAT1 could suppress tumor growth through downregulation of HOXC4 expression via increasing miR-608 in uveal melanoma. In summary, MALAT1 downregulation functions to restrain the development of uveal melanoma via miR-608-mediated inhibition of HOXC4.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Han Chen
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Ling Zuo
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Hai Jiang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Hongtao Yan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
46
|
Tian J, Yang Y, Li MY, Zhang Y. A novel RNA sequencing-based prognostic nomogram to predict survival for patients with cutaneous melanoma: Clinical trial/experimental study. Medicine (Baltimore) 2020; 99:e18868. [PMID: 32011509 PMCID: PMC7220347 DOI: 10.1097/md.0000000000018868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/10/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Plenty of evidence has suggested that long non-coding RNAs (lncRNAs) have played a vital part may act as prognostic biomarkers in a variety of cancers. The aim of this study was to screen survival-related lncRNAs and to construct a lncRNA-based prognostic model in patients with cutaneous melanoma (CM). METHODS We obtained lncRNAs expression profiles and clinicopathological data from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. A lncRNA-based prognostic model was established in training set. The established prognostic model was evaluated, and validated in the validation set. Then, a prognostic nomogram combining the lncRNA-based risk score and clinicopathological characteristics was developed in training set, and assessed in the validation set. The accuracy of the model was evaluated by the discrimination and calibration plots. RESULTS A total of 212 lncRNAs were identified to be differentially expressed in CM. After univariate analysis, LASSO penalized regression analysis, and multivariate analysis, 3 lncRNAs were used to construct risk score model. The proposed risk score model could divide patients into high-risk and low-risk groups with significantly different survival in both training set and validation set. The ROC curve showed good performance in survival prediction in both sets. Furthermore, the nomogram for predicting 3-, 5-, and 10-year OS was established based on lncRNA-based risk score and clinicopathologic factors. The prognostic accuracy of the risk model was confirmed by the discrimination and calibration plots in both training set and validation set. CONCLUSIONS We established a novel three lncRNA-based risk score model and nomogram to predict overall survival of CM. The proposed nomogram may provide information for individualized treatment in CM patients.
Collapse
Affiliation(s)
- Jun Tian
- Department of Dermatology, Shanxi Provincial People's Hospital, Xi’an
| | - Ye Yang
- Department of Dermatology, 63600 Hospital of PLA, Lanzhou
| | - Meng-Yang Li
- Department of Hepatobiliary Surgery, The Fourth Medical Center, Chinese PAL General Hospital, Beijing
| | - Yuan Zhang
- Department of Oncology, Shanxi Provincial People's Hospital, Xi’an, China
| |
Collapse
|
47
|
Zhang N, Zeng X, Sun C, Guo H, Wang T, Wei L, Zhang Y, Zhao J, Ma X. LncRNA LINC00963 Promotes Tumorigenesis and Radioresistance in Breast Cancer by Sponging miR-324-3p and Inducing ACK1 Expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:871-881. [PMID: 31751910 PMCID: PMC6881674 DOI: 10.1016/j.omtn.2019.09.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/11/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Upregulation of long non-coding RNA LINC00963 has been observed in several cancer types. In this study, we analyzed the clinical and biological significance of LINC00963 in breast cancer. The key microRNA (miR) mediating the action of LINC00963 was identified. We show that LINC00963 upregulation is correlated with aggressive parameters of breast cancer. Silencing of LINC00963 suppresses the proliferation and tumorigenesis of breast cancer cells, whereas LINC00963 overexpression exerts an opposite effect. Knockdown of LINC00963 enhances DNA damage and oxidative stress and sensitizes breast cancer cells to radiation. Mechanistically, LINC00963 antagonizes the repressive activity of miR-324-3p on ACK1 expression. Clinically, there is a negative correlation between miR-324-3p and LINC00963 expression in breast cancer tissues. Overexpression of LINC00963 or ACK1 rescues the inhibitory effects of miR-324-3p on breast cancer cell proliferation and radiosensitivity. In addition, knockdown of ACK1 attenuates LINC00963-dependent breast cancer growth and tumorigenesis. Taken together, LINC00963 promotes tumorigenesis and radioresistance in breast cancer through interplay with miR-324-3p and derepression of ACK1. LINC00963 may represent a potential target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Na Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Xue Zeng
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Chaonan Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Hong Guo
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Tianlu Wang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Linlin Wei
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yaotian Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jiaming Zhao
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xinchi Ma
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
48
|
Wang J, Li C, Xu L, Yang C, Zhang X. MiR-1193 was sponged by LINC00963 and inhibited cutaneous squamous cell carcinoma progression by targeting SOX4. Pathol Res Pract 2019; 215:152600. [PMID: 31477326 DOI: 10.1016/j.prp.2019.152600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022]
Abstract
Cutaneous squamous cell carcinoma (CSCC), a class of skin tumor derived from epidermal keratinocyte, is reputed as one of the most malignant tumors globally. MicroRNAs (miRNAs) are increasingly identified as essential players in CSCC. Current study aimed to uncover the impact and mechanism of miR-1193 in CSCC. We identified the low expression of miR-1193 in CSCC cell lines. Gain- and loss-of-function assays showed that miR-1193 acted as an inhibitor of proliferation and migration in CSCC cells. Furthermore, we illustrated that miR-1193 targeted and inhibited SRY-box 4 (SOX4), and that long intergenic non-protein coding RNA 963 (LINC00963) sponged miR-1193 to upregulate SOX4 expression. Rescue assays showed that LINC00963 regulated CSCC progression through miR-1193/SOX4 axis. In conclusion, our study firstly revealed the LINC00963/miR-1193/SOX4 axis in CSCC, indicating miR-1193 as a promising biological target in CSCC progression.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, 230601, China
| | - Chao Li
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei, Anhui, 230011, China
| | - Lifa Xu
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - ChunJun Yang
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Xuejun Zhang
- Institute and Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
49
|
Qiu H, Chen F, Chen M. MicroRNA-138 negatively regulates the hypoxia-inducible factor 1α to suppress melanoma growth and metastasis. Biol Open 2019; 8:8/8/bio042937. [PMID: 31371307 PMCID: PMC6737980 DOI: 10.1242/bio.042937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Melanoma with rapid progression towards metastasis has become the deadliest form of skin cancer. However, the mechanism of melanoma growth and metastasis is still unclear. Here, we found that miRNA-138 was lowly expressed and hypoxia-inducible factor 1α (HIF1α) was highly expressed in patients’ melanoma tissue compared with the paracancerous tissues, and they had a significant negative correlation (r=−0.877, P<0.001). Patients with miRNA-138low/HIF1αhigh signatures were predominant in late stage III/IV of melanoma. Further, bioinformatic analysis demonstrated that miRNA-138 directly targeted HIF1α. We found that the introduction of pre-miRNA-138 sequences to A375 cells reduced HIF1α mRNA expression and suppressed cell proliferation, migration and invasion. Overexpression of miRNA-138 or inhibition of HIF1α significantly suppressed the growth and metastasis of melanoma in vivo. Our study demonstrates the role and clinical relevance of miRNA-138 and HIF1α in melanoma cell growth and metastasis, providing a novel therapeutic target for suppression of melanoma growth and metastasis. Summary: Our study demonstrates the role and clinical relevance of miRNA-138 and HIF1α in melanoma cell growth and metastasis, providing a novel therapeutic target for suppression of melanoma growth and metastasis.
Collapse
Affiliation(s)
- Haijiang Qiu
- Department of Rheumatology & Immunology, the Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China
| | - Fangchao Chen
- Department of Rheumatology & Immunology, the Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China
| | - Minjun Chen
- Department of Rheumatology & Immunology, the Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
50
|
Du W, Feng Z, Sun Q. LncRNA LINC00319 accelerates ovarian cancer progression through miR-423-5p/NACC1 pathway. Biochem Biophys Res Commun 2018; 507:198-202. [PMID: 30442370 DOI: 10.1016/j.bbrc.2018.11.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Long noncoding RNA (lncRNA) LINC00319 has been reported to promote carcinogenesis of lung cancer and cutaneous squamous cell carcinoma. However, the role and mechanism of LINC00319 in ovarian cancer progression is unclear. In this study, LINC00319 expression was found to be upregulated in ovarian cancer tissues and cell lines. And our evidence showed that LINC00319 could be a potential prognostic biomarker for patients with ovarian cancer. Cell Counting Kit-8 (CCK-8), colony formation and transwell assays indicated that LINC00319 upregulation promoted proliferation, migration and invasion of ovarian cancer cells. Bioinformatics analysis and luciferase reporter assay revealed that LINC00319 worked as the sponge for miR-423-5p. Furthermore, miR-423-5p directly targeted NACC1. qRT-PCR and western blot results demonstrated that LINC00319 upregulates NACC1 expression through inhibiting miR-423-5p in ovarian cancer cells. Moreover, we observed an inverse expression correlation between miR-423-5p and LINC00319 or between miR-423-5p and NACC1 in ovarian cancer tissues. Finally, rescue assay showed that NACC1 restoration rescued the potentials of proliferation, migration and invasion in LINC00319-depleted ovarian cancer cells. In conclusion, our findings demonstrated that LINC00319 promotes ovarian cancer progression through upregulating NACC1 expression by restraining miR-423-5p.
Collapse
Affiliation(s)
- Wenling Du
- Department of Gynaecology and Obstetrics, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| | - Zejiao Feng
- Department of Gynaecology and Obstetrics, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| | - Qinqin Sun
- Department of Gynaecology and Obstetrics, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|