1
|
Omidi Y, Pourseif MM, Ansari RA, Barar J. Design and development of mRNA and self-amplifying mRNA vaccine nanoformulations. Nanomedicine (Lond) 2024; 19:2699-2725. [PMID: 39535127 DOI: 10.1080/17435889.2024.2419815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The rapid evolution of mRNA vaccines, highlighted by Pfizer-BioNTech and Moderna's COVID-19 vaccines, has transformed vaccine development and therapeutic approaches. Self-amplifying mRNA (saRNA) vaccines, a groundbreaking advancement in RNA-based vaccines, offer promising possibilities for disease prevention and treatment, including potential applications in cancer and neurodegenerative diseases. This review explores the complex design and development of these innovative vaccines, with a focus on their nanoscale formulations that utilize nanotechnology to improve their delivery and effectiveness. It articulates the fundamental principles of mRNA and saRNA vaccines, their mechanisms of action, and the role of synthetic mRNA in eliciting immune responses. The review further elaborates on various nanoscale delivery systems (e.g., lipid nanoparticles, polymeric nanoparticles and other nanocarriers), emphasizing their advantages in enhancing mRNA stability and cellular uptake. It addresses advanced nanoscale delivery techniques such as microfluidics and discusses the challenges in formulating mRNA and saRNA vaccines. By incorporating the latest technologies and current research, this review provides a thorough overview of recent mRNA and saRNA nanovaccines advancements, highlighting their potential to revolutionize vaccine technology and broaden clinical applications.
Collapse
Affiliation(s)
- Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Engineered Biomaterial Research Center, Khazar University, Baku, Azerbaijan
| | - Rais A Ansari
- Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
2
|
Zickler AM, Liang X, Gupta D, Mamand DR, De Luca M, Corso G, Errichelli L, Hean J, Sen T, Elsharkasy OM, Kamei N, Niu Z, Zhou G, Zhou H, Roudi S, Wiklander OPB, Görgens A, Nordin JZ, Castilla‐Llorente V, EL Andaloussi S. Novel Endogenous Engineering Platform for Robust Loading and Delivery of Functional mRNA by Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407619. [PMID: 39246205 PMCID: PMC11558116 DOI: 10.1002/advs.202407619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Messenger RNA (mRNA) has emerged as an attractive therapeutic molecule for a plethora of clinical applications. For in vivo functionality, mRNA therapeutics require encapsulation into effective, stable, and safe delivery systems to protect the cargo from degradation and reduce immunogenicity. Here, a bioengineering platform for efficient mRNA loading and functional delivery using bionormal nanoparticles, extracellular vesicles (EVs), is established by expressing a highly specific RNA-binding domain fused to CD63 in EV producer cells stably expressing the target mRNA. The additional combination with a fusogenic endosomal escape moiety, Vesicular Stomatitis Virus Glycoprotein, enables functional mRNA delivery in vivo at doses substantially lower than currently used clinically with synthetic lipid-based nanoparticles. Importantly, the application of EVs loaded with effective cancer immunotherapy proves highly effective in an aggressive melanoma mouse model. This technology addresses substantial drawbacks currently associated with EV-based nucleic acid delivery systems and is a leap forward to clinical EV applications.
Collapse
Affiliation(s)
- Antje M. Zickler
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| | - Xiuming Liang
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Cancer Research LaboratoryShandong University‐Karolinska Institutet collaborative LaboratorySchool of Basic Medical ScienceShandong UniversityNo. 44, Wenhua Xi RoadJi'nanShandong250012P. R. China
| | - Dhanu Gupta
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics.University of OxfordOld Road Campus, Roosevelt Dr, HeadingtonOxfordOX3 7TYUK
| | - Doste R. Mamand
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Breast Center, Karolinska Comprehensive Cancer CenterKarolinska University HospitalStockholm14186Sweden
| | - Mariacristina De Luca
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
- Human TechnopoleViale Rita Levi Montalcini, 1Milan20157Italy
| | - Giulia Corso
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Evercyte GmbHLeberstrasse 20Vienna1110Austria
| | - Lorenzo Errichelli
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
| | - Justin Hean
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
| | - Titash Sen
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
- Lonza BiologicsChesterford Research ParkCambridgeCB10 1XLUK
| | - Omnia M. Elsharkasy
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| | - Noriyasu Kamei
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Laboratory of Drug Delivery SystemsFaculty of Pharmaceutical SciencesKobe Gakuin University1‐1‐3 Minatojima, Chuo‐kuKobeHyogo650‐8586Japan
| | - Zheyu Niu
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Department of Hepatobiliary SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityNo. 324, Five Jing RoadJi'nanShandong250012P. R. China
| | - Guannan Zhou
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Department of GynecologyThe Obstetrics and Gynecology Hospital of Fudan UniversityNo. 419, Fangxie RoadShanghai200011P. R. China
| | - Houze Zhou
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| | - Samantha Roudi
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| | - Oscar P. B. Wiklander
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Breast Center, Karolinska Comprehensive Cancer CenterKarolinska University HospitalStockholm14186Sweden
| | - André Görgens
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐Essen45147EssenGermany
| | - Joel Z. Nordin
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Clinical Immunology and Transfusion Medicine (KITM)Karolinska University HospitalStockholm14186Sweden
| | - Virginia Castilla‐Llorente
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
- Uncommon BioCambridge TechnoparkNewmarket RdCambridgeCB5 8PBUK
| | - Samir EL Andaloussi
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| |
Collapse
|
3
|
Li J, Li W, Zhuang L. Natural biomimetic nano-system for drug delivery in the treatment of rheumatoid arthritis: a literature review of the last 5 years. Front Med (Lausanne) 2024; 11:1385123. [PMID: 38784236 PMCID: PMC11114446 DOI: 10.3389/fmed.2024.1385123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized primarily by synovitis, leading to the destruction of articular cartilage and bone and ultimately resulting in joint deformity, loss of function, and a significant impact on patients' quality of life. Currently, a combination of anti-rheumatic drugs, hormonal drugs, and biologics is used to mitigate disease progression. However, conventional drug therapy has limited bioavailability, and long-term use often leads to drug resistance and toxic side effects. Therefore, exploring new therapeutic approaches for RA is of great clinical importance. Nanodrug delivery systems offer promising solutions to overcome the limitations of conventional drugs. Among them, liposomes, the first nanodrug delivery system to be approved for clinical application and still widely studied, demonstrate the ability to enhance therapeutic efficacy with fewer adverse effects through passive or active targeting mechanisms. In this review, we provide a review of the research progress on the targeting mechanisms of various natural biomimetic nano-delivery systems in RA therapy. Additionally, we predict the development trends and application prospects of these systems, offering new directions for precision treatment of RA.
Collapse
Affiliation(s)
| | | | - Liping Zhuang
- Beidahuang Group Mudanjiang Hospital, Mudanjiang, Heilongjiang, China
| |
Collapse
|
4
|
Shen G, Liu J, Yang H, Xie N, Yang Y. mRNA therapies: Pioneering a new era in rare genetic disease treatment. J Control Release 2024; 369:696-721. [PMID: 38580137 DOI: 10.1016/j.jconrel.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Rare genetic diseases, often referred to as orphan diseases due to their low prevalence and limited treatment options, have long posed significant challenges to our medical system. In recent years, Messenger RNA (mRNA) therapy has emerged as a highly promising treatment approach for various diseases caused by genetic mutations. Chemically modified mRNA is introduced into cells using carriers like lipid-based nanoparticles (LNPs), producing functional proteins that compensate for genetic deficiencies. Given the advantages of precise dosing, biocompatibility, transient expression, and minimal risk of genomic integration, mRNA therapies can safely and effectively correct genetic defects in rare diseases and improve symptoms. Currently, dozens of mRNA drugs targeting rare diseases are undergoing clinical trials. This comprehensive review summarizes the progress of mRNA therapy in treating rare genetic diseases. It introduces the development, molecular design, and delivery systems of mRNA therapy, highlighting their research progress in rare genetic diseases based on protein replacement and gene editing. The review also summarizes research progress in various rare disease models and clinical trials. Additionally, it discusses the challenges and future prospects of mRNA therapy. Researchers are encouraged to join this field and collaborate to advance the clinical translation of mRNA therapy, bringing hope to patients with rare genetic diseases.
Collapse
Affiliation(s)
- Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Champeil J, Mangion M, Gilbert R, Gaillet B. Improved Manufacturing Methods of Extracellular Vesicles Pseudotyped with the Vesicular Stomatitis Virus Glycoprotein. Mol Biotechnol 2024; 66:1116-1131. [PMID: 38182864 DOI: 10.1007/s12033-023-01007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024]
Abstract
Extracellular vesicles (EV), which expose the vesicular stomatitis virus glycoprotein (VSVG) on their surface, are used for delivery of nucleic acids and proteins in human cell lines. These particles are biomanufactured using methods that are difficult to scale up. Here, we describe the development of the first EV-VSVG production process in serum-free media using polyethylenimine (PEI)-based transient transfection of HEK293 suspension cells, as well as the first EV-VSVG purification process to utilize both ultracentrifugation and chromatography. Three parameters were investigated for EV-VSVG production: cell density, DNA concentration, and DNA:PEI ratio. The best production titer was obtained with 3 × 106 cells/mL, a plasmid concentration of 2 µg/mL, and a DNA:PEI ratio of 1:4. The production kinetics of VSVG was performed and showed that the highest amount of VSVG was obtained 3 days after transfection. Addition of cell culture supplements during the transfection resulted in an increase in VSVG production, with a maximum yield obtained with 2 mM of sodium butyrate added 18 h after transfection. Moreover, the absence of EV-VSVG during cell transfection with a GFP-coding plasmid revealed to be ineffective, with no fluorescent cells. An efficient EV-VSVG purification procedure consisting of a two-step concentration by low-speed centrifugation and sucrose cushion ultracentrifugation followed by a heparin affinity chromatography purification was also developed. Purified bioactive EV-VSVG preparations were characterized and revealed that EV-VSVG are spherical particles of 176.4 ± 88.32 nm with 91.4% of protein similarity to exosomes.
Collapse
Affiliation(s)
- Juliette Champeil
- Chemical Engineering Department, Université Laval, 1065, Avenue de la Médecine, Pavillon Pouliot, Québec, QC, G1V 0A6, Canada
- PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC, H2X 3Y7, Canada
- ThéCell: FRQS Cell, Tissue and Gene Therapy Network, Laboratoire d'organogénèse expérimentale - LOEX, 1401, 18E rue, Québec, QC, G1J 1Z4, Canada
| | - Mathias Mangion
- Chemical Engineering Department, Université Laval, 1065, Avenue de la Médecine, Pavillon Pouliot, Québec, QC, G1V 0A6, Canada
- PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC, H2X 3Y7, Canada
- ThéCell: FRQS Cell, Tissue and Gene Therapy Network, Laboratoire d'organogénèse expérimentale - LOEX, 1401, 18E rue, Québec, QC, G1J 1Z4, Canada
| | - Rénald Gilbert
- ThéCell: FRQS Cell, Tissue and Gene Therapy Network, Laboratoire d'organogénèse expérimentale - LOEX, 1401, 18E rue, Québec, QC, G1J 1Z4, Canada
- Human Health Therapeutics Research Center, National Research Council Canada, 6100, Avenue Royalmount, Montréal, Québec, H4P 2R2, Canada
| | - Bruno Gaillet
- Chemical Engineering Department, Université Laval, 1065, Avenue de la Médecine, Pavillon Pouliot, Québec, QC, G1V 0A6, Canada.
- PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC, H2X 3Y7, Canada.
- ThéCell: FRQS Cell, Tissue and Gene Therapy Network, Laboratoire d'organogénèse expérimentale - LOEX, 1401, 18E rue, Québec, QC, G1J 1Z4, Canada.
| |
Collapse
|
6
|
Saiding Q, Zhang Z, Chen S, Xiao F, Chen Y, Li Y, Zhen X, Khan MM, Chen W, Koo S, Kong N, Tao W. Nano-bio interactions in mRNA nanomedicine: Challenges and opportunities for targeted mRNA delivery. Adv Drug Deliv Rev 2023; 203:115116. [PMID: 37871748 DOI: 10.1016/j.addr.2023.115116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Upon entering the biological milieu, nanomedicines swiftly interact with the surrounding tissue fluid, subsequently being enveloped by a dynamic interplay of biomacromolecules, such as carbohydrates, nucleic acids, and cellular metabolites, but with predominant serum proteins within the biological corona. A notable consequence of the protein corona phenomenon is the unintentional loss of targeting ligands initially designed to direct nanomedicines toward particular cells or organs within the in vivo environment. mRNA nanomedicine displays high demand for specific cell and tissue-targeted delivery to effectively transport mRNA molecules into target cells, where they can exert their therapeutic effects with utmost efficacy. In this review, focusing on the delivery systems and tissue-specific applications, we aim to update the nanomedicine population with the prevailing and still enigmatic paradigm of nano-bio interactions, a formidable hurdle in the pursuit of targeted mRNA delivery. We also elucidate the current impediments faced in mRNA therapeutics and, by contemplating prospective avenues-either to modulate the corona or to adopt an 'ally from adversary' approach-aim to chart a course for advancing mRNA nanomedicine.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Zhongyang Zhang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Shuying Chen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China; Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yumeng Chen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Yongjiang Li
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Xueyan Zhen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Muhammad Muzamil Khan
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Wei Chen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Seyoung Koo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China; Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
7
|
Bai C, Wang C, Lu Y. Novel Vectors and Administrations for mRNA Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303713. [PMID: 37475520 DOI: 10.1002/smll.202303713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/28/2023] [Indexed: 07/22/2023]
Abstract
mRNA therapy has shown great potential in infectious disease vaccines, cancer immunotherapy, protein replacement therapy, gene editing, and other fields due to its central role in all life processes. However, mRNA is challenging to pass through the cell membrane due to its significant negative charges and degradation from RNase, so the key to mRNA therapy is efficient packaging and delivery of it with appropriate vectors. Presently researchers have developed various vectors such as viruses and liposomes, but these conventional vectors are now difficult to meet the growing requirement like safety, efficiency, and targeting, so many novel delivery vectors with unique advantages have emerged recently. This review mainly introduces two categories of novel vectors: biomacromolecules and inorganic nanoparticles, as well as two novel methods of control and administration based on these novel vectors: controlled-release administration and non-invasive administration. These novel delivery strategies have the advantages of high safety, biocompatibility, versatility, intelligence, and targeting. This paper analyzes the challenges faced by the field of mRNA delivery in depth, and discusses how to use the characteristics of novel vectors and administrations to solve these problems.
Collapse
Affiliation(s)
- Chenghai Bai
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chen Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Sun B, Wu W, Narasipura EA, Ma Y, Yu C, Fenton OS, Song H. Engineering nanoparticle toolkits for mRNA delivery. Adv Drug Deliv Rev 2023; 200:115042. [PMID: 37536506 DOI: 10.1016/j.addr.2023.115042] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The concept of using mRNA to produce its own medicine in situ in the body makes it an ideal drug candidate, holding great potential to revolutionize the way we approach medicine. The unique characteristics of mRNA, as well as its customizable biomedical functions, call for the rational design of delivery systems to protect and transport mRNA molecules. In this review, a nanoparticle toolkit is presented for the development of mRNA-based therapeutics from a drug delivery perspective. Nano-delivery systems derived from either natural systems or chemical synthesis, in the nature of organic or inorganic materials, are summarised. Delivery strategies in controlling the tissue targeting and mRNA release, as well as the role of nanoparticles in building and boosting the activity of mRNA drugs, have also been introduced. In the end, our insights into the clinical and translational development of mRNA nano-drugs are presented.
Collapse
Affiliation(s)
- Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Weixi Wu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Eshan A Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
9
|
Oishi K, Blanco-Melo D, Kurland AP, Johnson JR, tenOever BR. Archaeal Kink-Turn Binding Protein Mediates Inhibition of Orthomyxovirus Splicing Biology. J Virol 2023; 97:e0181322. [PMID: 36943134 PMCID: PMC10134859 DOI: 10.1128/jvi.01813-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
Despite lacking a DNA intermediate, orthomyxoviruses complete their replication cycle in the nucleus and generate multiple transcripts by usurping the host splicing machinery. This biology results in dynamic changes of relative viral transcripts over time and dictates the replicative phase of the infection. Here, we demonstrate that the family of archaeal L7Ae proteins uniquely inhibit the splicing biology of influenza A virus, influenza B virus, and Salmon isavirus, revealing a common strategy utilized by Orthomyxoviridae members to achieve this dynamic. L7Ae-mediated inhibition of virus biology was lost with the generation of a splicing-independent strain of influenza A virus and attempts to select for an escape mutant resulted in variants that conformed to host splicing biology at significant cost to their overall fitness. As L7Ae recognizes conventional kink turns in various RNAs, these data implicate the formation of a similar structure as a shared strategy adopted by this virus family to coordinate their replication cycle. IMPORTANCE Here, we demonstrate that a family of proteins from archaea specifically inhibit this splicing biology of all tested members of the Orthomyxoviridae family. We show that this inhibition extends to influenza A virus, influenza B virus, and isavirus genera, while having no significant impact on the mammalian transcriptome or proteome. Attempts to generate an escape mutant against L7Ae-mediated inhibition resulted in mutations surrounding the viral splice sites and a significant loss of viral fitness. Together, these findings reveal a unique biology shared among diverse members of the Orthomyxoviridae family that may serve as a means to generate future universal therapeutics.
Collapse
Affiliation(s)
- Kohei Oishi
- Department of Microbiology, New York University, Grossman School of Medicine, New York, New York, USA
| | - Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew P. Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jeffrey R. Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin R. tenOever
- Department of Microbiology, New York University, Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
10
|
Chung S, Lee CM, Zhang M. Advances in nanoparticle-based mRNA delivery for liver cancer and liver-associated infectious diseases. NANOSCALE HORIZONS 2022; 8:10-28. [PMID: 36260016 PMCID: PMC11144305 DOI: 10.1039/d2nh00289b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The liver is a vital organ that functions to detoxify the body. Liver cancer and infectious diseases such as influenza and malaria can fatally compromise liver function. mRNA delivery is a relatively new means of therapeutic treatment which enables expression of tumor or pathogenic antigens, and elicits immune responses for therapeutic or prophylactic effect. Novel nanoparticles with unique biological properties serving as mRNA carriers have allowed mRNA-based therapeutics to become more clinically viable and relevant. In this review, we highlight recent progress in development of nanoparticle-based mRNA delivery systems for treatment of various liver diseases. First, we present developments in nanoparticle systems used to deliver mRNAs, with specific focus on enhanced cellular uptake and endosomal escape achieved through the use of these nanoparticles. To provide context for diseases that target the liver, we provide an overview of the function and structure of the liver, as well as the role of the immune system in the liver. Then, mRNA-based therapeutic approaches for addressing HCC are highlighted. We also discuss nanoparticle-based mRNA vaccines for treating hepatotropic infectious diseases. Finally, we present current challenges in the clinical translation of nanoparticle-based mRNA delivery systems and provide outlooks for their utilization in treating liver-related diseases.
Collapse
Affiliation(s)
- Seokhwan Chung
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Chan Mi Lee
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
11
|
Minkner R, Boonyakida J, Park EY, Wätzig H. Oligonucleotide separation techniques for purification and analysis: What can we learn for today's tasks? Electrophoresis 2022; 43:2402-2427. [PMID: 36285667 DOI: 10.1002/elps.202200079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
Nucleic acids are the blueprint of life. They are not only the construction plan of the single cell or higher associations of them, but also necessary for function, communication and regulation. Due to the pandemic, the attention shifted in particular to their therapeutic potential as a vaccine. As pharmaceutical oligonucleotides are unique in terms of their stability and application, special delivery systems were also considered. Oligonucleotide production systems can vary and depend on the feasibility, availability, price and intended application. To achieve good purity, reliable results and match the strict specifications in the pharmaceutical industry, the separation of oligonucleotides is always essential. Besides the separation required for production, additional and specifically different separation techniques are needed for analysis to determine if the product complies with the designated specifications. After a short introduction to ribonucleic acids (RNAs), messenger RNA vaccines, and their production and delivery systems, an overview regarding separation techniques will be provided. This not only emphasises electrophoretic separations but also includes spin columns, extractions, precipitations, magnetic nanoparticles and several chromatographic separation principles, such as ion exchange chromatography, ion-pair reversed-phase, size exclusion and affinity.
Collapse
Affiliation(s)
- Robert Minkner
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jirayu Boonyakida
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.,Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.,Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
12
|
Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, Chowdhury EH. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Arch Pharm Res 2022; 45:865-893. [DOI: 10.1007/s12272-022-01418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
|
13
|
Rehman S, Bishnoi S, Roy R, Kumari A, Jayakumar H, Gupta S, Kar P, Pattnaik AK, Nayak D. Emerging Biomedical Applications of the Vesicular Stomatitis Virus Glycoprotein. ACS OMEGA 2022; 7:32840-32848. [PMID: 36157773 PMCID: PMC9494638 DOI: 10.1021/acsomega.2c03517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticles (NPs) made of metals, polymers, micelles, and liposomes are increasingly being used in various biomedical applications. However, most of these NPs are hazardous for long- and short-term use and hence have restricted biomedical applications. Therefore, naturally derived, biocompatible, and biodegradable nanoconstructs are being explored for such applications. Inspired by the biology of viruses, researchers are exploring the viral proteins that hold considerable promise in biomedical applications. The viral proteins are highly stable and further amenable to suit specific biological applications. Among various viral proteins, vesicular stomatitis virus glycoprotein (VSV-G) has emerged as one of the most versatile platforms for biomedical applications. Starting with their first major use in lentivirus/retrovirus packaging systems, the VSV-G-based reagents have been tested for diverse biomedical use, many of which are at various stages of clinical trials. This manuscript discusses the recent advancements in the use of the VSV-G-based reagents in medical, biological research, and clinical applications particularly highlighting emerging applications in biomedical imaging.
Collapse
Affiliation(s)
- Sheeba Rehman
- Department
of Biological Sciences, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri
Bhopal 462066, Madhya
Pradesh, India
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Suman Bishnoi
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Rajarshi Roy
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Anshu Kumari
- School
of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Harikrishnan Jayakumar
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Sharad Gupta
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Asit K. Pattnaik
- School
of Veterinary Medicine and Biomedical Sciences, Nebraska Center for
Virology, University of Nebraska—Lincoln, 109 Morrison Center, Lincoln, Nebraska 68583-0900, United States
| | - Debasis Nayak
- Department
of Biological Sciences, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri
Bhopal 462066, Madhya
Pradesh, India
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
14
|
mRNA delivery via non-viral carriers for biomedical applications. Int J Pharm 2021; 607:121020. [PMID: 34416327 DOI: 10.1016/j.ijpharm.2021.121020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 12/11/2022]
Abstract
As an emerging new class of nucleic acid drugs, messenger RNA (mRNA) has huge potential in immunotherapy, regenerative medicine, vaccine, and gene editing. Comparing with siRNA and pDNA, mRNA is more vulnerable to nucleases in vivo. However, the lack of effective and safe delivery methods impedes the broad application of mRNA-based therapeutics. Up to now, the delivery of mRNA remains largely unexplored, and therefore, is a hot topic in the field of gene therapy. In this review, we will summarize the ongoing challenges in mRNA-based therapeutics and unmet requirements for delivery vehicles in terms of the unique structure of mRNA. We then highlight the advancement in mRNA delivery in both fundamental research and clinical applications. Finally, a prospective will be proposed upon reviewing the current progress in mRNA delivery.
Collapse
|
15
|
Fukunaga K, Yokobayashi Y. Directed evolution of orthogonal RNA-RBP pairs through library-vs-library in vitro selection. Nucleic Acids Res 2021; 50:601-616. [PMID: 34219162 PMCID: PMC8789040 DOI: 10.1093/nar/gkab527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
RNA-binding proteins (RBPs) and their RNA ligands play many critical roles in gene regulation and RNA processing in cells. They are also useful for various applications in cell biology and synthetic biology. However, re-engineering novel and orthogonal RNA-RBP pairs from natural components remains challenging while such synthetic RNA-RBP pairs could significantly expand the RNA-RBP toolbox for various applications. Here, we report a novel library-vs-library in vitro selection strategy based on Phage Display coupled with Systematic Evolution of Ligands by EXponential enrichment (PD-SELEX). Starting with pools of 1.1 × 1012 unique RNA sequences and 4.0 × 108 unique phage-displayed L7Ae-scaffold (LS) proteins, we selected RNA-RBP complexes through a two-step affinity purification process. After six rounds of library-vs-library selection, the selected RNAs and LS proteins were analyzed by next-generation sequencing (NGS). Further deconvolution of the enriched RNA and LS protein sequences revealed two synthetic and orthogonal RNA-RBP pairs that exhibit picomolar affinity and >4000-fold selectivity.
Collapse
Affiliation(s)
- Keisuke Fukunaga
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| |
Collapse
|
16
|
Bishnoi S, Kumari A, Rehman S, Minz A, Senapati S, Nayak D, Gupta S. Fusogenic Viral Protein-Based Near-Infrared Active Nanocarriers for Biomedical Imaging. ACS Biomater Sci Eng 2021; 7:3351-3360. [PMID: 34111927 DOI: 10.1021/acsbiomaterials.1c00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An effective drug delivery system (DDS) relies on an efficient cellular uptake and faster intracellular delivery of theranostic agents, bypassing the endosomal mediated degradation of the payload. The use of viral nanoparticles (VNPs) permits such advancement, as the viruses are naturally evolved to infiltrate the host cells to deliver their genetic material. As a proof of concept, we bioengineered the vesicular stomatitis virus glycoprotein (VSV-G)-based near-infrared (NIR) active viral nanoconstructs (NAVNs) encapsulating indocyanine green dye (ICG) for NIR bioimaging. NAVNs are spherical in size and have the intrinsic cellular-fusogenic properties of VSV-G. Further, the NIR imaging displaying higher fluorescence intensity in NAVNs treated cells suggests enhanced cellular uptake and delivery of ICG by NAVNs compared to the free form of ICG. The overall study highlights the effectiveness of VSV-G-based VNPs as an efficient delivery system for NIR fluorescence imaging.
Collapse
Affiliation(s)
- Suman Bishnoi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Anshu Kumari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India.,School of Medicine, University of Maryland Baltimore, Maryland 21201, United States
| | - Sheeba Rehman
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Aliva Minz
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | | | - Debasis Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Sharad Gupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India.,School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
17
|
Chen L, Hong W, Ren W, Xu T, Qian Z, He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther 2021; 6:225. [PMID: 34099630 PMCID: PMC8182741 DOI: 10.1038/s41392-021-00631-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Over the past decades, great interest has been given to biomimetic nanoparticles (BNPs) since the rise of targeted drug delivery systems and biomimetic nanotechnology. Biological vectors including cell membranes, extracellular vesicles (EVs), and viruses are considered promising candidates for targeted delivery owing to their biocompatibility and biodegradability. BNPs, the integration of biological vectors and functional agents, are anticipated to load cargos or camouflage synthetic nanoparticles to achieve targeted delivery. Despite their excellent intrinsic properties, natural vectors are deliberately modified to endow multiple functions such as good permeability, improved loading capability, and high specificity. Through structural modification and transformation of the vectors, they are pervasively utilized as more effective vehicles that can deliver contrast agents, chemotherapy drugs, nucleic acids, and genes to target sites for refractory disease therapy. This review summarizes recent advances in targeted delivery vectors based on cell membranes, EVs, and viruses, highlighting the potential applications of BNPs in the fields of biomedical imaging and therapy industry, as well as discussing the possibility of clinical translation and exploitation trend of these BNPs.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiqi Hong
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenyan Ren
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Chen F, Wang Y, Gao J, Saeed M, Li T, Wang W, Yu H. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials 2021; 270:120709. [PMID: 33581608 DOI: 10.1016/j.biomaterials.2021.120709] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapies including cancer vaccines, immune checkpoint blockade or chimeric antigen receptor T cells have been exploited as the attractive treatment modalities in recent years. Among these approaches, cancer vaccines that designed to deliver tumor antigens and adjuvants to activate the antigen presenting cells (APCs) and induce antitumor immune responses, have shown significant efficacy in inhibiting tumor growth, preventing tumor relapse and metastasis. Despite the potential of cancer vaccination strategies, the therapeutic outcomes in preclinical trials are failed to promote their clinical translation, which is in part due to their inefficient vaccination cascade of five critical steps: antigen identification, antigen encapsulation, antigen delivery, antigen release and antigen presentation to T cells. In recent years, it has been demonstrated that various nanobiomaterials hold great potential to enhance cancer vaccination cascade and improve their antitumor performance and reduce the off-target effect. We summarize the cutting-edge advances of nanobiomaterials-based vaccination immunotherapy of cancer in this review. The various cancer nanovaccines including antigen peptide/adjuvant-based nanovaccines, nucleic acid-based nanovaccines as well as biomimetic nanobiomaterials-based nanovaccines are discussed in detail. We also provide some challenges and perspectives associated with the clinical translation of cancer nanovaccines.
Collapse
Affiliation(s)
- Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjie Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Madiha Saeed
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tianliang Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Weng Y, Li C, Yang T, Hu B, Zhang M, Guo S, Xiao H, Liang XJ, Huang Y. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv 2020; 40:107534. [PMID: 32088327 DOI: 10.1016/j.biotechadv.2020.107534] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
Messenger RNA (mRNA)-based therapeutics hold the potential to cause a major revolution in the pharmaceutical industry because they can be used for precise and individualized therapy, and enable patients to produce therapeutic proteins in their own bodies without struggling with the comprehensive manufacturing issues associated with recombinant proteins. Compared with the current therapeutics, the production of mRNA is much cost-effective, faster and more flexible because it can be easily produced by in vitro transcription, and the process is independent of mRNA sequence. Moreover, mRNA vaccines allow people to develop personalized medications based on sequencing results and/or personalized conditions rapidly. Along with the great potential from bench to bedside, technical obstacles facing mRNA pharmaceuticals are also obvious. The stability, immunogenicity, translation efficiency, and delivery are all pivotal issues need to be addressed. In the recently published research results, these issues are gradually being overcome by state-of-the-art development technologies. In this review, we describe the structural properties and modification technologies of mRNA, summarize the latest advances in developing mRNA delivery systems, review the preclinical and clinical applications, and put forward our views on the prospect and challenges of developing mRNA into a new class of drug.
Collapse
Affiliation(s)
- Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Tongren Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shuai Guo
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
20
|
Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. NANOMATERIALS 2020; 10:nano10020364. [PMID: 32093140 PMCID: PMC7075285 DOI: 10.3390/nano10020364] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
The use of messenger RNA (mRNA) in gene therapy is increasing in recent years, due to its unique features compared to plasmid DNA: Transient expression, no need to enter into the nucleus and no risk of insertional mutagenesis. Nevertheless, the clinical application of mRNA as a therapeutic tool is limited by its instability and ability to activate immune responses; hence, mRNA chemical modifications together with the design of suitable vehicles result essential. This manuscript includes a revision of the strategies employed to enhance in vitro transcribed (IVT) mRNA functionality and efficacy, including the optimization of its stability and translational efficiency, as well as the regulation of its immunostimulatory properties. An overview of the nanosystems designed to protect the mRNA and to overcome the intra and extracellular barriers for successful delivery is also included. Finally, the present and future applications of mRNA nanomedicines for immunization against infectious diseases and cancer, protein replacement, gene editing, and regenerative medicine are highlighted.
Collapse
|
21
|
Okay S, Özge Özcan Ö, Karahan M. Nanoparticle-based delivery platforms for mRNA vaccine development. AIMS BIOPHYSICS 2020. [DOI: 10.3934/biophy.2020023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
Ni R, Feng R, Chau Y. Synthetic Approaches for Nucleic Acid Delivery: Choosing the Right Carriers. Life (Basel) 2019; 9:E59. [PMID: 31324016 PMCID: PMC6789897 DOI: 10.3390/life9030059] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of the genetic roots of various human diseases has motivated the exploration of different exogenous nucleic acids as therapeutic agents to treat these genetic disorders (inherited or acquired). However, the physicochemical properties of nucleic acids render them liable to degradation and also restrict their cellular entrance and gene translation/inhibition at the correct cellular location. Therefore, gene condensation/protection and guided intracellular trafficking are necessary for exogenous nucleic acids to function inside cells. Diversified cationic formulation materials, including natural and synthetic lipids, polymers, and proteins/peptides, have been developed to facilitate the intracellular transportation of exogenous nucleic acids. The chemical properties of different formulation materials determine their special features for nucleic acid delivery, so understanding the property-function correlation of the formulation materials will inspire the development of next-generation gene delivery carriers. Therefore, in this review, we focus on the chemical properties of different types of formulation materials and discuss how these formulation materials function as protectors and cellular pathfinders for nucleic acids, bringing them to their destination by overcoming different cellular barriers.
Collapse
Affiliation(s)
- Rong Ni
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Institute for Advanced Study, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ruilu Feng
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| |
Collapse
|