1
|
Bagga AD, Johnson BP, Zhang Q. Spatially Dependent Tissue Distribution of Thyroid Hormones by Plasma Thyroid Hormone Binding Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572629. [PMID: 38187691 PMCID: PMC10769377 DOI: 10.1101/2023.12.20.572629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings. (1) Contrary to postulations that TTR and/or ALB are the major local T4 contributors, the three THBPs may unload comparable amounts of T4 in Liver, a rapidly perfused organ; however, their contributions in slowly perfused tissues follow the order of abundances of T4TBG, T4TTR, and T4ALB. The T3 amounts unloaded from or loaded onto THBPs in a tissue acting as a T3 sink or source respectively follow the order of abundance of T3TBG, T3ALB, and T3TTR regardless of perfusion rate. (2) Any THBP alone is sufficient to maintain spatially uniform TH tissue distributions. (3) The TH amounts unloaded by each THBP species are spatially dependent and nonlinear in a tissue, with ALB being the dominant contributor near the arterial end but conceding to TBG near the venous end. (4) Spatial gradients of TH transporters and metabolic enzymes may modulate these contributions, producing spatially invariant or heterogeneous TH tissue concentrations depending on whether the blood-tissue TH exchange operates in near-equilibrium mode. In summary, our modeling provides novel insights into the differential roles of THBPs in local TH tissue distribution.
Collapse
Affiliation(s)
- Anish D. Bagga
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Brian P. Johnson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA 30322, USA
| |
Collapse
|
2
|
Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, Wang Y, Tang Y, Xia M, Li B. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther 2024; 9:30. [PMID: 38331979 PMCID: PMC10853571 DOI: 10.1038/s41392-024-01738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Worldwide, the incidence of major depressive disorder (MDD) is increasing annually, resulting in greater economic and social burdens. Moreover, the pathological mechanisms of MDD and the mechanisms underlying the effects of pharmacological treatments for MDD are complex and unclear, and additional diagnostic and therapeutic strategies for MDD still are needed. The currently widely accepted theories of MDD pathogenesis include the neurotransmitter and receptor hypothesis, hypothalamic-pituitary-adrenal (HPA) axis hypothesis, cytokine hypothesis, neuroplasticity hypothesis and systemic influence hypothesis, but these hypothesis cannot completely explain the pathological mechanism of MDD. Even it is still hard to adopt only one hypothesis to completely reveal the pathogenesis of MDD, thus in recent years, great progress has been made in elucidating the roles of multiple organ interactions in the pathogenesis MDD and identifying novel therapeutic approaches and multitarget modulatory strategies, further revealing the disease features of MDD. Furthermore, some newly discovered potential pharmacological targets and newly studied antidepressants have attracted widespread attention, some reagents have even been approved for clinical treatment and some novel therapeutic methods such as phototherapy and acupuncture have been discovered to have effective improvement for the depressive symptoms. In this work, we comprehensively summarize the latest research on the pathogenesis and diagnosis of MDD, preventive approaches and therapeutic medicines, as well as the related clinical trials.
Collapse
Affiliation(s)
- Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Shu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yijun Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
3
|
Tani N, Ikeda T, Ishikawa T. Effects of Prolactin on Brain Neurons under Hypoxia. Life (Basel) 2024; 14:152. [PMID: 38276281 PMCID: PMC10817236 DOI: 10.3390/life14010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
The levels and potential role of prolactin (PRL) in the brain under conditions of acute systemic hypoxia were examined, focusing on the accumulation of PRL in cerebrospinal fluid (CSF) and its effects on neuronal activity and injury. The amount of PRL in the brain was investigated using brain tissues from forensic autopsy cases. We counted the number of neurites that formed in human primary neurons (HNs) after the addition of PRL. Furthermore, HNs supplemented with PRL or triiodothyronine (T3) were exposed to hypoxic conditions, and the dead cells were counted. The results showed correlations between brain PRL and CSF PRL levels. Additionally, PRL accumulation in the brain was observed in cases of asphyxia. In vitro experimental findings indicated increased neurite formation in the HNs treated with PRL. Moreover, both PRL and T3 demonstrated neuroprotective effects against hypoxia-induced neuronal cell death, with PRL showing stronger neuroprotective potential than T3. These results suggest that PRL accumulates in the brain during hypoxia, potentially influences neuronal activity, and exhibits neuroprotective properties against hypoxia-induced neuronal injury.
Collapse
Affiliation(s)
- Naoto Tani
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka 545-8585, Japan; (T.I.); (T.I.)
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center, 1-4-3 Asahi-machi, Abeno, Osaka 545-8585, Japan
| | - Tomoya Ikeda
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka 545-8585, Japan; (T.I.); (T.I.)
| | - Takaki Ishikawa
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka 545-8585, Japan; (T.I.); (T.I.)
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center, 1-4-3 Asahi-machi, Abeno, Osaka 545-8585, Japan
| |
Collapse
|
4
|
Bagga AD, Johnson BP, Zhang Q. A minimal human physiologically based kinetic model of thyroid hormones and chemical disruption of plasma thyroid hormone binding proteins. Front Endocrinol (Lausanne) 2023; 14:1168663. [PMID: 37305053 PMCID: PMC10248451 DOI: 10.3389/fendo.2023.1168663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023] Open
Abstract
The thyroid hormones (THs), thyroxine (T4) and triiodothyronine (T3), are under homeostatic control by the hypothalamic-pituitary-thyroid axis and plasma TH binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB). THBPs buffer free THs against transient perturbations and distribute THs to tissues. TH binding to THBPs can be perturbed by structurally similar endocrine-disrupting chemicals (EDCs), yet their impact on circulating THs and health risks are unclear. In the present study, we constructed a human physiologically based kinetic (PBK) model of THs and explored the potential effects of THBP-binding EDCs. The model describes the production, distribution, and metabolism of T4 and T3 in the Body Blood, Thyroid, Liver, and Rest-of-Body (RB) compartments, with explicit consideration of the reversible binding between plasma THs and THBPs. Rigorously parameterized based on literature data, the model recapitulates key quantitative TH kinetic characteristics, including free, THBP-bound, and total T4 and T3 concentrations, TH productions, distributions, metabolisms, clearance, and half-lives. Moreover, the model produces several novel findings. (1) The blood-tissue TH exchanges are fast and nearly at equilibrium especially for T4, providing intrinsic robustness against local metabolic perturbations. (2) Tissue influx is limiting for transient tissue uptake of THs when THBPs are present. (3) Continuous exposure to THBP-binding EDCs does not alter the steady-state levels of THs, while intermittent daily exposure to rapidly metabolized TBG-binding EDCs can cause much greater disruptions to plasma and tissue THs. In summary, the PBK model provides novel insights into TH kinetics and the homeostatic roles of THBPs against thyroid disrupting chemicals.
Collapse
Affiliation(s)
- Anish D. Bagga
- Emory College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Brian P. Johnson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, Atlanta, United States
| |
Collapse
|
5
|
Murolo M, Di Vincenzo O, Cicatiello AG, Scalfi L, Dentice M. Cardiovascular and Neuronal Consequences of Thyroid Hormones Alterations in the Ischemic Stroke. Metabolites 2022; 13:metabo13010022. [PMID: 36676947 PMCID: PMC9863748 DOI: 10.3390/metabo13010022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Ischemic stroke is one of the leading global causes of neurological morbidity and decease. Its etiology depends on multiple events such as cardiac embolism, brain capillaries occlusion and atherosclerosis, which ultimately culminate in blood flow interruption, incurring hypoxia and nutrient deprivation. Thyroid hormones (THs) are pleiotropic modulators of several metabolic pathways, and critically influence different aspects of tissues development. The brain is a key TH target tissue and both hypo- and hyperthyroidism, during embryonic and adult life, are associated with deranged neuronal formation and cognitive functions. Accordingly, increasing pieces of evidence are drawing attention on the consistent relationship between the THs status and the acute cerebral and cardiac diseases. However, the concrete contribution of THs systemic or local alteration to the pathology outcome still needs to be fully addressed. In this review, we aim to summarize the multiple influences that THs exert on the brain and heart patho-physiology, to deepen the reasons for the harmful effects of hypo- and hyperthyroidism on these organs and to provide insights on the intricate relationship between the THs variations and the pathological alterations that take place after the ischemic injury.
Collapse
Affiliation(s)
- Melania Murolo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
- Correspondence:
| | - Olivia Di Vincenzo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy
| | | | - Luca Scalfi
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate S.c.a.r.l., 80131 Naples, Italy
| |
Collapse
|
6
|
Huang S, Liu L, Tang X, Xie S, Li X, Kang X, Zhu S. Research progress on the role of hormones in ischemic stroke. Front Immunol 2022; 13:1062977. [PMID: 36569944 PMCID: PMC9769407 DOI: 10.3389/fimmu.2022.1062977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability around the world. However, ischemic stroke treatment is currently limited, with a narrow therapeutic window and unsatisfactory post-treatment outcomes. Therefore, it is critical to investigate the pathophysiological mechanisms following ischemic stroke brain injury. Changes in the immunometabolism and endocrine system after ischemic stroke are important in understanding the pathophysiological mechanisms of cerebral ischemic injury. Hormones are biologically active substances produced by endocrine glands or endocrine cells that play an important role in the organism's growth, development, metabolism, reproduction, and aging. Hormone research in ischemic stroke has made very promising progress. Hormone levels fluctuate during an ischemic stroke. Hormones regulate neuronal plasticity, promote neurotrophic factor formation, reduce cell death, apoptosis, inflammation, excitotoxicity, oxidative and nitrative stress, and brain edema in ischemic stroke. In recent years, many studies have been done on the role of thyroid hormone, growth hormone, testosterone, prolactin, oxytocin, glucocorticoid, parathyroid hormone, and dopamine in ischemic stroke, but comprehensive reviews are scarce. This review focuses on the role of hormones in the pathophysiology of ischemic stroke and discusses the mechanisms involved, intending to provide a reference value for ischemic stroke treatment and prevention.
Collapse
Affiliation(s)
- Shuyuan Huang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lu Liu
- Department of Anesthesiology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaodong Tang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shulan Xie
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinrui Li
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xianhui Kang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Xianhui Kang, ; Shengmei Zhu,
| | - Shengmei Zhu
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Xianhui Kang, ; Shengmei Zhu,
| |
Collapse
|
7
|
Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front Endocrinol (Lausanne) 2022; 13:992883. [PMID: 36187113 PMCID: PMC9519864 DOI: 10.3389/fendo.2022.992883] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs), including T4 and T3, are produced and released by the thyroid gland under the stimulation of thyroid-stimulating hormone (TSH). The homeostasis of THs is regulated via the coordination of the hypothalamic-pituitary-thyroid axis, plasma binding proteins, and local metabolism in tissues. TH synthesis and secretion in the thyrocytes-containing thyroid follicles are exquisitely regulated by an elaborate molecular network comprising enzymes, transporters, signal transduction machineries, and transcription factors. In this article, we synthesized the relevant literature, organized and dissected the complex intrathyroidal regulatory network into structures amenable to functional interpretation and systems-level modeling. Multiple intertwined feedforward and feedback motifs were identified and described, centering around the transcriptional and posttranslational regulations involved in TH synthesis and secretion, including those underpinning the Wolff-Chaikoff and Plummer effects and thyroglobulin-mediated feedback regulation. A more thorough characterization of the intrathyroidal network from a systems biology perspective, including its topology, constituent network motifs, and nonlinear quantitative properties, can help us to better understand and predict the thyroidal dynamics in response to physiological signals, therapeutic interventions, and environmental disruptions.
Collapse
Affiliation(s)
- Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
8
|
Jongejan RMS, Meima ME, Visser WE, Korevaar TIM, van den Berg SAA, Peeters RP, de Rijke YB. Binding Characteristics of Thyroid Hormone Distributor Proteins to Thyroid Hormone Metabolites. Thyroid 2022; 32:990-999. [PMID: 35491555 DOI: 10.1089/thy.2021.0588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: In contrast to the thyroid hormones (THs) 3,3',5-triiodothyronine (T3) and 3,3',5,5'-tetraiodothyronine (thyroxine or T4), the binding characteristics of the thyroid hormone distributor proteins (THDP), thyroxine-binding globulin (TBG), albumin, and transthyretin in relation to TH metabolites are mostly lacking. In this study, we determined the distribution and binding affinity of TH metabolites to THDP, which is important for adequate interpretation of TH metabolite concentrations. Methods: Distribution of 125I-3,3'-diiodothyronine (3,3'-T2), -T3, -3,3',5'-triiodothyronine (rT3), -3,3',5-triiodothyroacetic acid (TA3), and -3,3',5,5'-tetraiodothyroacetic acid (TA4) to TBG, transthyretin, and albumin was determined by agar gel electrophoresis. The rank order of affinity (IC50) of TBG and transthyretin to thyronine (T0), 3-monoiodothyronine (3-T1), 3,5-diiodothyronine (3,5-T2), 3,3'-T2, T3, rT3, T4, TA3, and TA4 was determined with a radioligand, competitive binding assay. In healthy subjects, associations of serum TBG, transthyretin, and albumin with TH and its metabolites were analyzed using multiple linear regression models, adjusted for sex and age. Results: While T3 and T4 are predominantly bound to TBG, we demonstrated that the predominant THDP of 3,3'-T2 and rT3 is albumin, of TA3 is transthyretin and albumin, and of TA4 is transthyretin. With the radioligand binding assay, we showed that the rank order of affinity was T4>TA4 = rT3>T3>TA3 = 3,3'-T2 > 3-T1 = 3,5-T2>T0 for TBG (IC50-range: 0.36 nM to >100 μM) and TA4>T4 = TA3>rT3>T3 > 3,3'-T2 > 3-T1 > 3,5-T2>T0 for transthyretin (IC50-range: 0.94 nM to >100 μM). TBG, transthyretin, and albumin were not associated with T0, 3-T1, 3,3'-T2, rT3, and TA4. Conclusions: Differences in serum TBG, transthyretin, and albumin concentrations within the reference interval do not influence serum concentrations of T0, 3-T1, 3,3'-T2, rT3, and TA4. Distribution of TH metabolites between THDP differs from T4 and T3, which predominantly bind to TBG. The results from our study have potential clinical importance for adequate interpretation of TH metabolism in (patho)physiology.
Collapse
Affiliation(s)
- Rutchanna M S Jongejan
- Department of Clinical Chemistry and University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine; University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marcel E Meima
- Department of Internal Medicine; University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Academic Center for Thyroid Diseases; Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - W Edward Visser
- Department of Internal Medicine; University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Academic Center for Thyroid Diseases; Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tim I M Korevaar
- Department of Internal Medicine; University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Academic Center for Thyroid Diseases; Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sjoerd A A van den Berg
- Department of Clinical Chemistry and University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine; University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Academic Center for Thyroid Diseases; Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine; University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Academic Center for Thyroid Diseases; Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yolanda B de Rijke
- Department of Clinical Chemistry and University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Academic Center for Thyroid Diseases; Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Rossetti CL, Cazarin J, Hecht F, Beltrão FEDL, Ferreira ACF, Fortunato RS, Ramos HE, de Carvalho DP. COVID-19 and thyroid function: What do we know so far? Front Endocrinol (Lausanne) 2022; 13:1041676. [PMID: 36601011 PMCID: PMC9806267 DOI: 10.3389/fendo.2022.1041676] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) was characterized as a pandemic in March, 2020 by the World Health Organization. COVID-19 is a respiratory syndrome that can progress to acute respiratory distress syndrome, multiorgan dysfunction, and eventually death. Despite being considered a respiratory disease, it is known that other organs and systems can be affected in COVID-19, including the thyroid gland. Thyroid gland, as well as hypothalamus and pituitary, which regulate the functioning of most endocrine glands, express angiotensin-converting enzyme 2 (ACE2), the main protein that functions as a receptor to which SARS-CoV-2 binds to enter host cells. In addition, thyroid gland is extremely sensitive to changes in body homeostasis and metabolism. Immune system cells are targets for thyroid hormones and T3 and T4 modulate specific immune responses, including cell-mediated immunity, natural killer cell activity, the antiviral action of interferon (IFN) and proliferation of T- and B-lymphocytes. However, studies show that patients with controlled hypothyroidism and hyperthyroidism do not have a higher prevalence of COVID-19, nor do they have a worse prognosis when infected with the virus. On the other hand, retrospective observational studies, prospective studies, and case reports published in the last two years reported abnormal thyroid function related to acute SARS-CoV-2 infection or even several weeks after its resolution. Indeed, a variety of thyroid disorders have been documented in COVID-19 patients, including non-thyroidal illness syndrome (NTIS), subacute thyroiditis and thyrotoxicosis. In addition, thyroid disease has already been reported as a consequence of the administration of vaccines against SARS-CoV-2. Overall, the data revealed that abnormal thyroid function may occur during and in the convalescence post-COVID condition phase. Although the cellular and molecular mechanisms are not completely understood, the evidence suggests that the "cytokine storm" is an important mediator in this context. Thus, future studies are needed to better investigate the pathophysiology of thyroid dysfunction induced by COVID-19 at both molecular and clinical levels.
Collapse
Affiliation(s)
- Camila Lüdke Rossetti
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Cazarin
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Hecht
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabyan Esberard de Lima Beltrão
- Postgraduate Program in Nutritional Sciences, Department of Nutrition, Center for Health Sciences, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Andrea Cláudia Freitas Ferreira
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Campus Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Soares Fortunato
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helton Estrela Ramos
- Department of Biorregulation, Health Sciences Institute, Universidade Federal da Bahia, Salvador, Brazil
- *Correspondence: Helton Estrela Ramos,
| | - Denise Pires de Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Vanhorebeek I, Derese I, Gunst J, Wouters PJ, Hermans G, Van den Berghe G. Persisting neuroendocrine abnormalities and their association with physical impairment 5 years after critical illness. Crit Care 2021; 25:430. [PMID: 34915907 PMCID: PMC8675467 DOI: 10.1186/s13054-021-03858-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Critical illness is hallmarked by neuroendocrine alterations throughout ICU stay. We investigated whether the neuroendocrine axes recover after ICU discharge and whether any residual abnormalities associate with physical functional impairments assessed 5 years after critical illness.
Methods In this preplanned secondary analysis of the EPaNIC randomized controlled trial, we compared serum concentrations of hormones and binding proteins of the thyroid axis, the somatotropic axis and the adrenal axis in 436 adult patients who participated in the prospective 5-year clinical follow-up and who provided a blood sample with those in 50 demographically matched controls. We investigated independent associations between any long-term hormonal abnormalities and physical functional impairments (handgrip strength, 6-min walk distance, and physical health-related quality-of-life) with use of multivariable linear regression analyses. Results At 5-year follow-up, patients and controls had comparable serum concentrations of thyroid-stimulating hormone, thyroxine (T4), triiodothyronine (T3) and thyroxine-binding globulin, whereas patients had higher reverse T3 (rT3, p = 0.0002) and lower T3/rT3 (p = 0.0012) than controls. Patients had comparable concentrations of growth hormone, insulin-like growth factor-I (IGF-I) and IGF-binding protein 1 (IGFBP1), but higher IGFBP3 (p = 0.030) than controls. Total and free cortisol, cortisol-binding globulin and albumin concentrations were comparable for patients and controls. A lower T3/rT3 was independently associated with lower handgrip strength and shorter 6-min walk distance (p ≤ 0.036), and a higher IGFBP3 was independently associated with higher handgrip strength (p = 0.031). Conclusions Five years after ICU admission, most hormones and binding proteins of the thyroid, somatotropic and adrenal axes had recovered. The residual long-term abnormality within the thyroid axis was identified as risk factor for long-term physical impairment, whereas that within the somatotropic axis may be a compensatory protective response. Whether targeting of the residual abnormality in the thyroid axis may improve long-term physical outcome of the patients remains to be investigated. Trial registration ClinicalTrials.gov: NCT00512122, registered on July 31, 2007 (https://www.clinicaltrials.gov/ct2/show/NCT00512122). Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03858-1.
Collapse
Affiliation(s)
- Ilse Vanhorebeek
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Inge Derese
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Jan Gunst
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Department of Intensive Care Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Pieter J Wouters
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Department of Intensive Care Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Greet Hermans
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Greet Van den Berghe
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium. .,Department of Intensive Care Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium. .,Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
11
|
Xiang Z, Xu XH, Knight GE, Burnstock G. Transient expression of thyrotropin releasing hormone peptide and mRNA in the rat hippocampus following global cerebral ischemia/reperfusion injury. Int J Neurosci 2020; 132:787-801. [PMID: 33080155 DOI: 10.1080/00207454.2020.1840374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The role of extra-hypothalamic thyrotropin-releasing hormone (TRH) has been investigated by pharmacological studies using TRH or its analogues and found to produce a wide array of effects in the central nervous system. METHODS Immunofluorescence, In situ labeling of DNA (TUNEL), in situ hybridization chain reaction and quantitative real-time polymerase chain reaction were used in this study. RESULTS We found that the granular cells of the dentate gyrus expressed transiently a significant amount of TRH-like immunoreactivity and TRH mRNA during the 6-24 h period following global cerebral ischemia/reperfusion injury. TUNEL showed that apoptosis of neurons in the CA1 region occurred from 48 h and almost disappeared at 7 days. TRH administration 30 min before or 24 h after the injury could partially inhibit neuronal loss, and improve the survival of neurons in the CA1 region. CONCLUSION These data suggest that endogenous TRH expressed transiently in the dentate gyrus of the hippocampus may play an important role in the survival of neurons during the early stage of ischemia/reperfusion injury and that delayed application of TRH still produced neuroprotection. This delayed application of TRH has a promising therapeutic significance for clinical situations.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, PR China
| | - Xiao-Hui Xu
- School of Life Science, Shanghai University, Shanghai, People's Republic of China
| | - Gillian E Knight
- Autonomic Neuroscience Centre, University College Medical School, London
| | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London.,Department of Pharmacology and Therapeutics, The University of Melbourne, Australia
| |
Collapse
|
12
|
Vancamp P, Butruille L, Demeneix BA, Remaud S. Thyroid Hormone and Neural Stem Cells: Repair Potential Following Brain and Spinal Cord Injury. Front Neurosci 2020; 14:875. [PMID: 32982671 PMCID: PMC7479247 DOI: 10.3389/fnins.2020.00875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by chronic neuronal and/or glial cell loss, while traumatic injury is often accompanied by the acute loss of both. Multipotent neural stem cells (NSCs) in the adult mammalian brain spontaneously proliferate, forming neuronal and glial progenitors that migrate toward lesion sites upon injury. However, they fail to replace neurons and glial cells due to molecular inhibition and the lack of pro-regenerative cues. A major challenge in regenerative biology therefore is to unveil signaling pathways that could override molecular brakes and boost endogenous repair. In physiological conditions, thyroid hormone (TH) acts on NSC commitment in the subventricular zone, and the subgranular zone, the two largest NSC niches in mammals, including humans. Here, we discuss whether TH could have beneficial actions in various pathological contexts too, by evaluating recent data obtained in mammalian models of multiple sclerosis (MS; loss of oligodendroglial cells), Alzheimer’s disease (loss of neuronal cells), stroke and spinal cord injury (neuroglial cell loss). So far, TH has shown promising effects as a stimulator of remyelination in MS models, while its role in NSC-mediated repair in other diseases remains elusive. Disentangling the spatiotemporal aspects of the injury-driven repair response as well as the molecular and cellular mechanisms by which TH acts, could unveil new ways to further exploit its pro-regenerative potential, while TH (ant)agonists with cell type-specific action could provide safer and more target-directed approaches that translate easier to clinical settings.
Collapse
Affiliation(s)
- Pieter Vancamp
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, Paris, France
| | - Lucile Butruille
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, Paris, France
| | - Barbara A Demeneix
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, Paris, France
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, Paris, France
| |
Collapse
|
13
|
Lin C, Li N, Chang H, Shen Y, Li Z, Wei W, Chen H, Lu H, Ji J, Liu N. Dual effects of thyroid hormone on neurons and neurogenesis in traumatic brain injury. Cell Death Dis 2020; 11:671. [PMID: 32826870 PMCID: PMC7442821 DOI: 10.1038/s41419-020-02836-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022]
Abstract
Thyroid hormone (TH) plays a crucial role in neurodevelopment, but its function and specific mechanisms remain unclear after traumatic brain injury (TBI). Here we found that treatment with triiodothyronine (T3) ameliorated the progression of neurological deficits in mice subjected to TBI. The data showed that T3 reduced neural death and promoted the elimination of damaged mitochondria via mitophagy. However, T3 did not prevent TBI-induced cell death in phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (Pink1) knockout mice suggesting the involvement of mitophagy. Moreover, we also found that T3 promoted neurogenesis via crosstalk between mature neurons and neural stem cells (NSCs) after TBI. In neuron cultures undergoing oxygen and glucose deprivation (OGD), conditioned neuron culture medium collected after T3 treatment enhanced the in vitro differentiation of NSCs into mature neurons, a process in which mitophagy was required. Taken together, these data suggested that T3 treatment could provide a therapeutic approach for TBI by preventing neuronal death via mitophagy and promoting neurogenesis via neuron–NSC crosstalk.
Collapse
Affiliation(s)
- Chao Lin
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Nan Li
- Department of Nephrology, Drum Tower Hospital, Nanjing, 210029, China
| | - Hanxiao Chang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.,Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yuqi Shen
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.,Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Zheng Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.,Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Wu Wei
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.,Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Hua Chen
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.,Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Hua Lu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.,Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Jing Ji
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Ning Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, 210029, China.
| |
Collapse
|
14
|
Talhada D, Santos CRA, Gonçalves I, Ruscher K. Thyroid Hormones in the Brain and Their Impact in Recovery Mechanisms After Stroke. Front Neurol 2019; 10:1103. [PMID: 31681160 PMCID: PMC6814074 DOI: 10.3389/fneur.2019.01103] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
Thyroid hormones are of fundamental importance for brain development and essential factors to warrant brain functions throughout life. Their actions are mediated by binding to specific intracellular and membranous receptors regulating genomic and non-genomic mechanisms in neurons and populations of glial cells, respectively. Among others, mechanisms include the regulation of neuronal plasticity processes, stimulation of angiogenesis and neurogenesis as well modulating the dynamics of cytoskeletal elements and intracellular transport processes. These mechanisms overlap with those that have been identified to enhance recovery of lost neurological functions during the first weeks and months after ischemic stroke. Stimulation of thyroid hormone signaling in the postischemic brain might be a promising therapeutic strategy to foster endogenous mechanisms of repair. Several studies have pointed to a significant association between thyroid hormones and outcome after stroke. With this review, we will provide an overview on functions of thyroid hormones in the healthy brain and summarize their mechanisms of action in the developing and adult brain. Also, we compile the major thyroid-modulated molecular pathways in the pathophysiology of ischemic stroke that can enhance recovery, highlighting thyroid hormones as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Talhada
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
- LUBIN Lab-Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Cecília Reis Alves Santos
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- LUBIN Lab-Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Senese R, Cioffi F, Petito G, Goglia F, Lanni A. Thyroid hormone metabolites and analogues. Endocrine 2019; 66:105-114. [PMID: 31359245 DOI: 10.1007/s12020-019-02025-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
Several metabolic products that derive from L-thyroxine (T4) and 3,3'5-L-triiodothyronine (T3), the main thyroid hormones secreted by the thyroid gland, possess biologic activities. Among these metabolites or derivatives showing physiological actions some have received greater attention: diiodothyronines, iodothyronamines, acetic acid analogues. It is known that increased thyroid hormone (T3 and T4) levels can improve serum lipid profiles and reduce body fat. These positive effects are, however, counterbalanced by adverse effects on the heart, muscle and bone, limiting their use. In addition to the naturally occurring metabolites, thyroid hormone analogues have been developed that either have selective effects on specific tissues or bind selectively to thyroid hormone receptor (TR) isoform. Among these GC-1, KB141, KB2115, and DITPA were deeply investigated and displayed promising therapeutic results in the potential treatment of conditions such as dyslipidemias and obesity. In this review, we summarize the current knowledge of metabolites and analogues of T4 and T3 with reference to their possible clinical application in the treatment of human diseases.
Collapse
Affiliation(s)
- Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy.
| |
Collapse
|
16
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|