1
|
Garcia FM, de Sousa VP, Silva-Dos-Santos PPE, Fernandes IS, Serpa FS, de Paula F, Mill JG, Bueno MRP, Errera FIV. Copy Number Variation in Asthma: An Integrative Review. Clin Rev Allergy Immunol 2025; 68:4. [PMID: 39755867 DOI: 10.1007/s12016-024-09015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 01/06/2025]
Abstract
Asthma is a complex disease with varied clinical manifestations resulting from the interaction between environmental and genetic factors. While chronic airway inflammation and hyperresponsiveness are central features, the etiology of asthma is multifaceted, leading to a diversity of phenotypes and endotypes. Although most research into the genetics of asthma focused on the analysis of single nucleotide polymorphisms (SNPs), studies highlight the importance of structural variations, such as copy number variations (CNVs), in the inheritance of complex characteristics, but their role has not yet been fully elucidated in asthma. In this context, an integrative review was conducted to identify the genes and pathways involved, the location, size, and classes of CNVs, as well as their contribution to asthma risk, severity, control, and response to treatment. As a result of the review, 16 articles were analyzed, from different types of observational studies, such as case-control, cohort studies and genotyped-proband or trios design, that have been carried out in populations from different countries, ethnicities, and ages. Chromosomes 12 and 17 were the most studied in three publications each. CNVs located on 12 chromosomes were associated with asthma, the majority being found on chromosome 6p and 17q, of the deletion type, encompassing 30 different coding-protein genes and one pseudogene region. Six genes with CNVs were identified as significant expression quantitative locus (eQTLs) with mean expression in asthma-related tissues, such as the lung and whole blood. The phenotypic variability of asthma may hinder the clinical application of these findings, but the research shows the importance of investigating these genetic variations as possible biomarkers in asthma patients.
Collapse
Affiliation(s)
- Fernanda Mariano Garcia
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil.
| | - Valdemir Pereira de Sousa
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Priscila Pinto E Silva-Dos-Santos
- Department of Medicine, School of Sciences of Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória, Espírito Santo, Brazil
- Hospital Santa Casa de Misericórdia de Vitória (HSCMV), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology (RENORBIO), Nucleator: Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Izadora Silveira Fernandes
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Faradiba Sarquis Serpa
- Department of Medicine, School of Sciences of Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória, Espírito Santo, Brazil
- Hospital Santa Casa de Misericórdia de Vitória (HSCMV), Vitória, Espírito Santo, Brazil
| | - Flávia de Paula
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology (RENORBIO), Nucleator: Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - José Geraldo Mill
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Maria Rita Passos Bueno
- Department of Genetics and Evolutionary Biology, University of São Paulo (USP), São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Flávia Imbroisi Valle Errera
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology (RENORBIO), Nucleator: Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| |
Collapse
|
2
|
Ma CN, Shi SR, Zhang XY, Xin GS, Zou X, Li WL, Guo SD. Targeting PDGF/PDGFR Signaling Pathway by microRNA, lncRNA, and circRNA for Therapy of Vascular Diseases: A Narrow Review. Biomolecules 2024; 14:1446. [PMID: 39595622 PMCID: PMC11592287 DOI: 10.3390/biom14111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the significant progress in diagnostic and therapeutic strategies, vascular diseases, such as cardiovascular diseases (CVDs) and respiratory diseases, still cannot be successfully eliminated. Vascular cells play a key role in maintaining vascular homeostasis. Notably, a variety of cells produce and secrete platelet-derived growth factors (PDGFs), which promote mitosis and induce the division, proliferation, and migration of vascular cells including vascular smooth muscle cells (SMCs), aortic SMCs, endothelial cells, and airway SMCs. Therefore, PDGF/PDGR receptor signaling pathways play vital roles in regulating the homeostasis of blood vessels and the onset and development of CVDs, such as atherosclerosis, and respiratory diseases including asthma and pulmonary arterial hypertension. Recently, accumulating evidence has demonstrated that microRNA, long-chain non-coding RNA, and circular RNA are involved in the regulation of PDGF/PDGFR signaling pathways through competitive interactions with target mRNAs, contributing to the occurrence and development of the above-mentioned diseases. These novel findings are useful for laboratory research and clinical studies. The aim of this article is to conclude the recent progresses in this field, particular the mechanisms of action of these non-coding RNAs in regulating vascular remodeling, providing potential strategies for the diagnosis, prevention, and treatment of vascular-dysfunction-related diseases, particularly CVDs and respiratory diseases.
Collapse
Affiliation(s)
- Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Guo-Song Xin
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Xiang Zou
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Wen-Lan Li
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| |
Collapse
|
3
|
Goodarzi V, Nouri S, Nassaj ZS, Bighash M, Abbasian S, Hagh RA. Long non coding RNAs reveal important pathways in childhood asthma: a future perspective. J Mol Histol 2023; 54:257-269. [PMID: 37537509 DOI: 10.1007/s10735-023-10131-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/04/2023] [Indexed: 08/05/2023]
Abstract
Asthma is a long-term inflammatory disease of the airways of the lungs refers changes that occur in conjunction with, or as a result of, chronic airway inflammation. Airway remodeling the subsequent of inflammation constitutes cellular and extracellular matrix changes in the wall airways, epithelial-to-mesenchymal-transition and airway smooth muscle cell proliferation. Diseases often begin in childhood and despite extensive research, causative pathogenic mechanisms still remain unclear. Transcriptome analysis of childhood asthma reveals distinct gene expression profiles of Long noncoding RNAs which have been reported to play a central regulatory role in various aspects of pathogenesis, clinical course and treatment of asthma. We briefly review current understanding of lnc-RNA dysregulation in children with asthma, focusing on their complex role in the inflammation, cell proliferation and remodeling of airway to guide future researches. We found that the lnc-RNAs increases activity of several oncogenes such c-Myc, Akt, and ERK and various signaling pathways such as MAPK (PI3K, Ras, JNK and p38), NF-κB and Wnt and crosstalk between these pathways by TGFβ, β-catenin, ERK and SKP2. Moreover, two different signal transduction pathways, Wnt and Notch1, can be activated by two lnc-RNAs through sponging the same miRNA for exacerbation cell proliferation.
Collapse
Affiliation(s)
- Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shadi Nouri
- Arak University of Medical Sciences, Arak, Iran
| | - Zohre Saleh Nassaj
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mansoureh Bighash
- Bachelor of Nursing, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvn, Iran
| | - Sadegh Abbasian
- Department of Laboratory Science, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | | |
Collapse
|
4
|
Xiao B, Li L, Yao D, Mo B. Noncoding RNAs in asthmatic airway smooth muscle cells. Eur Respir Rev 2023; 32:32/168/220184. [PMID: 37076176 PMCID: PMC10113956 DOI: 10.1183/16000617.0184-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/07/2023] [Indexed: 04/21/2023] Open
Abstract
Asthma is a complex and heterogeneous airway disease caused by genetic, environmental and epigenetic factors treated with hormones and biologics. Irreversible pathological changes to airway smooth muscle cells (ASMCs) such as hyperplasia and hypertrophy can occur in asthmatic patients. Determining the mechanisms responsible is vital for preventing such changes. In recent years, noncoding RNAs (ncRNAs), especially microRNAs, long noncoding RNAs and circular RNAs, have been found to be associated with abnormalities of the ASMCs. This review highlights recent ncRNA research into ASMC pathologies. We present a schematic that illustrates the role of ncRNAs in pathophysiological changes to ASMCs that may be useful in future research in diagnostic and treatment strategies for patients with asthma.
Collapse
Affiliation(s)
- Bo Xiao
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- These authors contributed equally to this work
| | - Liangxian Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- These authors contributed equally to this work
| | - Dong Yao
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- These authors contributed equally to this work
| | - Biwen Mo
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Glucose and Lipid Metabolism Disorders, Guangxi Health Commission, Guilin, China
| |
Collapse
|
5
|
Jiang Z, Qian L, Yang R, Wu Y, Guo Y, Chen T. LncRNA TCF7 contributes to high glucose-induced damage in human podocytes by up-regulating SEMA3A via sponging miR-16-5p. J Diabetes Investig 2022; 14:193-204. [PMID: 36583231 PMCID: PMC9889678 DOI: 10.1111/jdi.13904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/31/2022] Open
Abstract
AIMS/INTRODUCTION Long non-coding RNAs (lncRNAs) exert essential functions in the pathogenesis of diabetic nephropathy (DN). LncRNA T-cell factor 7 (TCF7) and semaphorin-3A (SEMA3A) have been found to be involved in the progression of diabetic nephropathy. However, whether the effect of TCF7 on the pathogenesis of diabetic nephropathy is mediated by SEMA3A remains unclear. MATERIALS AND METHODS TCF7, miR-16-5p, and SEMA3A were quantified by a qRT-PCR or immunoblotting method. A CCK-8 assay gauged the cell viability. Measurement of cell apoptosis was done using flow cytometry. RNA immunoprecipitation (RIP), dual-luciferase reporter, and RNA pull-down assays were utilized to assay the targeted interactions among the variables. RESULTS The TCF7 and SEMA3A levels were elevated in serum from patients with diabetic nephropathy. TCF7 silencing or SEMA3A depletion ameliorated high glucose (HG)-induced podocyte injury. Moreover, TCF7 silencing protected against HG-induced podocyte injury by down-regulating SEMA3A. TCF7 targeted miR-16-5p, and miR-16-5p targeted SEMA3A. Furthermore, TCF7 affected the expression of SEMA3A by competing specifically for shared miR-16-5p. CONCLUSIONS These findings suggested that TCF7 silencing attenuated high glucose-induced podocyte damage partially through the miR-16-5p/SEMA3A regulation cascade.
Collapse
Affiliation(s)
- Zhenzhen Jiang
- Department of NephrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Lijie Qian
- Department of DermatologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Ruifeng Yang
- Department of NephrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yan Wu
- Department of NephrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yongping Guo
- Department of NephrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Tingfang Chen
- Department of NephrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
6
|
The Role of Noncoding RNA in Airway Allergic Diseases through Regulation of T Cell Subsets. Mediators Inflamm 2022; 2022:6125698. [PMID: 36248190 PMCID: PMC9553461 DOI: 10.1155/2022/6125698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Allergic rhinitis and asthma are common airway allergic diseases, the incidence of which has increased annually in recent years. The human body is frequently exposed to allergens and environmental irritants that trigger immune and inflammatory responses, resulting in altered gene expression. Mounting evidence suggested that epigenetic alterations were strongly associated with the progression and severity of allergic diseases. Noncoding RNAs (ncRNAs) are a class of transcribed RNA molecules that cannot be translated into polypeptides and consist of three major categories, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Previous studies showed that ncRNAs were involved in the physiopathological mechanisms of airway allergic diseases and contributed to their occurrence and development. This article reviews the current state of understanding of the role of noncoding RNAs in airway allergic diseases, highlights the limitations of recent studies, and outlines the prospects for further research to facilitate the clinical translation of noncoding RNAs as therapeutic targets and biomarkers.
Collapse
|
7
|
Qiao X, Hou G, He YL, Song DF, An Y, Altawil A, Zhou XM, Wang QY, Kang J, Yin Y. The Novel Regulatory Role of the lncRNA–miRNA–mRNA Axis in Chronic Inflammatory Airway Diseases. Front Mol Biosci 2022; 9:927549. [PMID: 35769905 PMCID: PMC9234692 DOI: 10.3389/fmolb.2022.927549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammatory airway diseases, characterized by airway inflammation and airway remodelling, are increasing as a cause of morbidity and mortality for all age groups and races across the world. The underlying molecular mechanisms involved in chronic inflammatory airway diseases have not been fully explored. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have recently attracted much attention for their roles in the regulation of a variety of biological processes. A number of studies have confirmed that both lncRNAs and miRNAs can regulate the initiation and progression of chronic airway diseases by targeting mRNAs and regulating different cellular processes, such as proliferation, apoptosis, inflammation, migration, and epithelial–mesenchymal transition (EMT). Recently, accumulative evidence has shown that the novel regulatory mechanism underlying the interaction among lncRNAs, miRNAs and messenger RNAs (mRNAs) plays a critical role in the pathophysiological processes of chronic inflammatory airway diseases. In this review, we comprehensively summarized the regulatory roles of the lncRNA–miRNA–mRNA network in different cell types and their potential roles as biomarkers, indicators of comorbidities or therapeutic targets for chronic inflammatory airway diseases, particularly chronic obstructive pulmonary disease (COPD) and asthma.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yu-Lin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Fang Song
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Ming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| | - Qiu-Yue Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| |
Collapse
|
8
|
Zhong ZG, Dong CP, Guo XH, Chen J, Zhu LP, Zhang M. Long noncoding RNA ANRIL up-regulates CCND1 via sponging miR-98-5p to promote TGF-β1-induced human airway smooth muscle cell proliferation, migration, and extracellular matrix deposition. Kaohsiung J Med Sci 2022; 38:633-642. [PMID: 35396910 DOI: 10.1002/kjm2.12538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Excessive proliferation and migration of airway smooth muscle cell (ASMC) contribute to asthma pathogenesis. Long noncoding RNAs (lncRNAs) are reported to take part in asthma pathogenesis. This study is targeted at deciphering the role of the lncRNA antisense noncoding RNA in the INK4 locus (ANRIL) in ASMC proliferation, migration and extracellular matrix (ECM) deposition. qRT-PCR was performed to determine ANRIL, miR-98-5p, and cyclin D1 (CCND1) mRNA expression levels in transforming growth factor-β1 (TGF-β1)-treated ASMCs. CCK-8 and Transwell assays were employed to examine ASMC proliferation and migration, respectively. Dual-luciferase reporter gene assay and RNA immunoprecipitation assay were carried out for analyzing the targeted relationship of miR-98-5p with ANRIL or CCND1 mRNA 3'-UTR. The levels of CCND1 and ECM proteins (such as fibronectin, COL3A1, and COL1A2) in ASMCs were detected through Western blot. In this work, we found that ANRIL and CCND1 were up-regulated in TGF-β1-treated ASMCs, whereas miR-98-5p was down-regulated. ANRIL overexpression facilitated the proliferation, ECM deposition and migration of TGF-β1-induced ASMCs, while knocking down ANRIL had the opposite effect. Furthermore, ANRIL targeted miR-98-5p directly, and CCND1 was miR-98-5p's downstream target. ANRIL indirectly increased CCND1 expression in ASMCs via competitively binding to miR-98-5p. MiR-98-5p inhibition or CCND1 overexpression counteracted the inhibiting effect that ANRIL knockdown had on TGF-β1-stimulated ASMC proliferation, migration and ECM deposition. In conclusion, ANRIL indirectly up-regulates CCND1 expression by targeting miR-98-5p to promote ASMC proliferation, migration and ECM deposition, thus facilitating the pathogenesis of asthma.
Collapse
Affiliation(s)
- Zhao-Gang Zhong
- Department of Pediatrics, Zhucheng Maternal and Child Health Hospital, Zhucheng, Shandong Province, China
| | - Chun-Ping Dong
- Department of Child Health Care, Zhucheng Maternal and Child Health Hospital, Zhucheng, Shandong Province, China
| | - Xi-Hong Guo
- Department of Radiology, Zhucheng People's Hospital, Zhucheng, Shandong Province, China
| | - Jing Chen
- Department of Pediatrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong Province, China
| | - Li-Ping Zhu
- Department of Pediatrics, First People's Hospital of Jining City, Jining, Shandong Province, China
| | - Ming Zhang
- Department of Clinical Laboratory, Zhucheng Maternal and Child Health Hospital, Zhucheng, Shandong Province, China
| |
Collapse
|
9
|
Gysens F, Mestdagh P, de Bony de Lavergne E, Maes T. Unlocking the secrets of long non-coding RNAs in asthma. Thorax 2022; 77:514-522. [PMID: 35246486 PMCID: PMC9016255 DOI: 10.1136/thoraxjnl-2021-218359] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022]
Abstract
Asthma is a very heterozygous disease, divided in subtypes, such as eosinophilic and neutrophilic asthma. Phenotyping and endotyping of patients, especially patients with severe asthma who are refractory to standard treatment, are crucial in asthma management and are based on a combination of clinical and biological features. Nevertheless, the quest remains to find better biomarkers that distinguish asthma subtypes in a more clear and objective manner and to find new therapeutic targets to treat people with therapy-resistant asthma. In the past, research to identify asthma subtypes mainly focused on expression profiles of protein-coding genes. However, advances in RNA-sequencing technologies and the discovery of non-coding RNAs as important post-transcriptional regulators have provided an entire new field of research opportunities in asthma. This review focusses on long non-coding RNAs (lncRNAs) in asthma; these are non-coding RNAs with a length of more than 200 nucleotides. Many lncRNAs are differentially expressed in asthma, and several have been associated with asthma severity or inflammatory phenotype. Moreover, in vivo and in vitro functional studies have identified the mechanisms of action of specific lncRNAs. Although lncRNAs remain not widely studied in asthma, the current studies show the potential of lncRNAs as biomarkers and therapeutic targets as well as the need for further research.
Collapse
Affiliation(s)
- Fien Gysens
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
10
|
Liang J, Liu XH, Chen XM, Song XL, Li W, Huang Y. Emerging Roles of Non-Coding RNAs in Childhood Asthma. Front Pharmacol 2022; 13:856104. [PMID: 35656293 PMCID: PMC9152219 DOI: 10.3389/fphar.2022.856104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease in children characterized by airway inflammation, airway hyperresponsiveness and airway remodeling. Childhood asthma is usually associated with allergy and atopy, unlike adult asthma, which is commonly associated with obesity, smoking, etc. The pathogenesis and diagnosis of childhood asthma also remains more challenging than adult asthma, such as many diseases showing similar symptoms may coexist and be confused with asthma. In terms of the treatment, although most childhood asthma can potentially be self-managed and controlled with drugs, approximately 5-10% of children suffer from severe uncontrolled asthma, which carries significant health and socioeconomic burdens. Therefore, it is necessary to explore the pathogenesis of childhood asthma from a new perspective. Studies have revealed that non-coding RNAs (ncRNAs) are involved in the regulation of respiratory diseases. In addition, altered expression of ncRNAs in blood, and in condensate of sputum or exhalation affects the progression of asthma via regulating immune response. In this review, we outline the regulation and pathogenesis of asthma and summarize the role of ncRNAs in childhood asthma. We also hold promise that ncRNAs may be used for the development of biomarkers and support a new therapeutic strategy for childhood asthma.
Collapse
Affiliation(s)
- Juan Liang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Hua Liu
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xue-Mei Chen
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiu-Ling Song
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Wang X, Chen H, Liu J, Gai L, Yan X, Guo Z, Liu F. Emerging Advances of Non-coding RNAs and Competitive Endogenous RNA Regulatory Networks in Asthma. Bioengineered 2021; 12:7820-7836. [PMID: 34635022 PMCID: PMC8806435 DOI: 10.1080/21655979.2021.1981796] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway remodeling and bronchial hyperresponsiveness. A variety of effector cells and cytokines jointly stimulate the occurrence of inflammatory response in asthma. Although the pathogenesis of asthma is not entirely clear, the possible roles of non-coding RNAs (ncRNAs) have been recently demonstrated. NcRNAs are non-protein-coding RNA molecules, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which are involved in the regulation of a variety of biological processes. Mounting studies have shown that ncRNAs play pivotal roles in the occurrence and progression of asthma via competing endogenous RNA (ceRNA) regulatory networks. However, the specific mechanism and clinical application of ncRNAs and ceRNA regulatory networks in asthma have not been fully elucidated, which are worthy of further investigation. This paper comprehensively summarized the current progress on the roles of miRNAs, lncRNAs, circRNAs, and ceRNA regulatory networks in asthma, which can provide a better understanding for the disease pathogenesis and is helpful for identifying novel biomarkers for asthma.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Hui Chen
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Jingjing Liu
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Linlin Gai
- Department of Central Laboratory, The First Affiliated Hospital of Weifang Medical University/Weifang People’s Hospital, WeifangChina
| | - Xinyi Yan
- Department of Central Laboratory, The First Affiliated Hospital of Weifang Medical University/Weifang People’s Hospital, WeifangChina
| | - Zhiliang Guo
- Department of Spine Surgery, The 80th Group Army Hospital of Chinese PLA, WeifangChina
| | - Fengxia Liu
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| |
Collapse
|
12
|
Soni DK, Biswas R. Role of Non-Coding RNAs in Post-Transcriptional Regulation of Lung Diseases. Front Genet 2021; 12:767348. [PMID: 34819948 PMCID: PMC8606426 DOI: 10.3389/fgene.2021.767348] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs), notably microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have recently gained increasing consideration because of their versatile role as key regulators of gene expression. They adopt diverse mechanisms to regulate transcription and translation, and thereby, the function of the protein, which is associated with several major biological processes. For example, proliferation, differentiation, apoptosis, and metabolic pathways demand fine-tuning for the precise development of a specific tissue or organ. The deregulation of ncRNA expression is concomitant with multiple diseases, including lung diseases. This review highlights recent advances in the post-transcriptional regulation of miRNAs and lncRNAs in lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. Further, we also discuss the emerging role of ncRNAs as biomarkers as well as therapeutic targets for lung diseases. However, more investigations are required to explore miRNAs and lncRNAs interaction, and their function in the regulation of mRNA expression. Understanding these mechanisms might lead to early diagnosis and the development of novel therapeutics for lung diseases.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
13
|
Wang X, Chen J. Long non-coding RNA TUG1 promotes proliferation and migration in PDGF-BB-stimulated HASMCs by regulating miR-216a-3p/SMURF2 axis. BMC Mol Cell Biol 2021; 22:56. [PMID: 34749662 PMCID: PMC8573901 DOI: 10.1186/s12860-021-00396-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Abnormal proliferation and migration of human airway smooth muscle cells (HASMCs) play an important role in the development of childhood asthma. Long non-coding RNAs (lncRNAs) have been demonstrated to participate in HASMC proliferation and migration. We aimed to explore more effects and molecular mechanism of taurine upregulated gene 1 (TUG1) in childhood asthma. RESULTS TUG1 and SMURF2 were overexpressed and miR-216a-3p was downregulated in childhood asthma patients and PDGF-BB-stimulated HASMCs. TUG1 knockdown attenuated PDGF-BB-triggered proliferation and migration of HASMCs. MiR-216a-3p was targeted by TUG1, and miR-216a-3p suppression counteracted the repressive effects of TUG1 interference on proliferation and migration in PDGF-BB-treated HASMCs. SMURF2 was a downstream target of miR-216a-3p, and SMURF2 upregulation abated the inhibiting effects of miR-216a-3p on migration and proliferation in PDGF-BB-exposed HASMCs. TUG1 sponged miR-216a-3p to positively regulate SMURF2 expression. CONCLUSION TUG1 downregulation inhibited PDGF-BB-induced HASMC proliferation and migration by regulating miR-216a-3p/SMURF2 axis, offering novel insight into the potential application of TUG1 for childhood asthma treatment.
Collapse
Affiliation(s)
- Xinfang Wang
- Department of Pediatrics, Hangzhou First People's Hospital Affiliated to Zhejiang University, Zhejiang, Hangzhou, China
| | - Junsong Chen
- Respiratory Department, Hangzhou Children's Hospital, 195 Wenhui Road, Zhejiang, 310003, Hangzhou, China.
| |
Collapse
|
14
|
Zhou H, Long C, Liu P, Chen Y, Luo L, Xiao Z. Long non-coding RNA TUG1 accelerates abnormal growth of airway smooth muscle cells in asthma by targeting the miR-138-5p/E2F3 axis. Exp Ther Med 2021; 22:1229. [PMID: 34539825 DOI: 10.3892/etm.2021.10663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease. The present study aimed to explore the effect of the long non-coding RNA taurine-upregulated gene 1 (TUG1) on the viability and migration of airway smooth muscle cells (ASMCs) in asthma. Rat asthma models were constructed with ovalbumin sensitization and challenge and the level of serum immunoglobulin E (IgE) and the rates of inspiratory and expiratory resistance were measured. Reverse transcription-quantitative PCR was also performed to determine the expression levels of TUG1. Platelet-derived growth factor-BB (PDGF-BB)-treated ASMCs were then used as a cell model of asthma. The viability and migratory abilities of ASMCs were analysed with the MTT and Transwell assays. Additionally, a dual-luciferase reporter assay was used to confirm the relationship between TUG1 and microRNA (miR)-138-5p and between transcription factor E2F3 and miR-138-5p. The expression of TUG1, level of serum IgE, inspiratory resistance and expiratory resistance were clearly increased in the rat asthma model in comparison with controls. Knockdown of TUG1 the viability and migration of PDGF-BB-induced ASMCs and reduced the inspiratory and expiratory resistances. In addition, TUG1 functioned as a bait of miR-138-5p, and miR-138-5p modulated E2F3 expression. Knockdown of E2F3 hindered the abnormal growth of ASMCs. Moreover, miR-138-5p inhibition or E2F3 overexpression reversed the inhibitory effects of TUG1 knockdown on viability and migration of PDGF-BB-induced ASMCs. The TUG1/miR-138-5p/E2F3 regulatory axis appeared to play a critical role in accelerating the viability and migration of ASMCs and may therefore have a role in asthma.
Collapse
Affiliation(s)
- Haiyin Zhou
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Caixia Long
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Pingping Liu
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Yanying Chen
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Lan Luo
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Zhenghui Xiao
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
15
|
Huang J, Wang FH, Wang L, Li Y, Lu J, Chen J. LncRNA MALAT1 promotes proliferation and migration of airway smooth muscle cells in asthma by downregulating microRNA-216a. Saudi J Biol Sci 2021; 28:4124-4131. [PMID: 34354391 PMCID: PMC8324955 DOI: 10.1016/j.sjbs.2021.03.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/28/2022] Open
Abstract
Asthma is a difficult chronic airway inflammation, if it cannot be treated and relieved in time, it will seriously affect the health and quality of life of patients. Airway remodeling is relevant to asthma, but there is currently no effective treatment for airway remodeling. Regulating the biological function of airway smooth muscle cells (AMSCs) may be an important method to inhibit airway remodeling. LncRNA MALAT1 and microRNA-216a are involved in the regulation of AMSCs respectively, but there is no research to prove that they can regulate airway remodeling of asthma through mutual combination. Hence, the aim of the present study was performed to investigate the function of lncRNA MALAT1 and microRNA-216a on AMSCs in asthma. The relationship between lncRNA MALAT1, microRNA-216a and AMSCs was studied by MTT, qPCR, Western blot, Transwell and flow cytometry. The results revealed that lncRNA MALAT1 was up-regulated and microRNA-216a was down-regulated in asthma. lncRNA MALAT1 inhibited microRNA-216a targetedly. Whether downregulating lncRNA MALAT1 or upregulating microRNA-216a, cell proliferation, migration and invasion were reduced and apoptosis increased. Therefore, it is believed that lncRNA MALAT1 promotes proliferation and migration of asthma AMSCs by downregulating microRNA-216a. Since lncRNA MALAT1 and microRNA-216a take part in asthma by jointly regulating the proliferation of airway smooth muscle cells and other biological functions, it would be interesting to study if they become biomarkers of asthma, and relationship between the two in asthma diagnosis and poor prognosis.
Collapse
Affiliation(s)
- Jun Huang
- Qingdao Chengyang District People's Hospital, Qingdao, Shandong 266600, PR China
| | - Fang Hun Wang
- Qingdao Chengyang District People's Hospital, Qingdao, Shandong 266600, PR China
| | - Long Wang
- Qingdao Chengyang District People's Hospital, Qingdao, Shandong 266600, PR China
| | - Yong Li
- Qingdao Chengyang District People's Hospital, Qingdao, Shandong 266600, PR China
| | - Junlimeng Lu
- Department of Respiratory and Critical Medicine, QingDao Chengyang District People's Hospital, Qingdao, Shandong 266600, PR China
| | - JianYou Chen
- Qingdao Chengyang District People's Hospital, Qingdao, Shandong 266600, PR China
| |
Collapse
|
16
|
Wang W, Guo J, Wang Y. MicroRNA-30b-5p promotes the proliferation and migration of human airway smooth muscle cells induced by platelet-derived growth factor by targeting phosphatase and tensin homolog deleted on chromosome ten. Bioengineered 2021; 12:3662-3673. [PMID: 34251961 PMCID: PMC8806833 DOI: 10.1080/21655979.2021.1950401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dysfunction of airway smooth muscle (ASM) cells is crucial in asthma pathogenesis. Here, microRNA-30b-5p (miR-30b-5p)’s function and mechanism in ASM cells’ multiplication and migration were investigated. Microarray was utilized for identifying the differentially expressed miRNAs in the bronchial epithelial cells of the asthma patients and healthy controls. Platelet-derived growth factor (PDGF) was employed to treat ASM cells to establish an in-vitro asthma model. Quantitative real-time PCR (qRT-PCR) was conducted for detecting the expressions of miR-30b-5p and phosphatase and tensin homolog deleted on chromosome 10 (PTEN). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2ʹ-deoxyuridine (BrdU) assays were used for examining cell multiplication; Transwell assay was performed for detecting cell migration; cell cycle was analyzed through flow cytometry. The targeted relationship between PTEN and miR-30b-5p was verified using a dual-luciferase reporter gene assay. Western blot was used for detecting the expressions of phosphorylated (p)-phosphatidylinositol 3-kinase (PI3K), PTEN, PI3K, protein kinase B (AKT) and p-AKT in ASM cells. We demonstrated that, miR-30b-5p expression in the bronchial epithelial cells of asthmatic patients was up-regulated. It was also increased in PDGF-stimulated ASM cells. Transfection of miR-30b-5p mimics facilitated ASM cells’ multiplication, migration and cycle progression, while inhibiting miR-30b-5p had the opposite effect. Furthermore, miR-30b-5p could target PTEN to repress PTEN expression. PTEN overexpression attenuated the effect of miR-30b-5p on ASM cells. Moreover, miR-30b-5p overexpression facilitated the expression of p-PI3K and p-AKT in PDGF-stimulated ASM cells. Collectively, miR-30b-5p activates the PI3K/AKT pathway by targeting PTEN to facilitate PDGF-induced dysfunction of ASM cells.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde City, Hebei Province, China
| | - Jian Guo
- Department of Neonatology, Affiliated Hospital of Chengde Medical University, Chengde City, Hebei Province, China
| | - Yan Wang
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde City, Hebei Province, China
| |
Collapse
|
17
|
Devadoss D, Daly G, Manevski M, Houserova D, Hussain SS, Baumlin N, Salathe M, Borchert GM, Langley RJ, Chand HS. A long noncoding RNA antisense to ICAM-1 is involved in allergic asthma associated hyperreactive response of airway epithelial cells. Mucosal Immunol 2021; 14:630-639. [PMID: 33122732 PMCID: PMC8081750 DOI: 10.1038/s41385-020-00352-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 02/04/2023]
Abstract
Epithelial cells of the conducting airways are a pivotal first line of defense against airborne pathogens and allergens that orchestrate inflammatory responses and mucociliary clearance. Nonetheless, the molecular mechanisms responsible for epithelial hyperreactivity associated with allergic asthma are not completely understood. Transcriptomic analysis of human airway epithelial cells (HAECs), differentiated in-vitro at air-liquid interface (ALI), showed 725 differentially expressed immediate-early transcripts, including putative long noncoding RNAs (lncRNAs). A novel lncRNA on the antisense strand of ICAM-1 or LASI was identified, which was induced in LPS-primed HAECs along with mucin MUC5AC and its transcriptional regulator SPDEF. LPS-primed expression of LASI, MUC5AC, and SPDEF transcripts were higher in ex-vivo cultured asthmatic HAECs that were further augmented by LPS treatment. Airway sections from asthmatics with increased mucus load showed higher LASI expression in MUC5AC+ goblet cells following multi-fluorescent in-situ hybridization and immunostaining. LPS- or IL-13-induced LASI transcripts were mostly enriched in the nuclear/perinuclear region and were associated with increased ICAM-1, IL-6, and CXCL-8 expression. Blocking LASI expression reduced the LPS or IL-13-induced epithelial inflammatory factors and MUC5AC expression, suggesting that the novel lncRNA LASI could play a key role in LPS-primed trained airway epithelial responses that are dysregulated in allergic asthma.
Collapse
Affiliation(s)
- Dinesh Devadoss
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Grant Daly
- Department of Pharmacology, University of South Alabama, Mobile, AL, 36688, USA
| | - Marko Manevski
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Dominika Houserova
- Department of Pharmacology, University of South Alabama, Mobile, AL, 36688, USA
| | - Shah S Hussain
- Medicine-Pulmonary/Allergy/Critical Care, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nathalie Baumlin
- Division of Pulmonary, Critical Care, and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Matthias Salathe
- Division of Pulmonary, Critical Care, and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Glen M Borchert
- Department of Pharmacology, University of South Alabama, Mobile, AL, 36688, USA
| | - Raymond J Langley
- Department of Pharmacology, University of South Alabama, Mobile, AL, 36688, USA
| | - Hitendra S Chand
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
18
|
Wang WL, Luo XM, Zhang Q, Zhu HQ, Chen GQ, Zhou Q. The lncRNA PVT1/miR-590-5p/FSTL1 axis modulates the proliferation and migration of airway smooth muscle cells in asthma. Autoimmunity 2021; 54:138-147. [PMID: 33825599 DOI: 10.1080/08916934.2021.1897977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Asthma is a prevalent chronic inflammatory airway disease that is characterised by airway remodelling and airway hyperresponsiveness. Abnormal proliferation and migration of airway smooth muscle cells (ASMCs) contribute to airway remodelling in asthma. However, the molecular mechanism underlying an increased ASMC mass in asthma remains elusive. Herein, we aimed at investigating the regulation of lncRNA PVT1 on ASMCs and focussing on the mechanism in the proliferation and migration. METHODS Expression levels of lncRNA PVT1 and miR-590-5p in the serum collected from 24 children with asthma and 10 control children were determined by qRT-PCR. ASMCs proliferation and migration prior to and post platelet-derived growth factor subunit B (PDGF-BB) stimulation were examined by CCK-8 test and transwell assay. Dual-luciferase reporter assay was performed to determine miR-590-5p interaction with lncRNA PVT1 and follistatin-like 1 (FSTL1). Expression of lncRNA PVT1, miR-590-5p, FSTL1, C-Myc, cyclin D1, and cyclin-dependent kinase 1 (CDK1) was tested by quantitative real-time PCR (qRT-PCR) and immunoblotting analysis. RESULTS The expression level of lncRNA PVT1 was higher but the expression level of miR-590-5p was lower in the serum of children with asthma than in control children. The expression level of lncRNA PVT1 was negatively correlated with the expression level of miR-590-5p in asthma. LncRNA PVT1 was upregulated upon PDGF-BB stimulation. LncRNA PVT1 knockdown by its specific shRNA repressed PDGF-BB-induced promotion of proliferation and migration in ASMCs and triggered an elevated miR-590-5p along with declined C-Myc, cyclin D1, and CDK1. The effects of lncRNA PVT1 knockdown on PDGF-BB-induced ASMCs were lost upon miR-590-5p inhibition. MiR-590-5p targeted FSTL1 gene and declined its expression, thus suppressing ASMC proliferation and migration following PDGF-BB stimulation and downregulating C-Myc, cyclin D1, and CDK1 expressions. The effects of miR-590-5p on PDGF-BB-induced ASMCs were lost upon FSTL1 overexpression. CONCLUSION These results support the notion that the lncRNA PVT1/miR-590-5p/FSTL1 axis modulates ASMCs proliferation and migration following PDGF-BB stimulation, providing a potential therapeutic target to attenuate airway remodelling in asthma.
Collapse
Affiliation(s)
- Wen-Lan Wang
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Xiao-Ming Luo
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Qin Zhang
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Hai-Qiao Zhu
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Guo-Qing Chen
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Qin Zhou
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| |
Collapse
|
19
|
Cai XJ, Huang LH, Zhu YK, Huang YJ. LncRNA OIP5‑AS1 aggravates house dust mite‑induced inflammatory responses in human bronchial epithelial cells via the miR‑143‑3p/HMGB1 axis. Mol Med Rep 2020; 22:4509-4518. [PMID: 33174035 PMCID: PMC7646745 DOI: 10.3892/mmr.2020.11536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Bronchial asthma poses a serious threat to human health. Previous studies have documented the role of long non‑coding RNAs (lncRNAs) in asthma. However, the molecular mechanism underlying bronchial asthma remains unclear. The aim of the present study was to evaluate the role of the lncRNA Opa‑interacting protein 5 antisense RNA1 (OIP5‑AS1) in the house dust mite‑induced inflammatory response in human bronchial epithelial cells. BEAS‑2B cells were treated with Dermatophagoides pteronyssinus peptidase 1 (Der p1) to establish an in vitro model of asthma. OIP5‑AS1 expression levels increased in BEAS‑2B cells following Der p1 treatment, while microRNA (miR)‑143‑3p was downregulated. Additionally, the levels of the pro‑inflammatory factors tumor necrosis factor‑α, interleukin (IL)‑6 and IL‑8 were measured, and apoptosis was evaluated following OIP5 silencing. OIP5‑AS1 knockdown reduced the inflammatory response and apoptosis in BEAS‑2B cells. Furthermore, using dual luciferase reporter assays and co‑transfection experiments, it was demonstrated that the function of OIP5‑AS1 was mediated by miR‑143‑3p. miR‑143‑3p overexpression attenuated the Der p1‑induced inflammatory response and apoptosis of BEAS‑2B cells by targeting high mobility group box 1 (HMGB1). In summary, OIP5‑AS1 exacerbated Der p1‑induced inflammation and apoptosis in BEAS‑2B cells by targeting miR‑143‑3p via HMGB1.
Collapse
Affiliation(s)
- Xing-Jun Cai
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Lin-Hui Huang
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Yi-Ke Zhu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Yi-Jiang Huang
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
20
|
Zhang J, Zhou Y, Gu H, Zhang J, Tang H, Rong Q, Gu L, Pan J, Zhao D, Liu F. LncRNA-AK149641 associated with airway inflammation in an OVA-induced asthma mouse model. J Bioenerg Biomembr 2020; 52:355-365. [PMID: 32929606 PMCID: PMC7520417 DOI: 10.1007/s10863-020-09844-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022]
Abstract
Asthma is defined as a heterogeneous disease, usually characterized by chronic airway inflammation. Long noncoding RNAs (lncRNAs) play important roles in various biological processes. To know more about the relationships between lncRNAs and asthma, gene microarray analysis was performed to screen differentially expressed lncRNAs between the lung tissue of ovalbumin (OVA) mice and control mice. Further studies showed that downregulating differentially expressed lncRNA-AK149641 by adeno-associated virus 6 (AAV6) in OVA mice inhibited airway inflammation, with improved airway compliance and resistance, diminished infiltration of inflammatory cells, as well as less secretions of mucus, tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). Moreover, the activity of nuclear factor-kappa B (NF-κB) in the lung tissue was reduced after downregulating lncRNA-AK149641. In conclusion, we proposed that downregulation of lncRNA-AK149641 attenuated the airway inflammatory response in an OVA-induced asthma mouse model, probably in association with modulation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.,Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Yao Zhou
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Haiyan Gu
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Jiamin Zhang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Heng Tang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Qiangquan Rong
- Department of Pediatrics, Gaochun People's Hospital, Nanjing, 211300, Jiangsu, China
| | - Lina Gu
- Wuxi Children's Hospital, Wuxi, 214000, Jiangsu, China
| | - Jing Pan
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.,Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Deyu Zhao
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| | - Feng Liu
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
21
|
Zhu X, Wei Y, Dong J. Long Noncoding RNAs in the Regulation of Asthma: Current Research and Clinical Implications. Front Pharmacol 2020; 11:532849. [PMID: 33013382 PMCID: PMC7516195 DOI: 10.3389/fphar.2020.532849] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023] Open
Abstract
Asthma is a chronic airway inflammatory disorder related to variable expiratory airflow limitation, leading to wheeze, shortness of breath, chest tightness, and cough. Its characteristic features include airway inflammation, airway remodeling and airway hyperresponsiveness. The pathogenesis of asthma remains extremely complicated and the detailed mechanisms are not clarified. Long noncoding RNAs (lncRNAs) have been reported to play a prominent role in asthma and function as modulators of various aspects in pathological progress of asthma. Here, we summarize recent advances of lncRNAs in asthma pathogenesis to guide future researches, clinical treatment and drug development, including their regulatory functions in the T helper (Th) 1/Th2 imbalance, Th17/T regulatory (Treg) imbalance, eosinophils dysfunction, macrophage polarization, airway smooth muscle cells proliferation, and glucocorticoid insensitivity.
Collapse
Affiliation(s)
- Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Ghafouri-Fard S, Shoorei H, Taheri M, Sanak M. Emerging role of non-coding RNAs in allergic disorders. Biomed Pharmacother 2020; 130:110615. [PMID: 32777705 DOI: 10.1016/j.biopha.2020.110615] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
RNA transcripts that not undergo translation into polypeptides recently came into focus of research. Long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) comprise the most important groups of these transcripts. LncRNAs have a length over 200 nucleotides and like mRNAs, have regulated transcription in a tissue specific manner. Biogenesis and function of lncRNAs is related to cell differentiation, response to stimuli and regulation of immune responses. LncRNAs can interact with both miRNAs and mRNAs. MiRNAs are characterized by a length of 22-24 nucleotides. MiRNAs regulate expression of genes at the post-transcriptional level. LncRNAs together with miRNAs are considered as regulators of the immune system. Alterations in their biogenesis is an important mechanism in the development immune related disorders. CircRNAs are products of aberrant maturation of protein-coding transcripts in a process of back-splicing, in which a single strand RNA molecule attains a closed circle shape. Despite a low expression, some circRNA were found to titrate miRNAs and interfere with maturation of legitimate protein-coding transcripts. We summarize the current knowledge on the role of non-coding transcripts in allergic disorders: asthma, atopic dermatitis, allergic rhinitis and urticaria. The reviewed data suggest lncRNA and miRNAs as therapeutic targets and biomarkers of allergic disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
23
|
Xia L, Wang X, Liu L, Fu J, Xiao W, Liang Q, Han X, Huang S, Sun L, Gao Y, Zhang C, Yang L, Wang L, Qian L, Zhou Y. lnc-BAZ2B promotes M2 macrophage activation and inflammation in children with asthma through stabilizing BAZ2B pre-mRNA. J Allergy Clin Immunol 2020; 147:921-932.e9. [PMID: 32712329 DOI: 10.1016/j.jaci.2020.06.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/31/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dysregulation of long noncoding RNAs (lncRNAs) is associated with a variety of human diseases; however, whether they have a role in childhood asthma is unknown. OBJECTIVE We sought to determine the differential expression profiles of lncRNAs in PBMCs of children with asthma and the mechanisms underlying the effects of lncRNAs on the pathogenesis of asthma. METHODS The differential expression profiles of lncRNAs were analyzed by transcriptome microarray. The effects and mechanisms by which lncRNAs influence macrophage activation were detected by real-time quantitative PCR, Western blot, RNase protection assay, and chromatin immunoprecipitation assay. The roles played by lncRNAs in asthma were tested in a cockroach allergen extract (CRE)-induced mouse model. RESULTS We identified 719 lncRNAs that were differentially expressed in PBMCs of children with asthma, 502 of which were upregulated and 217 were downregulated. An lncRNA of unknown function, lnc-BAZ2B, was dominantly expressed in monocytes and significantly upregulated in children with asthma. lnc-BAZ2B promotes M2 macrophage activation by enhancing BAZ2B expression and exacerbated lung inflammation in an M2 macrophage-associated CRE-induced asthma model. Mechanistically, lnc-BAZ2B promoted the expression of its cis target gene BAZ2B by stabilizing its pre-mRNA. BAZ2B, a reader of H3K14ac modification, enhanced the transcription of IRF4 and promoted M2 macrophage activation. lnc-BAZ2B expression was correlated with that of BAZ2B in PBMCs from children with asthma. Baz2b knockdown could alleviate asthma severity in a CRE-induced asthma model. CONCLUSION lnc-BAZ2B promotes M2 macrophage activation and inflammation in children with asthma and may serve as a potential therapeutic and diagnostic target in children with asthma.
Collapse
Affiliation(s)
- Li Xia
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lijuan Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Jinrong Fu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Wenfeng Xiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qiuyan Liang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao Han
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Saihua Huang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Licheng Sun
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yajing Gao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Caiyan Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lan Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Libo Wang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Liling Qian
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China.
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China; National Health Commission Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Yeung BHY, Huang J, An SS, Solway J, Mitzner W, Tang WY. Role of Isocitrate Dehydrogenase 2 on DNA Hydroxymethylation in Human Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2020; 63:36-45. [PMID: 32150688 PMCID: PMC7328249 DOI: 10.1165/rcmb.2019-0323oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/06/2020] [Indexed: 01/19/2023] Open
Abstract
Global DNA hydroxymethylation mediated by the TET (ten-eleven translocation) enzyme was induced in allergen-induced airway hyperresponsiveness in mouse lung tissues and specifically in isolated airway smooth muscle (ASM) cells. TET is an α-ketoglutarate (α-KG)-dependent enzyme, and the production of α-KG is catalyzed by IDH (isocitrate dehydrogenase). However, the role of IDH in the regulation of DNA hydroxymethylation in ASM cells is unknown. In comparison with nonasthmatic cells, asthmatic ASM cells exhibited higher TET activity and IDH2 (but not IDH-1 or IDH-3) gene expression levels. We modified the expression of IDH2 in ASM cells from humans with asthma by siRNA and examined the α-KG levels, TET activity, global DNA hydroxymethylation, cell proliferation, and expression of ASM phenotypic genes. Inhibition of IDH2 in asthmatic ASM cells decreased the α-KG levels, TET activity, and global DNA hydroxymethylation, and reversed the aberrant ASM phenotypes (including decreased cell proliferation and ASM phenotypic gene expression). Specifically, asthmatic cells transfected with siRNA against IDH2 showed decreased 5hmC (5-hydroxymethylcytosine) levels at the TGFB2 (transforming growth factor-β2) promoter determined by oxidative bisulfite sequencing. Taken together, our findings reveal that IDH2 plays an important role in the epigenetic regulation of ASM phenotypic changes in asthmatic ASM cells, suggesting that IDH2 is a potential therapeutic target for reversing the abnormal phenotypes seen in asthma.
Collapse
Affiliation(s)
- Bonnie H. Y. Yeung
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jessie Huang
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Steven S. An
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Wan-yee Tang
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Liao Y, Li P, Wang Y, Chen H, Ning S, Su D. Construction of asthma related competing endogenous RNA network revealed novel long non-coding RNAs and potential new drugs. Respir Res 2020; 21:14. [PMID: 31924195 PMCID: PMC6954528 DOI: 10.1186/s12931-019-1257-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Background Asthma is a heterogeneous disease characterized by chronic airway inflammation. Long non-coding RNA can act as competing endogenous RNA to mRNA, and play significant role in many diseases. However, there is little known about the profiles of long non-coding RNA and the long non-coding RNA related competing endogenous RNA network in asthma. In current study, we aimed to explore the long non-coding RNA-microRNA-mRNA competing endogenous RNA network in asthma and their potential implications for therapy and prognosis. Methods Asthma-related gene expression profiles were downloaded from the Gene Expression Omnibus database, re-annotated with these genes and identified for asthma-associated differentially expressed mRNAs and long non-coding RNAs. The long non-coding RNA-miRNA interaction data and mRNA-miRNA interaction data were downloaded using the starBase database to construct a long non-coding RNA-miRNA-mRNA global competing endogenous RNA network and extract asthma-related differentially expressed competing endogenous RNA network. Finally, functional enrichment analysis and drug repositioning of asthma-associated differentially expressed competing endogenous RNA networks were performed to further identify key long non-coding RNAs and potential therapeutics associated with asthma. Results This study constructed an asthma-associated competing endogenous RNA network, determined 5 key long non-coding RNAs (MALAT1, MIR17HG, CASC2, MAGI2-AS3, DAPK1-IT1) and identified 8 potential new drugs (Tamoxifen, Ruxolitinib, Tretinoin, Quercetin, Dasatinib, Levocarnitine, Niflumic Acid, Glyburide). Conclusions The results suggested that long non-coding RNA played an important role in asthma, and these novel long non-coding RNAs could be potential therapeutic target and prognostic biomarkers. At the same time, potential new drugs for asthma treatment have been discovered through drug repositioning techniques, providing a new direction for the treatment of asthma.
Collapse
Affiliation(s)
- Yifang Liao
- Department of Respiratory Medicine, The 2nd Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Ping Li
- Department of Radiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanxia Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong Chen
- Department of Respiratory Medicine, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Dongju Su
- Department of Respiratory Medicine, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
26
|
Owens MC, Clark SC, Yankey A, Somarowthu S. Identifying Structural Domains and Conserved Regions in the Long Non-Coding RNA lncTCF7. Int J Mol Sci 2019; 20:ijms20194770. [PMID: 31561429 PMCID: PMC6801803 DOI: 10.3390/ijms20194770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) biology is a rapidly growing area of study. Thousands of lncRNAs are implicated as key players in cellular pathways and cancer biology. However, the structure–function relationships of these novel biomolecules are not well understood. Recent structural studies suggest that lncRNAs contain modular structural domains, which play a crucial role in their function. Here, we hypothesized that such structural domains exist in lncTCF7, a conserved lncRNA implicated in the development and progression of several cancers. To understand the structure–function relationship of lncTCF7, we characterized its secondary structure using chemical probing methods. Our model revealed structural domains and conserved regions in lncTCF7. One of the modular domains identified here coincides with a known protein-interacting domain. The model reported herein is, to our knowledge, the first structural model of lncTCF7 and thus will serve to direct future studies that will provide fundamental insights into the function of this lncRNA.
Collapse
Affiliation(s)
- Michael C Owens
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19101, USA.
| | - Sean C Clark
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19101, USA.
| | - Allison Yankey
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19101, USA.
| | - Srinivas Somarowthu
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19101, USA.
| |
Collapse
|