1
|
Xiao J, Xu Z. Roles of noncoding RNAs in diabetic retinopathy: Mechanisms and therapeutic implications. Life Sci 2024; 357:123092. [PMID: 39368772 DOI: 10.1016/j.lfs.2024.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes that leads to vision loss. The striking features of DR are hard exudate, cotton-wool spots, hemorrhage, and neovascularization. The dysregulated retinal cells, encompassing microvascular endothelial cells, pericytes, Müller cells, and adjacent retinal pigment epithelial cells, are involved in the pathological processes of DR. According to recent research, oxidative stress, inflammation, ferroptosis, pyroptosis, apoptosis, and angiogenesis contribute to DR. Recent advancements have highlighted that noncoding RNAs could regulate diverse targets in pathological processes that contribute to DR. Noncoding RNAs, including long noncoding RNAs, microRNAs (miRNA), and circular RNAs, are dysregulated in DR, and interact with miRNA, mRNA, or proteins to control the pathological processes of DR. Hence, modulation of noncoding RNAs may have therapeutic effects on DR. Small extracellular vesicles may be valuable tools for transferring noncoding RNAs and regulating the genes involved in progression of DR. However, the roles of noncoding RNA in developing DR are not fully understood; it is critical to summarize the mechanisms for noncoding RNA regulation of pathological processes and pathways related to DR. This review provides a fundamental understanding of the relationship between noncoding RNAs and DR, exploring the mechanism of how noncoding RNA modulates different signaling pathways, and pave the way for finding potential therapeutic strategies for DR.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Hashiesh HM, Azimullah S, Nagoor Meeran MF, Saraswathiamma D, Arunachalam S, Jha NK, Sadek B, Adeghate E, Sethi G, Albawardi A, Al Marzooqi S, Ojha S. Cannabinoid 2 Receptor Activation Protects against Diabetic Cardiomyopathy through Inhibition of AGE/RAGE-Induced Oxidative Stress, Fibrosis, and Inflammasome Activation. J Pharmacol Exp Ther 2024; 391:241-257. [PMID: 38955492 DOI: 10.1124/jpet.123.002037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)-receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT: BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Sheikh Azimullah
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Mohamed Fizur Nagoor Meeran
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Dhanya Saraswathiamma
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Seenipandi Arunachalam
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Niraj Kumar Jha
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Bassem Sadek
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Ernest Adeghate
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Gautam Sethi
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Alia Albawardi
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Saeeda Al Marzooqi
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Shreesh Ojha
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| |
Collapse
|
3
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
4
|
AmiRsardari Z, Gholipour A, Khajali Z, Maleki M, Malakootian M. Exploring the role of non-coding RNAs in atrial septal defect pathogenesis: A systematic review. PLoS One 2024; 19:e0306576. [PMID: 39172906 PMCID: PMC11340980 DOI: 10.1371/journal.pone.0306576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/19/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Extensive research has recognized the significant roles of non-coding RNAs (ncRNAs) in various cellular pathophysiological processes and their association with diverse diseases, including atrial septal defect (ASD), one of the most prevalent congenital heart diseases. This systematic review aims to explore the intricate involvement and significance of ncRNAs in the pathogenesis and progression of ASD. METHODS Four databases (PubMed, Embase, Scopus, and the Web of Science) were searched systematically up to June 19, 2023, with no year restriction. The risk of bias assessment was evaluated using the Newcastle-Ottawa scale. RESULTS The present systematic review included thirteen studies with a collective study population of 874 individuals diagnosed with ASD, 21 parents of ASD patients, and 22 pregnant women carrying ASD fetuses. Our analysis revealed evidence linking five long ncRNAs (STX18-AS1, HOTAIR, AA709223, BX478947, and Moshe) and several microRNAs (hsa-miR-19a, hsa-miR-19b, hsa-miR-375, hsa-miR-29c, miR-29, miR-143/145, miR-17-92, miR-106b-25, and miR-503/424, miR-9, miR-30a, miR-196a2, miR-139-5p, hsa-let-7a, hsa-let-7b, and hsa-miR-486) to ASD progression, corresponding to previous studies. CONCLUSIONS NcRNAs play a crucial role in unraveling the underlying mechanisms of ASD, contributing to both biomarker discovery and therapeutic advancements. This systematic review sheds light on the mechanisms of action of key ncRNAs involved in ASD progression, providing valuable insights for future research in this field.
Collapse
Affiliation(s)
- Zahra AmiRsardari
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Congenital Heart Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Gholipour
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Khajali
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Congenital Heart Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Eshraghi R, Sadati S, Bahrami A, Mirjalili SR, Farrokhian A, Mahjoubin-Tehran M, Mirzaei H. Unveiling the role of long non-coding RNA MALAT1: a comprehensive review on myocardial infarction. Front Cardiovasc Med 2024; 11:1429858. [PMID: 39171328 PMCID: PMC11335503 DOI: 10.3389/fcvm.2024.1429858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Myocardial infarction (MI) stands at top global causes of death in developed countries, owing mostly to atherosclerotic plaque growth and endothelial injury-induced reduction in coronary blood flow. While early reperfusion techniques have improved outcomes, long-term treatment continues to be difficult. The function of lncRNAs extends to regulating gene expression in various conditions, both physiological and pathological, such as cardiovascular diseases. The objective of this research is to extensively evaluate the significance of the lncRNA called Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in the development and management of MI. According to research, MALAT1 is implicated in processes such as autophagy, apoptosis, cell proliferation, and inflammation in the cardiovascular system. This investigation examines recent research examining the effects of MALAT1 on heart function and its potential as a mean of diagnosis and treatment for post- MI complications and ischemic reperfusion injury.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sina Sadati
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ashkan Bahrami
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Reza Mirjalili
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Farrokhian
- Department of Cardiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Tapia A, Liu X, Malhi NK, Yuan D, Chen M, Southerland KW, Luo Y, Chen ZB. Role of long noncoding RNAs in diabetes-associated peripheral arterial disease. Cardiovasc Diabetol 2024; 23:274. [PMID: 39049097 PMCID: PMC11271017 DOI: 10.1186/s12933-024-02327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that heightens the risks of many vascular complications, including peripheral arterial disease (PAD). Various types of cells, including but not limited to endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages (MΦs), play crucial roles in the pathogenesis of DM-PAD. Long non-coding RNAs (lncRNAs) are epigenetic regulators that play important roles in cellular function, and their dysregulation in DM can contribute to PAD. This review focuses on the developing field of lncRNAs and their emerging roles in linking DM and PAD. We review the studies investigating the role of lncRNAs in crucial cellular processes contributing to DM-PAD, including those in ECs, VSMCs, and MΦ. By examining the intricate molecular landscape governed by lncRNAs in these relevant cell types, we hope to shed light on the roles of lncRNAs in EC dysfunction, inflammatory responses, and vascular remodeling contributing to DM-PAD. Additionally, we provide an overview of the research approach and methodologies, from identifying disease-relevant lncRNAs to characterizing their molecular and cellular functions in the context of DM-PAD. We also discuss the potential of leveraging lncRNAs in the diagnosis and therapeutics for DM-PAD. Collectively, this review provides a summary of lncRNA-regulated cell functions contributing to DM-PAD and highlights the translational potential of leveraging lncRNA biology to tackle this increasingly prevalent and complex disease.
Collapse
Affiliation(s)
- Alonso Tapia
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Xuejing Liu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Muxi Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Kevin W Southerland
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA.
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
7
|
Anastasio C, Donisi I, Colloca A, D’Onofrio N, Balestrieri ML. MiR-148a-3p/SIRT7 Axis Relieves Inflammatory-Induced Endothelial Dysfunction. Int J Mol Sci 2024; 25:5087. [PMID: 38791128 PMCID: PMC11121049 DOI: 10.3390/ijms25105087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
In endothelial cells, miR-148a-3p is involved in several pathological pathways, including chronic inflammatory conditions. However, the molecular mechanism of miR-148a-3p in endothelial inflammatory states is, to date, not fully elucidated. To this end, we investigated the involvement of miR-148a-3p in mitochondrial dysfunction and cell death pathways in human aortic endothelial cells (teloHAECs) treated with interleukin-6 (IL-6), a major driver of vascular dysfunction. The results showed that during IL6-activated inflammatory pathways, including increased protein levels of sirtuin 7 (SIRT7) (p < 0.01), mitochondrial stress (p < 0.001), and apoptosis (p < 0.01), a decreased expression of miR-148a-3p was observed (p < 0.01). The employment of a miR-148a mimic counteracted the IL-6-induced cytokine release (p < 0.01) and apoptotic cell death (p < 0.01), and ameliorated mitochondria redox homeostasis and respiration (p < 0.01). The targeted relationship between miR-148a-3p and SIRT7 was predicted by a bioinformatics database analysis and validated via the dual-luciferase reporter assay. Mechanistically, miR-148a-3p targets the 3' untranslated regions of SIRT7 mRNA, downregulating its expression (p < 0.01). Herein, these in vitro results support the role of the miR-148a-3p/SIRT7 axis in counteracting mitochondrial damage and apoptosis during endothelial inflammation, unveiling a novel target for future strategies to prevent endothelial dysfunction.
Collapse
Affiliation(s)
| | | | | | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (C.A.); (I.D.); (A.C.); (M.L.B.)
| | | |
Collapse
|
8
|
Li X, Gao L, Li X, Xia J, Pan Y, Bai C. Autophagy, Pyroptosis and Ferroptosis are Rising Stars in the Pathogenesis of Diabetic Nephropathy. Diabetes Metab Syndr Obes 2024; 17:1289-1299. [PMID: 38505538 PMCID: PMC10949337 DOI: 10.2147/dmso.s450695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes and can potentially develop into end-stage renal disease. Its pathogenesis is complex and not fully understood. Podocytes, glomerular endothelial cells (GECs), glomerular mesangial cells (GMCs) and renal tubular epithelial cells (TECs) play important roles in the normal function of glomerulus and renal tubules, and their injury is involved in the progression of DN. Although our understanding of the mechanisms leading to DN has substantially improved, we still need to find more effective therapeutic targets. Autophagy, pyroptosis and ferroptosis are programmed cell death processes that are associated with inflammation and are closely related to a variety of diseases. Recently, a growing number of studies have reported that autophagy, pyroptosis and ferroptosis regulate the function of podocytes, GECs, GMCs and TECs. This review highlights the contributions of autophagy, pyroptosis, and ferroptosis to DN injury in these cells, offering potential therapeutic targets for DN treatment.
Collapse
Affiliation(s)
- Xiudan Li
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Lifeng Gao
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Xuyang Li
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Jingdong Xia
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
| | - Yurong Pan
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
| | - Chunying Bai
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| |
Collapse
|
9
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. The Mechanism of Pyroptosis and Its Application Prospect in Diabetic Wound Healing. J Inflamm Res 2024; 17:1481-1501. [PMID: 38463193 PMCID: PMC10924950 DOI: 10.2147/jir.s448693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Pyroptosis defines a form of pro-inflammatory-dependent programmed cell death triggered by gasdermin proteins, which creates cytoplasmic pores and promotes the activation and accumulation of immune cells by releasing several pro-inflammatory mediators and immunogenic substances upon cell rupture. Pyroptosis comprises canonical (mediated by Caspase-1) and non-canonical (mediated by Caspase-4/5/11) molecular signaling pathways. Numerous studies have explored the contributory roles of inflammasome and pyroptosis in the progression of multiple pathological conditions such as tumors, nerve injury, inflammatory diseases and metabolic disorders. Accumulating evidence indicates that the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome results in the activation of pyroptosis and inflammation. Current evidence suggests that pyroptosis-dependent cell death plays a progressive role in the development of diabetic complications including diabetic wound healing (DWH) and diabetic foot ulcers (DFUs). This review presents a brief overview of the molecular mechanisms underlying pyroptosis and addresses the current research on pyroptosis-dependent signaling pathways in the context of DWH. In this review, we also present some prospective therapeutic compounds/agents that can target pyroptotic signaling pathways, which may serve as new strategies for the effective treatment and management of diabetic wounds.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chuxiao Shao
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Peiwu Geng
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Shuanghu Wang
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Department of Wound Healing, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
10
|
Li J, Wang C, Shao C, Xu J. Expression and diagnostic value of lncRNA MALAT1 and NLRP3 in lower limb atherosclerosis in diabetes. BMC Endocr Disord 2024; 24:28. [PMID: 38439031 PMCID: PMC10910767 DOI: 10.1186/s12902-024-01557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
OBJECTIVE This study aimed to examine the diagnostic predictive value of long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1(MALAT1) and NOD-like receptor protein 3(NLRP3) expression in patients with type 2 diabetes mellitus(T2DM) and lower extremity atherosclerosis disease (LEAD). METHODS A total of 162 T2DM patients were divided into T2DM with LEAD group (T2DM + LEAD group) and T2DM alone group (T2DM group). The lncRNA MALAT1 and NLRP3 expression levels were measured in peripheral blood, and their correlation was examined. Least absolute shrinkage and selection operator (LASSO) regression model was used to screen for the best predictors of LEAD, and multivariate logistic regression was used to establish a predictive model and construct the nomogram. The effectiveness of the nomogram was assessed using the receiver operating characteristic (ROC) curve, area under the curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS The levels of the lncRNA MALAT1 and NLRP3 in the T2DM + LEAD group were significantly greater than those in the T2DM group (P <0.001), and the level of the lncRNA MALAT1 was positively correlated with that of NLRP3 (r = 0.453, P<0.001). The results of the LASSO combined with the logistic regression analysis showed that age, smoking, systolic blood pressure (SBP), NLRP3, and MALAT1 were the influencing factors of T2DM with LEAD(P<0.05). ROC curve analysis comparison: The discriminatory ability of the model (AUC = 0.898), MALAT1 (AUC = 0.804), and NLRP3 (AUC = 0.794) was greater than that of the other indicators, and the predictive value of the model was the greatest. Calibration curve: The nomogram model was consistent in predicting the occurrence of LEAD in patients with T2DM (Cindex = 0.898). Decision curve: The net benefit rates obtained from using the predictive models for clinical intervention decision-making were greater than those obtained from using the individual factors within the model. CONCLUSION MALAT1 and NLRP3 expression increased significantly in T2DM patients with LEAD, while revealing the correlation between MALAT1 and NLRP3. The lncRNA MALAT1 was found as a potential biomarker for T2DM with LEAD.
Collapse
Affiliation(s)
- Juan Li
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical University, 233040, Bengbu, Anhui, China
| | - Chun Wang
- Department of General Medicine, The Second Affiliated Hospital of Bengbu Medical University, 233040, Bengbu, Anhui, China
| | - Chen Shao
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical University, 233040, Bengbu, Anhui, China
| | - Jiaxin Xu
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu Anhui, China.
| |
Collapse
|
11
|
Khojali WMA, Khalifa NE, Alshammari F, Afsar S, Aboshouk NAM, Khalifa AAS, Enrera JA, Elafandy NM, Abdalla RAH, Ali OHH, Syed RU, Nagaraju P. Pyroptosis-related non-coding RNAs emerging players in atherosclerosis pathology. Pathol Res Pract 2024; 255:155219. [PMID: 38401375 DOI: 10.1016/j.prp.2024.155219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Globally, atherosclerosis a persistent inflammatory condition of the artery walls continues to be the primary cause of cardiovascular illness and death. The ncRNAs are important regulators of important signalling pathways that affect pyroptosis and the inflammatory environment in atherosclerotic plaques. Comprehending the complex interaction between pyroptosis and non-coding RNAs (ncRNAs) offers fresh perspectives on putative therapeutic targets for ameliorating cardiovascular problems linked to atherosclerosis. The discovery of particular non-coding RNA signatures linked to the advancement of atherosclerosis could lead to the creation of novel biomarkers for risk assessment and customised treatment approaches. A thorough investigation of the regulatory networks regulated by these non-coding RNAs has been made possible by the combination of cutting-edge molecular methods and bioinformatics tools. Studying pyroptosis-related ncRNAs in detail appears to be a promising way to advance our understanding of disease pathophysiology and develop focused therapeutic methods as we work to unravel the complex molecular tapestry of atherosclerosis. This review explores the emerging significance of non-coding RNAs (ncRNAs) in the regulation of pyroptosis and their consequential impact on atherosclerosis pathology.
Collapse
Affiliation(s)
- Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman 14415, Republic of the Sudan
| | - Nasrin E Khalifa
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11115, Republic of the Sudan
| | - Farhan Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Jerlyn Apatan Enrera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nancy Mohammad Elafandy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Randa Abdeen Husien Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Omar Hafiz Haj Ali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - Potnuri Nagaraju
- Department of Pharmaceutics, Mandesh Institute of Pharmaceutical Science and Research Center, Maharashtra, India
| |
Collapse
|
12
|
Lv N, Zhang Y, Wang L, Suo Y, Zeng W, Yu Q, Yu B, Jiang X. LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress. Curr Pharm Biotechnol 2024; 25:1021-1040. [PMID: 37842894 DOI: 10.2174/0113892010267577231005102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou People's Hospital, Ganzhou, China
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Ouyang S, Zhou ZX, Liu HT, Ren Z, Liu H, Deng NH, Tian KJ, Zhou K, Xie HL, Jiang ZS. LncRNA-mediated Modulation of Endothelial Cells: Novel Progress in the Pathogenesis of Coronary Atherosclerotic Disease. Curr Med Chem 2024; 31:1251-1264. [PMID: 36788688 DOI: 10.2174/0929867330666230213100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 02/16/2023]
Abstract
Coronary atherosclerotic disease (CAD) is a common cardiovascular disease and an important cause of death. Moreover, endothelial cells (ECs) injury is an early pathophysiological feature of CAD, and long noncoding RNAs (lncRNAs) can modulate gene expression. Recent studies have shown that lncRNAs are involved in the pathogenesis of CAD, especially by regulating ECs. In this review, we summarize the novel progress of lncRNA-modulated ECs in the pathogenesis of CAD, including ECs proliferation, migration, adhesion, angiogenesis, inflammation, apoptosis, autophagy, and pyroptosis. Thus, as lncRNAs regulate ECs in CAD, lncRNAs will provide ideal and novel targets for the diagnosis and drug therapy of CAD.
Collapse
Affiliation(s)
- Shao Ouyang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
- Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Department of Cardiovascular Medicine, Hengyang Medical School, The Second Affiliated Hospital, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, University of South China, Hunan 421001, China
| | - Zhi-Xiang Zhou
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Hui-Ting Liu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Zhong Ren
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Huan Liu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Nian-Hua Deng
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Kai-Jiang Tian
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Kun Zhou
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Hai-Lin Xie
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Zhi-Sheng Jiang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| |
Collapse
|
14
|
Mazarei M, Shahabi Rabori V, Ghasemi N, Salehi M, Rayatpisheh N, Jahangiri N, Saberiyan M. LncRNA MALAT1 signaling pathway and clinical applications in overcome on cancers metastasis. Clin Exp Med 2023; 23:4457-4472. [PMID: 37695391 DOI: 10.1007/s10238-023-01179-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
In spite of its high mortality rate and difficulty in finding a cure, scientific advancements have contributed to a reduction in cancer-related fatalities. Aberrant gene expression during carcinogenesis emphasizes the importance of targeting the signaling networks that control gene expression in cancer treatment. Long noncoding RNAs (lncRNAs), which are transcribed RNA molecules that play a role in gene expression regulation, are a recent innovative therapeutic approach for diagnosing and treating malignancies. MALAT1, a well-known lncRNA, functions in gene expression, RNA processing, and epigenetic control. High expression levels of MALAT1 are associated with several human disorders, including metastasis, invasion, autophagy, and proliferation of cancer cells. MALAT1 affects various signaling pathways and microRNAs (miRNAs), and this study aims to outline its functional roles in cancer metastasis and its interactions with cellular signaling pathways. Moreover, MALAT1 and its interactions with signaling pathways can be promising target for cancer treatment.
Collapse
Affiliation(s)
- Madineh Mazarei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Nazila Ghasemi
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mehrnaz Salehi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Rayatpisheh
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negin Jahangiri
- Department of Biology, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad-e Kavus, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
15
|
Piao X, Ma L, Xu Q, Zhang X, Jin C. Noncoding RNAs: Versatile regulators of endothelial dysfunction. Life Sci 2023; 334:122246. [PMID: 37931743 DOI: 10.1016/j.lfs.2023.122246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Noncoding RNAs have recently emerged as versatile regulators of endothelial dysfunction in atherosclerosis, a chronic inflammatory disease characterized by the formation of plaques within the arterial walls. Through their ability to modulate gene expression, noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, play crucial roles in various cellular processes involved in endothelial dysfunction (ECD), such as inflammation, pyroptosis, migration, proliferation, apoptosis, oxidative stress, and angiogenesis. This review provides an overview of the current understanding of the regulatory roles of noncoding RNAs in endothelial dysfunction during atherosclerosis. It highlights the specific noncoding RNAs that have been implicated in the pathogenesis of ECD, their target genes, and the mechanisms by which they contribute to ECD. Furthermore, we have reviewed the current therapeutics in atherosclerosis and explore their interaction with noncoding RNAs. Understanding the intricate regulatory network of noncoding RNAs in ECD may open up new opportunities for the development of novel therapeutic strategies to combat ECD.
Collapse
Affiliation(s)
- Xiong Piao
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China.
| | - Lie Ma
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Qinqi Xu
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Xiaomin Zhang
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Chengzhu Jin
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| |
Collapse
|
16
|
Zheng X, Zhao D, Jin Y, Liu Y, Liu D. Role of the NLRP3 inflammasome in gynecological disease. Biomed Pharmacother 2023; 166:115393. [PMID: 37660654 DOI: 10.1016/j.biopha.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the innate immune system and is a three-part macromolecular complex comprising the NLRP3 protein, apoptosis-associated speck-like protein containing a CARD (ASC) and the cysteine protease pro-caspase-1. When the NLRP3 inflammasome is activated, it can produce interleukin (IL)- 1β and IL-18 and eventually lead to inflammatory cell pyroptosis. Related studies have demonstrated that the NLRP3 inflammasome can induce an immune response and is related to the occurrence and development of gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer. NLRP3 inflammasome inhibitors are beneficial for maintaining cellular homeostasis and tissue health and have been found effective in targeting some gynecological diseases. However, excessive inhibitor concentrations have been found to cause adverse effects. Therefore, proper control of NLRP3 inflammasome activity is critical. This paper summarizes the structure and function of the NLRP3 inflammasome and highlights the therapeutic potential of targeting it in gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer The application of NLRP3 inflammasome inhibitors is also discussed.
Collapse
Affiliation(s)
- Xu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Dan Zhao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Yang Liu
- Acupuncture department,Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|
17
|
Yue Q, Liu Y, Ji J, Hu T, Lin T, Yu S, Li S, Wu N. Down-regulation of OIP5-AS1 inhibits obesity-induced myocardial pyroptosis and miR-22/NLRP3 inflammasome axis. Immun Inflamm Dis 2023; 11:e1066. [PMID: 37904706 PMCID: PMC10611552 DOI: 10.1002/iid3.1066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Obesity can induce myocardial pyroptosis, but the exact mechanism is still unknown. A recent study reported the association of opa-interacting protein 5-antisense transcript 1 (OIP5-AS1), an evolutionarily conserved long noncoding RNA, with pyroptosis. Therefore, this study aimed to investigate the role of OIP5-AS1 in obesity-induced myocardial pyroptosis. METHODS OIP5-AS1 was downregulated in H9c2 cells, followed by treatment with 400 μM palmitic acid (PA). Propidium iodide (PI) staining, lactic dehydrogenase (LDH) release assay, caspase-1 activity assay, IL-1β, and IL-18 activity assay were performed to detect pyroptotic phenotype. The interaction between OIP5-AS1 and microRNAs (miRNAs) was analyzed using RNA pull-down and luciferase assay. The effect of OIP5-AS1 knockdown in high-fat diet (HFD)-induced obesity rat on cardiac function, myocardial hypertrophy, fibrosis, and remodeling was evaluated. RESULTS Fat deposition was observed in cardiomyocytes 24 h after PA treatment; moreover, PA-treated cardiomyocytes showed significant increase in the rate of pyroptotic cells, release of LDH, protein expressions of NLRP3 and cleaved caspase-1, and the activity of caspase-1, IL-1β, and IL-18 as well as OIP5-AS1 expression. These findings suggested that PA activated pyroptosis and induced OIP5-AS1 expression in cardiomyocytes. Moreover, OIP5-AS1 knockdown inhibited PA-induced pyroptosis. Mechanistically, OIP5-AS1 was found to specifically bind to miR-22 and to regulate NLRP3 inflammasome-mediated pyroptosis via miR-22. Furthermore, OIP5-AS1 knockdown ameliorated HFD-induced cardiac dysfunction, myocardial hypertrophy, fibrosis, remodeling, and pyroptosis. CONCLUSION Our results revealed that downregulation of OIP5-AS1 can inhibit obesity-induced myocardial pyroptosis via miR-22/NLRP3 inflammasome axis. This finding lays a foundation of gene therapy for heart disease targeting OIP5-AS1.
Collapse
Affiliation(s)
- Qingxiong Yue
- Department of UltrasoundDalian Municipal Central HospitalDalianLiaoning ProvinceChina
| | - Yan Liu
- Department of UltrasoundDalian Women and Children's Medical GroupDalianLiaoning ProvinceChina
| | - Jun Ji
- Department of Central LaboratoryDalian Municipal Central HospitalDalianLiaoning ProvinceChina
| | - Tao Hu
- Department of UltrasoundDalian Municipal Central HospitalDalianLiaoning ProvinceChina
| | - Tong Lin
- Department of UltrasoundDalian Municipal Central HospitalDalianLiaoning ProvinceChina
| | - Shuang Yu
- Department of Central LaboratoryFirst Affiliated Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Shijun Li
- Department of CardiologyDalian Municipal Central HospitalDalianLiaoning ProvinceChina
| | - Nan Wu
- Department of Central LaboratoryFirst Affiliated Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| |
Collapse
|
18
|
Hussain MS, Afzal O, Gupta G, Altamimi ASA, Almalki WH, Alzarea SI, Kazmi I, Kukreti N, Gupta S, Sulakhiya K, Singh SK, Dua K. Probing the links: Long non-coding RNAs and NF-κB signalling in atherosclerosis. Pathol Res Pract 2023; 249:154773. [PMID: 37647827 DOI: 10.1016/j.prp.2023.154773] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that involves the accumulation of lipids and immune cells in the arterial wall. NF-kB signaling is a key regulator of inflammation and is known to play a critical role in atherosclerosis. Recent studies have shown that lncRNAs can regulate NF-kB and contribute to the development and progression of atherosclerosis. Preliminary findings reveal significant alterations in the expression of specific lncRNAs in atherosclerotic lesions compared to healthy arterial tissue. Experimental evidence suggests that these dysregulated lncRNAs can influence the NF-kB pathway. By unravelling the crosstalk between lncRNAs and NF-kB signaling, this review aims to enhance our understanding of the molecular mechanisms underlying atherosclerosis. Identifying novel therapeutic targets and diagnostic markers may lead to developing interventions and management strategies for this prevalent cardiovascular disease. This review summarizes the current knowledge on the role of lncRNAs in NF-kB signaling in atherosclerosis and highlights their potential as therapeutic targets for this disease.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Kunjbihari Sulakhiya
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
19
|
Cerato JA, da Silva EF, Porto BN. Breaking Bad: Inflammasome Activation by Respiratory Viruses. BIOLOGY 2023; 12:943. [PMID: 37508374 PMCID: PMC10376673 DOI: 10.3390/biology12070943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
The nucleotide-binding domain leucine-rich repeat-containing receptor (NLR) family is a group of intracellular sensors activated in response to harmful stimuli, such as invading pathogens. Some NLR family members form large multiprotein complexes known as inflammasomes, acting as a platform for activating the caspase-1-induced canonical inflammatory pathway. The canonical inflammasome pathway triggers the secretion of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 by the rapid rupture of the plasma cell membrane, subsequently causing an inflammatory cell death program known as pyroptosis, thereby halting viral replication and removing infected cells. Recent studies have highlighted the importance of inflammasome activation in the response against respiratory viral infections, such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While inflammasome activity can contribute to the resolution of respiratory virus infections, dysregulated inflammasome activity can also exacerbate immunopathology, leading to tissue damage and hyperinflammation. In this review, we summarize how different respiratory viruses trigger inflammasome pathways and what harmful effects the inflammasome exerts along with its antiviral immune response during viral infection in the lungs. By understanding the crosstalk between invading pathogens and inflammasome regulation, new therapeutic strategies can be exploited to improve the outcomes of respiratory viral infections.
Collapse
Affiliation(s)
- Julia A. Cerato
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
| | - Emanuelle F. da Silva
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
| | - Barbara N. Porto
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
20
|
Deng P, Hu H. HSP90-Dependent Upregulation of EZH2 Promotes Hypoxia/Reoxygenation-Induced Pyroptosis by Inhibiting miR-22 in Endothelial Cells. J Inflamm Res 2023; 16:2615-2630. [PMID: 37360624 PMCID: PMC10289174 DOI: 10.2147/jir.s403531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Objective Endothelial cell pyroptosis induced by hypoxia/reoxygenation (H/R) plays a key role in the pathogenesis of myocardial infarction (MI). However, the underlying mechanism is not clearly elucidated. Methods Human umbilical vein endothelial cells (HUVECs) exposed to H/R acted as in vitro model to investigate the mechanism of H/R-induced endothelial cell pyroptosis. CCK-8 assays were performed to investigate the viability of HUVECs. Calcein-AM/PI staining was carried out to quantify the death of HUVECs. The expression level of miR-22 was measured by RT-qPCR. The protein expression levels of zeste 2 polycomb repressive complex 2 subunit (EZH2), NLRP3, cleaved caspase-1 (c-caspase-1), GSDMD-N and heat shock protein 90 (HSP90) were measured by Western blot. Levels of IL-1β and IL-18 in culture medium were detected by ELISA. The intracellular localization of EZH2 was detected by immunofluorescence staining. Chromatin immunoprecipitation (ChIP) assay was used to detect the enrichment of EZH2 and H3K27me3 in the miR-22 promoter region. The binding between miR-22 and NLRP3 in HUVECs was confirmed by the dual luciferase assay. Reciprocal coimmunoprecipitation was conducted to detect the direct interaction between HSP90 and EZH2. Results H/R increased EZH2 expression, and the EZH2 siRNA could inhibit H/R-induced pyroptosis in HUVECs. H/R reduced miR-22 expression, which was reversed by EZH2 siRNA. Silencing of miR-22 by its inhibitor reversed EZH2 siRNA-induced pyroptosis inhibition in H/R-exposed HUVECs. Upregulation of miR-22 by its mimic suppressed EZH2 overexpression-enhanced pyroptosis in H/R-exposed HUVECs. ChIP assay confirmed that EZH2 bound to the miR-22 promoter region and repressed miR-22 expression through H3K27me3. Furthermore, luciferase reporter assay indicated that NLRP3 was a direct target of miR- 22 in HUVECs. Finally, HSP90 siRNA inhibited H/R-induced EZH2 expression, miR-22 downregulation, and pyroptosis in HUVECs. Conclusion H/R induces pyroptosis via the HSP90/EZH2/miR-22/NLRP3 signaling axis in endothelial cells.
Collapse
Affiliation(s)
- Paihe Deng
- Clinical Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, People’s Republic of China
| | - Huimin Hu
- Clinical Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, People’s Republic of China
| |
Collapse
|
21
|
Cai J, Tang D, Hao X, Liu E, Li W, Shi J. Mesenchymal stem cell-derived exosome alleviates sepsis- associated acute liver injury by suppressing MALAT1 through microRNA-26a-5p: an innovative immunopharmacological intervention and therapeutic approach for sepsis. Front Immunol 2023; 14:1157793. [PMID: 37398640 PMCID: PMC10310917 DOI: 10.3389/fimmu.2023.1157793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Background Sepsis is a syndrome with the disturbed host response to severe infection and is a major health problem worldwide. As the front line of infection defense and drug metabolism, the liver is vulnerable to infection- or drug-induced injury. Acute liver injury (ALI) is thus common in patients with sepsis and is significantly associated with poor prognosis. However, there are still few targeted drugs for the treatment of this syndrome in clinics. Recent studies have reported that mesenchymal stem cells (MSCs) show potential for the treatment of various diseases, while the molecular mechanisms remain incompletely characterized. Aims and Methods Herein, we used cecal ligation puncture (CLP) and lipopolysaccharide (LPS) plus D-galactosamine (D-gal) as sepsis-induced ALI models to investigate the roles and mechanisms of mesenchymal stem cells (MSCs) in the treatment of ALI in sepsis. Results We found that either MSCs or MSC-derived exosome significantly attenuated ALI and consequent death in sepsis. miR-26a-5p, a microRNA downregulated in septic mice, was replenished by MSC-derived exosome. Replenishment of miR-26a-5p protected against hepatocyte death and liver injury caused by sepsis through targeting Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1), a long non-coding RNA highly presented in hepatocyte and liver under sepsis and inhibiting anti-oxidant system. Conclusion Taken together, the results of the current study revealed the beneficial effects of MSC, exosome or miR-26a-5p on ALI, and determined the potential mechanisms of ALI induced by sepsis. MALAT1 would be a novel target for drug development in the treatment of this syndrome.
Collapse
Affiliation(s)
- Jizhen Cai
- Department of Critical Care Medicine and Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Da Tang
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Hao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, China
| | - Enyi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, China
| | - Wenbo Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jian Shi
- Department of Critical Care Medicine and Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Li P, Hong J, Liang C, Li Y, Gao L, Wu L, Yao R, Zhang Y. Endothelial cell-released extracellular vesicles trigger pyroptosis and vascular inflammation to induce atherosclerosis through the delivery of HIF1A-AS2. FASEB J 2023; 37:e22942. [PMID: 37178006 DOI: 10.1096/fj.202201399rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Extracellular vesicles (EVs) possess great potential in the modulation of cardiovascular diseases. Our current work intended to assay the clinical significance of endothelial cell (EC)-derived EVs in atherosclerosis (AS). Expression of HIF1A-AS2, miR-455-5p, and ESRRG in plasma from AS patients and mice and EVs from ox-LDL-treated ECs was measured. Interactions among HIF1A-AS2, miR-455-5p, ESRRG, and NLRP3 were analyzed. Next, EVs were co-cultured with ECs, and ectopic expression and depletion experimentations of HIF1A-AS2, miR-455-5p, ESRRG, and/or NLRP3 were carried out to assay their roles in pyroptosis and inflammation of ECs in AS. At last, the effects of HIF1A-AS2 shuttled by EC-derived EVs on EC pyroptosis and vascular inflammation in AS were verified in vivo. HIF1A-AS2 and ESRRG were highly expressed, while miR-455-5p was poorly expressed in AS. HIF1A-AS2 could sponge miR-455-5p to elevate the expression of ESRRG and NLRP3. Both in vitro and in vivo experiments revealed that ECs-derived EVs carrying HIF1A-AS2 induced the pyroptosis and vascular inflammation of ECs to promote the progression of AS by sponging miR-455-5p via ESRRG/NLRP3. HIF1A-AS2 shuttled by ECs-derived EVs can accelerate the progression of AS by downregulating miR-455-5p and upregulating ESRRG and NLRP3.
Collapse
Affiliation(s)
- Pengcheng Li
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Jin Hong
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Cui Liang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Yapeng Li
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Lu Gao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Leiming Wu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Rui Yao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Yanzhou Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
23
|
Bink DI, Pauli J, Maegdefessel L, Boon RA. Endothelial microRNAs and long noncoding RNAs in cardiovascular ageing. Atherosclerosis 2023; 374:99-106. [PMID: 37059656 DOI: 10.1016/j.atherosclerosis.2023.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
Atherosclerosis and numerous other cardiovascular diseases develop in an age-dependent manner. The endothelial cells that line the vessel walls play an important role in the development of atherosclerosis. Non-coding RNA like microRNAs and long non-coding RNAs are known to play an important role in endothelial function and are implicated in the disease progression. Here, we summarize several microRNAs and long non-coding RNAs that are known to have an altered expression with endothelial aging and discuss their role in endothelial cell function and senescence. These processes contribute to aging-induced atherosclerosis development and by targeting the non-coding RNAs controlling endothelial cell function and senescence, atherosclerosis can potentially be attenuated.
Collapse
Affiliation(s)
- Diewertje I Bink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
| | - Jessica Pauli
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Reinier A Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands; Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany; German Centre for Cardiovascular Research DZHK, Partner site Frankfurt Rhein/Main, Frankfurt Am Main, Germany.
| |
Collapse
|
24
|
Al-Hawary SIS, Jasim SA, Romero-Parra RM, Bustani GS, Hjazi A, Alghamdi MI, Kareem AK, Alwaily ER, Zabibah RS, Gupta J, Mahmoudi R, Hosseini-Fard S. NLRP3 inflammasome pathway in atherosclerosis: Focusing on the therapeutic potential of non-coding RNAs. Pathol Res Pract 2023; 246:154490. [PMID: 37141699 DOI: 10.1016/j.prp.2023.154490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome pathway has a critical role in the pathogenesis of atherosclerosis. Activation of this pathway is implicated in the subendothelial inflammation and atherosclerosis progression. The NLRP3 inflammasome are cytoplasmic sensors with the distinct capacity to identify a wide range of inflammation-related signals, which enhance NLRP3 inflammasome assembly and allow it to trigger inflammation. This pathway is triggered by a variety of intrinsic signals which exist in atherosclerotic plaques, like cholesterol crystals and oxidized LDL. Further pharmacological findings indicated that NLRP3 inflammasome enhanced caspase-1-mediated secretion of pro-inflammatory mediators like interleukin (IL)- 1β/18. Newly published cutting-edge studies suggested that non-coding RNAs (ncRNAs) including microRNAs (miRNAs, miRs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) are major modulators of NLRP3 inflammasome in atherosclerosis. Therefore, in this review, we aimed to discuss the NLRP3 inflammasome pathway, biogenesis of ncRNAs as well as the modulatory role of ncRNAs in regulating the various mediators of NLRP3 inflammasome pathway including TLR4, NF-kB, NLRP3, and caspase 1. We also discussed the importance of NLRP3 inflammasome pathway-related ncRNAs as a diagnostic biomarker in atherosclerosis and current therapeutics in the modulation of NLRP3 inflammasome in atherosclerosis. Finally, we speak about the limitations and future prospects of ncRNAs in regulating inflammatory atherosclerosis via the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah 51001, Iraq
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedreza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Chen C, Wang Q, Li D, Qi Z, Chen Y, Wang S. MALAT1 participates in the role of platelet-rich plasma exosomes in promoting wound healing of diabetic foot ulcer. Int J Biol Macromol 2023; 238:124170. [PMID: 36963542 DOI: 10.1016/j.ijbiomac.2023.124170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
Exosomes isolated from platelet-rich plasma (PRP-exos) have been recently deemed as an optimized therapeutic strategy in Diabetic foot ulcer (DFU) treatment. Herein, we aimed to explore whether MALAT1 participates in DFU wound healing by PRP-exos treatment and the related preliminary mechanism. Fibroblasts were isolated from healthy donors and DFU patients, and the expression of MALAT1, miR-374a-3p and DNMT3A were detected by RT-PCR. The effect of MALAT1 and miR-374a-3p on DFU fibroblast function was verified by gain/loss of function experiment. The targeted binding of MALAT and miRNA was verified by double luciferase reporter gene assay. PRP-exos were isolated from normal human blood and characterized, and then co-cultured with DFU fibroblasts. The MALAT1 expression was donwregulated while the miR-374a-5p expression was upregulated in DFU fibroblasts. Double luciferase reporter gene assay demonstrated the targeted binding of MALAT and miR-374a-5p. Overexpression of MALAT1 or knockdown of miR-374a-5p could increase viability and inhibit apoptosis and pyroptosis of DFU fibroblast. And overexpression of miR-374a-5p reversed the effect of PRR-exos or MALAT1 overexpression on cell viability, apoptosis and pyroptosis. Collectively, MALAT1 mediated signal axis participates in the role of PRP-exos in promoting DFU wound healing, which may help identify optimal targets and effective therapies for DFU treatment.
Collapse
Affiliation(s)
- Changhong Chen
- Department of Orthopaedics, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214400, PR China
| | - Qinghua Wang
- Department of Orthopaedics, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214400, PR China
| | - Daibin Li
- Department of Orthopaedics, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214400, PR China
| | - Zhijian Qi
- Department of Orthopaedics, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214400, PR China
| | - Yaofei Chen
- Department of Orthopaedics, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214400, PR China
| | - Shanzheng Wang
- Department of Orthopaedics, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
26
|
Zhang L, Hung GCC, Meng S, Evans R, Xu J. LncRNA MALAT1 Regulates Hyperglycemia Induced EMT in Keratinocyte via miR-205. Noncoding RNA 2023; 9:14. [PMID: 36827547 PMCID: PMC9963368 DOI: 10.3390/ncrna9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is critical to cutaneous wound healing. When skin is injured, EMT activates and mobilizes keratinocytes toward the wound bed, therefore enabling re-epithelialization. This process becomes dysregulated in patients with diabetes mellitus (DM). Long non-coding RNAs (lncRNAs) regulate many biological processes. LncRNA-metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) influences numerous cellular processes, including EMT. The objective of the current study is to explore the role of MALAT1 in hyperglycemia (HG)-induced EMT. The expression of MALAT1 was found to be significantly upregulated, while the expression of miR-205 was downregulated in diabetic wounds and high-glucose-treated HaCaT cells. The initiation of EMT in HaCaT cells from hyperglycemia was confirmed by a morphological change, the increased expression of CDH2, KRT10, and ACTA2, and the downregulation of CDH1. The knockdown of MALAT1 was achieved by transfecting a small interfering RNA (SiRNA). MALAT1 and miR-205 were found to modulate HG-induced EMT. MALAT1 silencing or miR-205 overexpression appears to attenuate hyperglycemia-induced EMT. Mechanistically, MALAT1 affects HG-induced EMT through binding to miR-205 and therefore inducing ZEB1, a critical transcription factor for EMT. In summary, lncRNA MALAT1 is involved in the hyperglycemia-induced EMT of human HaCaT cells. This provides a new perspective on the pathogenesis of diabetic wounds.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - George Chu-Chih Hung
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Songmei Meng
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robin Evans
- Division of Plastic Surgery, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Junwang Xu
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
27
|
Regulation of the Inflammatory Response, Proliferation, Migration, and Epithelial-Mesenchymal Transition of Human Lens Epithelial Cells by the lncRNA-MALAT1/miR-26a-5p/TET1 Signaling Axis. J Ophthalmol 2023; 2023:9942880. [PMID: 36700118 PMCID: PMC9870684 DOI: 10.1155/2023/9942880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/17/2023] Open
Abstract
Background The ocular inflammatory microenvironment has been reported to be closely associated with the occurrence and progression of highly myopic cataract (HMC). Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) could alter the biological properties of mammalian cells by modulating the expression of inflammatory mediators; therefore, it may contribute to the development of HMC. Objective To investigate the function of MALAT1 in the inflammatory response, proliferation, migration, and epithelial-mesenchymal transition (EMT) of inflammatory and injured human lens epithelial cells (HLECs) and to reveal the underlying molecular signals. Methods Patients with HMC and age-related cataract (ARC) with an axial length of more than 26 mm were selected, and the anterior capsular tissue was obtained during cataract surgery. TNF-α (20 ng/mL) was chosen to induce inflammatory damage in HLECs to simulate the inflammatory microenvironment in HMC eyes. Specific siRNAs, inhibitors, and mimics were used to suppress or enhance the functions of MALAT1 and miR-26a-5p. RT-qPCR and Western blot analysis were performed to measure gene and protein expression, respectively. Results The expression of MALAT1 and the inflammatory mediators IL-6, MMP-2, and MMP-9 were significantly higher in HMC anterior capsule tissues than in ARC. TNF-α treatment increased the expression of MALAT1, while it also promoted the proliferation, migration, and EMT of HLECs. MALAT1 interference decreased the expression of IL-6 and MMP-2 and inhibited the aforementioned processes. Furthermore, MALAT1 negatively regulated the expression of miR-26a-5p and then promoted TET1 expression. TET1 was identified as a direct target of miR-26a-5p, and the promoting effect of MALAT1 on TET1 expression could be reversed by miR-26a-5p mimics. Conclusion The inflammatory environment and MALAT1 expression could be reciprocally induced in HLECs. MALAT1 may act as a ceRNA via the "sponge" miR-26a-5p and target TET1 to regulate the inflammatory response, proliferation, migration, and EMT processes in HLECs.
Collapse
|
28
|
Ju J, Liu Y, Liang H, Yang B. The role of pyroptosis in endothelial dysfunction induced by diseases. Front Immunol 2023. [DOI: 10.3389/fimmu.2023.1093985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Most organs in the body rely on blood flow, and vesicular damage is the leading cause of injury in multiple organs. The endothelium, as the barriers of vessels, play a critical role in ensuring vascular homeostasis and angiogenesis. The rapid development of risk factors in endothelial injuries has been seen in the past decade, such as smoking, infectious, and diabetes mellites. Pyroptotic endothelium is an inflammatory mode of governed endothelial cell death that depend on the metabolic disorder and severe infectious such as atherosclerosis, and sepsis-related acute lung injury, respectively. Pyroptotic endothelial cells need GSDMD cleaved into N- and C-terminal by caspase1, and the cytokines are released by a pore constructed by the N-terminal of GSDMD in the membrane of ECs, finally resulting in severe inflammation and pyroptotic cell death. This review will focus on the patho-physiological and pharmacological pathways of pyroptotic endothelial metabolism in diseases. Overall, this review indicates that pyroptosis is a significant risk factor in diseases and a potential drug target in related diseases.
Collapse
|
29
|
Ju J, Liu Y, Liang H, Yang B. The role of pyroptosis in endothelial dysfunction induced by diseases. Front Immunol 2023; 13:1093985. [PMID: 36776394 PMCID: PMC9910335 DOI: 10.3389/fimmu.2022.1093985] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Most organs in the body rely on blood flow, and vesicular damage is the leading cause of injury in multiple organs. The endothelium, as the barriers of vessels, play a critical role in ensuring vascular homeostasis and angiogenesis. The rapid development of risk factors in endothelial injuries has been seen in the past decade, such as smoking, infectious, and diabetes mellites. Pyroptotic endothelium is an inflammatory mode of governed endothelial cell death that depend on the metabolic disorder and severe infectious such as atherosclerosis, and sepsis-related acute lung injury, respectively. Pyroptotic endothelial cells need GSDMD cleaved into N- and C-terminal by caspase1, and the cytokines are released by a pore constructed by the N-terminal of GSDMD in the membrane of ECs, finally resulting in severe inflammation and pyroptotic cell death. This review will focus on the patho-physiological and pharmacological pathways of pyroptotic endothelial metabolism in diseases. Overall, this review indicates that pyroptosis is a significant risk factor in diseases and a potential drug target in related diseases.
Collapse
Affiliation(s)
- Jin Ju
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Haihai Liang
- Key Laboratory of Cardiovascular Research, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Baofeng Yang
- Key Laboratory of Cardiovascular Research, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, China,*Correspondence: Baofeng Yang,
| |
Collapse
|
30
|
Zhou J, Yan S, Guo X, Gao Y, Chen S, Li X, Zhang Y, Wang Q, Zheng T, Chen L. Salidroside protects pancreatic β-cells against pyroptosis by regulating the NLRP3/GSDMD pathway in diabetic conditions. Int Immunopharmacol 2023; 114:109543. [PMID: 36508922 DOI: 10.1016/j.intimp.2022.109543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
The NACHT, LRP, and PYD domains-containing protein 3 (NLRP3) inflammasome-evoked chronic inflammation is involved in the pathogenesis of diabetes mellitus (DM), and the NLRP3/gasdermin D (GSDMD)-mediated canonical pathway of pyroptosis leads to the loss of pancreatic β-cells and failure of pancreatic function in DM. A previous study demonstrated that salidroside (SAL) alleviates the pathological hyperplasia of pancreatic β-cells in db/db mice. However, it is not clear whether the NLRP3/GSDMD pathway-mediated pyroptosis can be regulated by SAL. In addition, the action of SAL on pancreatic β-cells in DM remains poorly understood. Thus, this study aimed to investigate the effects and underlying mechanisms of SAL on pancreatic β-cell pyroptosis. Rat insulinoma (INS-1) cells were cultured in a medium containing either high glucose (HG) or HG plus high insulin (HG-HI), and the effects of SAL on cell viability, AMP-activated protein kinase (AMPK) activity, reactive oxygen species (ROS) generation, NLRP3/GSDMD activation, and pyroptotic body formation were assessed. Streptozocin-induced DM mice were used to further investigate the effects of SAL on pancreatic pyroptosis. The results revealed aberrances on cell viability, AMPK activity, ROS generation, NLRP3/GSDMD activation, and pyroptotic body formation in HG- and HG-HI-exposed INS-1 cells; these abnormal effects were corrected by SAL in both a concentration- and AMPK-dependent manner. Moreover, SAL administration activated AMPK, suppressed NLRP3/GSDMD signaling, and protected pancreatic β-cells against pyroptosis in DM mice. These findings suggest that SAL promotes AMPK activation to suppress NLRP3/GSDMD-related pyroptosis in pancreatic β-cells under DM conditions.
Collapse
Affiliation(s)
- Jun Zhou
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Yan
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xu Guo
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yanguo Gao
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shiqi Chen
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaohan Li
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yonghong Zhang
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qibin Wang
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tao Zheng
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Li Chen
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
31
|
Zhu J, Chen H, Le Y, Guo J, Liu Z, Dou X, Lu D. Salvianolic acid A regulates pyroptosis of endothelial cells via directly targeting PKM2 and ameliorates diabetic atherosclerosis. Front Pharmacol 2022; 13:1009229. [PMID: 36425580 PMCID: PMC9679534 DOI: 10.3389/fphar.2022.1009229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2023] Open
Abstract
Rescuing endothelial cells from pyroptotic cell death emerges as a potential therapeutic strategy to combat diabetic atherosclerosis. Salvianolic acid A (SAA) is a major water-soluble phenolic acid in the Salvia miltiorrhiza Bunge, which has been used in traditional Chinese medicine (TCM) and health food products for a long time. This study investigated whether SAA-regulated pyruvate kinase M2 (PKM2) functions to protect endothelial cells. In streptozotocin (STZ)-induced diabetic ApoE-/- mice subjected to a Western diet, SAA attenuated atherosclerotic plaque formation and inhibited pathological changes in the aorta. In addition, SAA significantly prevented NLRP3 inflammasome activation and pyroptosis of endothelial cells in the diabetic atherosclerotic aortic sinus or those exposed to high glucose. Mechanistically, PKM2 was verified to be the main target of SAA. We further revealed that SAA directly interacts with PKM2 at its activator pocket, inhibits phosphorylation of Y105, and hinders the nuclear translocation of PKM2. Also, SAA consistently decreased high glucose-induced overproduction of lactate and partially lactate-dependent phosphorylation of PKR (a regulator of the NLRP3 inflammasome). Further assay on Phenylalanine (PKM2 activity inhibitor) proved that SAA exhibits the function in high glucose-induced pyroptosis of endothelial cells dependently on PKM2 regulation. Furthermore, an assay on c16 (inhibitor of PKR activity) with co-phenylalanine demonstrated that the regulation of the phosphorylated PKR partially drives PKM2-dependent SAA modulation of cell pyroptosis. Therefore, this article reports on the novel function of SAA in the pyroptosis of endothelial cells and diabetic atherosclerosis, which provides important insights into immunometabolism reprogramming that is important for diabetic cardiovascular disease complications therapy.
Collapse
Affiliation(s)
- Ji Zhu
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hang Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
32
|
Shu J, Yang L, Wei W, Zhang L. Identification of programmed cell death-related gene signature and associated regulatory axis in cerebral ischemia/reperfusion injury. Front Genet 2022; 13:934154. [PMID: 35991562 PMCID: PMC9385974 DOI: 10.3389/fgene.2022.934154] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Numerous studies have suggested that programmed cell death (PCD) pathways play vital roles in cerebral ischemia/reperfusion (I/R) injury. However, the specific mechanisms underlying cell death during cerebral I/R injury have yet to be completely clarified. There is thus a need to identify the PCD-related gene signatures and the associated regulatory axes in cerebral I/R injury, which should provide novel therapeutic targets against cerebral I/R injury. Methods: We analyzed transcriptome signatures of brain tissue samples from mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and matched controls, and identified differentially expressed genes related to the three types of PCD(apoptosis, pyroptosis, and necroptosis). We next performed functional enrichment analysis and constructed PCD-related competing endogenous RNA (ceRNA) regulatory networks. We also conducted hub gene analysis to identify hub nodes and key regulatory axes. Results: Fifteen PCD-related genes were identified. Functional enrichment analysis showed that they were particularly associated with corresponding PCD-related biological processes, inflammatory response, and reactive oxygen species metabolic processes. The apoptosis-related ceRNA regulatory network was constructed, which included 24 long noncoding RNAs (lncRNAs), 41 microRNAs (miRNAs), and 4 messenger RNAs (mRNAs); the necroptosis-related ceRNA regulatory network included 16 lncRNAs, 20 miRNAs, and 6 mRNAs; and the pyroptosis-related ceRNA regulatory network included 15 lncRNAs, 18 miRNAs, and 6 mRNAs. Hub gene analysis identified hub nodes in each PCD-related ceRNA regulatory network and seven key regulatory axes in total, namely, lncRNA Malat1/miR-181a-5p/Mapt, lncRNA Malat1/miR-181b-5p/Mapt, lncRNA Neat1/miR-181a-5p/Mapt, and lncRNA Neat1/miR-181b-5p/Mapt for the apoptosis-related ceRNA regulatory network; lncRNA Neat1/miR-181a-5p/Tnf for the necroptosis-related ceRNA regulatory network; lncRNA Malat1/miR-181c-5p/Tnf for the pyroptosis-related ceRNA regulatory network; and lncRNAMalat1/miR-181a-5p for both necroptosis-related and pyroptosis-related ceRNA regulatory networks. Conclusion: The results of this study supported the hypothesis that these PCD pathways (apoptosis, necroptosis, pyroptosis, and PANoptosis) and crosstalk among them might be involved in ischemic stroke and that the key nodes and regulatory axes identified in this study might play vital roles in regulating the above processes. This may offer new insights into the potential mechanisms underlying cell death during cerebral I/R injury and provide new therapeutic targets for neuroprotection.
Collapse
Affiliation(s)
| | | | - Wenshi Wei
- *Correspondence: Wenshi Wei, ; Li Zhang,
| | - Li Zhang
- *Correspondence: Wenshi Wei, ; Li Zhang,
| |
Collapse
|
33
|
Cai Y, Zhou Y, Li Z, Xia P, ChenFu X, Shi A, Zhang J, Yu P. Non-coding RNAs in necroptosis, pyroptosis, and ferroptosis in cardiovascular diseases. Front Cardiovasc Med 2022; 9:909716. [PMID: 35990979 PMCID: PMC9386081 DOI: 10.3389/fcvm.2022.909716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence has proved that non-coding RNAs (ncRNAs) play a critical role in the genetic programming and gene regulation of cardiovascular diseases (CVDs). Cardiovascular disease morbidity and mortality are rising and have become a primary public health issue that requires immediate resolution through effective intervention. Numerous studies have revealed that new types of cell death, such as pyroptosis, necroptosis, and ferroptosis, play critical cellular roles in CVD progression. It is worth noting that ncRNAs are critical novel regulators of cardiovascular risk factors and cell functions by mediating pyroptosis, necroptosis, and ferroptosis. Thus, ncRNAs can be regarded as promising therapeutic targets for treating and diagnosing cardiovascular diseases. Recently, there has been a surge of interest in the mediation of ncRNAs on three types of cell death in regulating tissue homeostasis and pathophysiological conditions in CVDs. Although our understanding of ncRNAs remains in its infancy, the studies reviewed here may provide important new insights into how ncRNAs interact with CVDs. This review summarizes what is known about the functions of ncRNAs in modulating cell death-associated CVDs and their role in CVDs, as well as their current limitations and future prospects.
Collapse
Affiliation(s)
- Yuxi Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiwen Zhou
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Xinxi ChenFu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Ao Shi
- School of Medicine, University of Nicosia, Nicosia, Cyprus
- School of Medicine, St. George University of London, London, United Kingdom
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jing Zhang
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- *Correspondence: Peng Yu
| |
Collapse
|
34
|
Tang Y, Yan JH, Ge ZW, Fei AH, Zhang YC. LncRNA Gaplinc promotes the pyroptosis of vascular endothelial cells through SP1 binding to enhance NLRP3 transcription in atherosclerosis. Cell Signal 2022; 99:110420. [PMID: 35901931 DOI: 10.1016/j.cellsig.2022.110420] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Pyroptosis, characterized by activation of the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and its downstream effector inflammatory factors, has been shown to play a crucial role in atherosclerosis development. Long noncoding RNAs (lncRNAs) are involved in the progression of pyroptosis. However, the role and mechanism of the novel lncRNA gastric adenocarcinoma associated, positive CD44 regulator (Gaplinc), in endothelial cell pyroptosis during atherosclerosis development remain unexplored. Bioinformatics was performed to evaluate dysregulated lncRNAs in atherosclerotic mice fed a high-fat diet. The effect of Gaplinc on atherosclerosis progression in vivo was assessed via Oil Red O staining and fluorescence in situ hybridization. Its function in oxidized low-density lipoprotein (ox-LDL)-induced pyroptosis of endothelial cells was determined through ectopic expression. Additionally, RNA pull-down and immunoprecipitation (RIP) assays were performed to determine Gaplinc and transcription factor SP1 interactions. Then the pyroptosis pathway proteins were analyzed via immunofluorescence and western blotting. We found that lncRNA Gaplinc was highly expressed in ox-LDL-induced endothelial cells as well as in the plaque and plasma of high-fat diet-treated ApoE-/- mice. Gaplinc silencing significantly inhibited endothelial cell pyroptosis and atherosclerotic plaque formation. Mechanistically, Gaplinc could interact with SP1 to bind to the NLRP3 promoter and upregulate the target gene expression of NLRP3, facilitating endothelial cell pyroptosis and atherosclerotic plaque enlargement in high- fat diet-fed mice. In conclusion, our results revealed the underlying mechanism of the lncRNA Gaplinc /SP1/NLRP3 axis in endothelial cell pyroptosis, which may provide new potential targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yong Tang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian-Hua Yan
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuo-Wang Ge
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ai-Hua Fei
- Department of General Family Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Ya-Chen Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Liu Y, He M, Xiong H, Yuan F. Induction of Pyroptosis in Renal Tubular Epithelial Cells Using High Glucose. Front Med (Lausanne) 2022; 9:874916. [PMID: 35692535 PMCID: PMC9184676 DOI: 10.3389/fmed.2022.874916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background The micro-inflammatory state is important for the occurrence of diabetic kidney disease (DKD). Here, we aimed to explore the expression of pyroptosis related indicators and ultrastructural characteristics in DKD, and investigate pyroptosis in renal tubular epithelial cells induced by high glucose. Methods Immunohistochemistry was used to detect expression of the inflammation-related protein NOD-like receptor protein 3 (NLRP3) and pyroptosis key protein gasdermin D (GSDMD) in kidney tissues of DKD patients. HK-2 cells were cultured in vitro and stimulated with different concentrations of glucose. The changes in HK-2 cell ultrastructure were observed using electronmicroscopy, and western blot was used to detect NLRP3, caspase-1 p20, GSDMD-N, interleukin (IL)-1β, and IL-18 expression. Results NLRP3 and GSDMD expression in kidney tissues of DKD patients was higher than that in control subjects. Further, GSDMD expression was positively correlated with that of NLRP3 (r = 0.847, P = 0.02). After stimulating HK-2 cells for 24 h with different glucose concentrations, compared with the control group, the 15 and 30 mmol/L glucose groups showed typical ultrastructural changes of pyroptosis. The protein expression of NLRP3, caspase-1 p20, GSDMD-N, IL-1β, and IL-18 expression in high glucose group increased significantly compared with the control group, and was glucose-concentration-dependent. Conclusion High glucose can activate inflammasome, cause inflammatory cytokines release, and induce pyroptosis in HK-2 cells. NLRP3-caspase-1 may be involved in GSDMD-mediated pyroptosis. This study shows a novel relationship between glucose concentration and pyroptosis, which can be studied further to design better therapies for patients with DKD.
Collapse
|
36
|
Gao J, Xia L, Wei Y. Oxymatrine inhibits the pyroptosis in rat insulinoma cells by affecting nuclear factor kappa B and nuclear factor (erythroid-derived 2)-like 2 protein/heme oxygenase-1 pathways. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:165-174. [PMID: 35477544 PMCID: PMC9046894 DOI: 10.4196/kjpp.2022.26.3.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 11/15/2022]
Abstract
As the mechanism underlying glucose metabolism regulation by oxymatrine is unclear, this study investigated the effects of oxymatrine on pyroptosis in INS-1 cells. Flow cytometry was employed to examine cell pyroptosis and reactive oxygen species (ROS) production. Cell pyroptosis was also investigated via transmission electron microscopy and lactate dehydrogenase (LDH) release. Protein levels were detected using western blotting and interleukin (IL)-1β and IL-18 secretion by enzyme-linked immunosorbent assay. The caspase-1 activity and DNA-binding activity of nuclear factor kappa B (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 protein (Nrf2) were also assessed. In the high glucose and high fat-treated INS-1 cells (HG + PA), the caspase-1 activity and LDH content, as well as Nod-like receptor family pyrin domain containing 3, Gsdmd-N, caspase-1, apoptosis-associated speck-like protein containing a CARD, IL-1β, and IL-18 levels were increased. Moreover, P65 protein levels increased in the nucleus but decreased in the cytoplasm. Oxymatrine attenuated these effects and suppressed high glucose and high fat-induced ROS production. The increased levels of nuclear Nrf2 and heme oxygenase-1 (HO-1) in the HG + PA cells were further elevated after oxymatrine treatment, whereas cytoplasmic Nrf2 and Keleh-like ECH-associated protein levels decreased. Additionally, the elevated transcriptional activity of p65 in HG + PA cells was reduced by oxymatrine, whereas that of Nrf2 increased. The results indicate that the inhibition of pyroptosis in INS-1 cells by oxymatrine, a key factor in its glucose metabolism regulation, involves the suppression of the NF-κB pathway and activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Jingying Gao
- Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China.,Pediatric Internal Medicine, Children's Hospital of Shanxi Province, Shanxi Medical University, Taiyuan 030001, China
| | - Lixia Xia
- Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China
| | - Yuanyuan Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China.,Pediatric Internal Medicine, Children's Hospital of Shanxi Province, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
37
|
Jusic A, Thomas PB, Wettinger SB, Dogan S, Farrugia R, Gaetano C, Tuna BG, Pinet F, Robinson EL, Tual-Chalot S, Stellos K, Devaux Y. Noncoding RNAs in age-related cardiovascular diseases. Ageing Res Rev 2022; 77:101610. [PMID: 35338919 DOI: 10.1016/j.arr.2022.101610] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/28/2022] [Accepted: 03/15/2022] [Indexed: 11/01/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in the adult population worldwide and represent a severe economic burden and public health concern. The majority of human genes do not code for proteins. However, noncoding transcripts play important roles in ageing that significantly increases the risk for CVDs. Noncoding RNAs (ncRNAs) are critical regulators of multiple biological processes related to ageing such as oxidative stress, mitochondrial dysfunction and chronic inflammation. NcRNAs are also involved in pathophysiological developments within the cardiovascular system including arrhythmias, cardiac hypertrophy, fibrosis, myocardial infarction and heart failure. In this review article, we cover the roles of ncRNAs in cardiovascular ageing and disease as well as their potential therapeutic applications in CVDs.
Collapse
|
38
|
Jiang X, Liu Y, Wang Y, Zhou Y, Miao H, Zhang P, Ma J. Long non‑coding RNA MALAT1 is involved in retinal pigment epithelial cell damage caused by high glucose treatment. Mol Med Rep 2022; 25:177. [PMID: 35315497 DOI: 10.3892/mmr.2022.12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/02/2022] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to explore the role of long non‑coding RNA metastasis associated lung adenocarcinoma transcript 1 (lncRNA MALAT1) in high glucose (HG)‑induced ARPE‑19 cell damage. ARPE‑19 cells were cultured and treated with HG (25 mmol/l glucose). MALAT1 expression was silenced following transfection of small interfering RNA. Cell apoptosis was measured using flow cytometry. The cellular levels of reactive oxygen species (ROS), malondialdehyde and superoxide dismutase activity were all measured to examine oxidative stress. Gene expression levels of MALAT1 were determined by reverse transcription‑quantitative (RT‑q)PCR, while expression of tumor necrosis factor (TNF)‑α, monocyte chemotactic protein 1 (MCP‑1), intercellular cell adhesion molecule 1 (ICAM‑1) and vascular endothelial growth factor (VEGF) was detected using RT‑qPCR and western blotting. MALAT1 expression was markedly increased in ARPE‑19 cells treated with HG. HG treatment caused increased apoptosis and elevated ROS‑induced stress in ARPE‑19 cells and these effects could be partly attenuated by MALAT1 knockdown. Increased gene expression levels of TNF‑α, MCP‑1, ICAM‑1 and VEGF induced by HG were also alleviated by MALAT1 inhibition. Therefore, lncRNA MALAT1 is the key factor in ARPE‑19 cell damage caused by HG and may be a promising therapeutic target for clinical DR therapy. However, further studies are still required to reveal the detailed mechanisms underlying lncRNA MALAT1 function.
Collapse
Affiliation(s)
- Xinli Jiang
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yuling Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yaru Zhou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Huipeng Miao
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Peng Zhang
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jingxue Ma
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
39
|
Cai Z, Yuan S, Luan X, Feng J, Deng L, Zuo Y, Li J. Pyroptosis-Related Inflammasome Pathway: A New Therapeutic Target for Diabetic Cardiomyopathy. Front Pharmacol 2022; 13:842313. [PMID: 35355717 PMCID: PMC8959892 DOI: 10.3389/fphar.2022.842313] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pyroptosis is a highly specific type of inflammatory programmed cell death that is mediated by Gasdermine (GSDM). It is characterized by inflammasome activation, caspase activation, and cell membrane pore formation. Diabetic cardiomyopathy (DCM) is one of the leading diabetic complications and is a critical cause of fatalities in chronic diabetic patients, it is defined as a clinical condition of abnormal myocardial structure and performance in diabetic patients without other cardiac risk factors, such as hypertension, significant valvular disease, etc. There are no specific drugs in treating DCM despite decades of basic and clinical investigations. Although the relationship between DCM and pyroptosis is not well established yet, current studies provided the impetus for us to clarify the significance of pyroptosis in DCM. In this review, we summarize the recent literature addressing the role of pyroptosis and the inflammasome in the development of DCM and summary the potential use of approaches targeting this pathway which may be future anti-DCM strategies.
Collapse
Affiliation(s)
- Zhengyao Cai
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Suxin Yuan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Feng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
- *Correspondence: Jian Feng,
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yumei Zuo
- Department of outpatient, The 13th Retired Cadre Recuperation Clinic Of Chengdu, Institute of Cardiovascular Research, Chengdu, China
| | - Jiafu Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| |
Collapse
|
40
|
Choy M, Xue R, Wu Y, Fan W, Dong Y, Liu C. Role of N6-methyladenosine Modification in Cardiac Remodeling. Front Cardiovasc Med 2022; 9:774627. [PMID: 35224032 PMCID: PMC8866307 DOI: 10.3389/fcvm.2022.774627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiac remodeling is the critical process in heart failure due to many cardiovascular diseases including myocardial infarction, hypertension, cardiovascular disease and cardiomyopathy. However, treatments for heart failure focusing on cardiac remodeling show relatively limited effectiveness. In recent decades, epitranscriptomic modifications were found abundantly present throughout the progression of cardiac remodeling, and numerous types of biochemical modifications were identified. m6A modification is the methylation of the adenosine base at the nitrogen-6 position, and dysregulation of m6A modification has been implicated in a wide range of diseases. However, function of m6A modifications still remain largely unknown in cardiac diseases, especially cardiac remodeling. LncRNAs are also shown to play a vital role in the pathophysiology of cardiac remodeling and heart failure. The crosstalk between lncRNAs and m6A modification provides a novel prospective for exploring possible regulatory mechanism and therapeutic targets of cardiac remodeling. This review summarizes the role of m6A modification in cardiac remodeling in the current researches.
Collapse
Affiliation(s)
- ManTing Choy
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Ruicong Xue
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Yuzhong Wu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Wendong Fan
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Chen Liu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chen Liu
| |
Collapse
|
41
|
Yang Z, Shi J, Chen L, Fu C, Shi D, Qu H. Role of Pyroptosis and Ferroptosis in the Progression of Atherosclerotic Plaques. Front Cell Dev Biol 2022; 10:811196. [PMID: 35186925 PMCID: PMC8850398 DOI: 10.3389/fcell.2022.811196] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Pyroptosis is a special way of programmed cell death which is dependent on the activation of cysteinyl aspartate specific proteinase 1 (Caspase-1) and Caspase-4/5/11. Ferroptosis is an iron-dependent cell death that characterized by the intra-cellular lipid peroxidation-mediated membrane damage. Pyroptosis or ferroptosis in macrophages, smooth muscle cells, and vascular endothelial cells are believed to be closely related to the progression of atherosclerotic plaques. Therefore, we discuss the role of pyroptosis and ferroptosis in the development of atherosclerotic plaques and may provide new strategies for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Zhen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Department, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China
- Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Junhe Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Li Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Department, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China
- Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Changgeng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Changgeng Fu, ; Dazhuo Shi, ; Hua Qu,
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Department, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China
- Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- *Correspondence: Changgeng Fu, ; Dazhuo Shi, ; Hua Qu,
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
- *Correspondence: Changgeng Fu, ; Dazhuo Shi, ; Hua Qu,
| |
Collapse
|
42
|
Cai R, Xu Y, Ren Y, He S, Zheng J, Kong B, Li Q, Yang X, Dai R, Wei R, Su Q. MicroRNA-136-5p protects cardiomyocytes from coronary microembolization through the inhibition of pyroptosis. Apoptosis 2022; 27:206-221. [PMID: 35084609 DOI: 10.1007/s10495-022-01712-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
This study investigated how miR-136-5p partially affected cardiomyocyte pyroptosis in rats with coronary microembolization (CME). The cardiac function and structure of rats with CME were evaluated using echocardiography, hematoxylin and eosin staining, Masson staining, and troponin I level. Pyroptosis was induced by lipopolysaccharide (LPS) in isolated rat cardiomyocytes and evaluated by the expression of caspase-1, NOD-like receptor family pyrin domain-containing 3, interleukin-1β, and gasdermin D-N. After cell transfection, the expression of Ataxin-1 like (ATXN1L), pyrin domain-containing 1 (PYDC1), and pyroptosis-related proteins was assessed. Dual-luciferase reporter and immunoprecipitation assays were used to verify the relationships among miR-136-5p, ATXN1L, and capicua (CIC). MiR-136-5p was under-expressed, whereas ATXN1L was overexpressed in rats with CME and in LPS-treated primary cardiomyocytes. MiR-136-5p targeted ATXN1L, and ATXN1L bound to CIC to suppress PYDC1 expression. MiR-136-5p overexpression suppressed pyroptosis by inhibiting the binding of ATXN1L with CIC and promoting PYDC1 expression, which was reversed by simultaneous elevation of ATXN1L. In conclusion, miR-136-5p suppressed pyroptosis by upregulating PYDC1 via ATXN1L/CIC axis, thereby attenuating cardiac damage caused by CME.
Collapse
Affiliation(s)
- Ruping Cai
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Yuli Xu
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Yanling Ren
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Shirong He
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Jing Zheng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Binghui Kong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Quanzhong Li
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Xiheng Yang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Rixin Dai
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Riming Wei
- College of Biotechnology, Guilin Medical University, No. 1, Zhiyuan Road, Guilin, 541004, Guangxi, China.
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China.
| |
Collapse
|
43
|
Fu D, Ju Y, Zhu C, Pan Y, Zhang S. LncRNA NEAT1 Promotes TLR4 Expression to Regulate Lipopolysaccharide-Induced Trophoblastic Cell Pyroptosis as a Molecular Sponge of miR-302b-3p. Mol Biotechnol 2022; 64:670-680. [PMID: 35064469 DOI: 10.1007/s12033-021-00436-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Pyroptosis is an inflammation-triggered cell death caused by certain inflammasomes, and long non-coding RNAs (lncRNAs) are related to cell pyroptosis. This study evaluated the mechanism of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) on lipopolysaccharide (LPS)-induced trophoblastic cells pyroptosis. HTR-8/Svneo trophoblastic cells were treated with LPS. The expression of lncRNA NEAT1 was decreased using siRNAs, followed by the evaluation of cell proliferation, Caspase-1 activity, levels of Cleaved Caspase-1 and gasdermin D-N, and the concentrations of Interleukin (IL)-1β and IL-18. We found that LPS promoted the pyroptosis of HTR-8/Svneo cells, and lncRNA NEAT1 was highly expressed in LPS-treated HTR-8/Svneo cells while silencing lncRNA NEAT1 inhibited LPS-induced trophoblastic cells pyroptosis. The subcellular localization of lncRNA NEAT1 was detected. Dual-luciferase gene experiment and RNA pull-down assay detected that lncRNA NEAT1 bound to miR-302b-3p and could inhibit miR-302b-3p, and toll-like receptor 4 (TLR4) was the target gene of miR-302b-3p. Then, a joint experiment was designed for detection, which found that miR-302b-3p downregulation partially reversed the inhibition of silencing lncRNA NEAT1 on LPS-induced trophoblastic cells pyroptosis and overexpression of TLR4 annulled the inhibition of silencing lncRNA NEAT1 on LPS-induced trophoblastic cells pyroptosis. Therefore, lncRNA NEAT1 promoted the transcription of TLR4 by competitively binding to miR-302b-3p, thus promoting LPS-induced trophoblastic cells pyroptosis.
Collapse
Affiliation(s)
- Dan Fu
- Department of Prenatal Diagnosis, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, No. 98 Nantong West Road, Guangling District, Yangzhou, Jiangsu Province, 225001, China
| | - Yun Ju
- Department of Prenatal Diagnosis, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, No. 98 Nantong West Road, Guangling District, Yangzhou, Jiangsu Province, 225001, China
| | - Chunhui Zhu
- Reproductive Medicine Center, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, No. 98 Nantong West Road, Guangling District, Yangzhou, Jiangsu Province, 225001, China
| | - Yu Pan
- Reproductive Medicine Center, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, No. 98 Nantong West Road, Guangling District, Yangzhou, Jiangsu Province, 225001, China
| | - Suhua Zhang
- Department of Prenatal Diagnosis, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, No. 98 Nantong West Road, Guangling District, Yangzhou, Jiangsu Province, 225001, China.
| |
Collapse
|
44
|
Exosomal MALAT1 Derived from High Glucose-Treated Macrophages Up-Regulates Resistin Expression via miR-150-5p Downregulation. Int J Mol Sci 2022; 23:ijms23031095. [PMID: 35163020 PMCID: PMC8834900 DOI: 10.3390/ijms23031095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/25/2021] [Accepted: 01/01/2022] [Indexed: 12/17/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays a crucial role in the pathophysiological process associated with diabetes-related complications. The effect of high glucose levels on macrophage-derived exosomal MALAT1 is unknown. Therefore, we investigated the molecular regulatory mechanisms controlling exosomal MALAT1 in macrophages under high glucose treatment and the therapeutic target of macrophage-derived exosomal MALAT1 using a balloon injury model of vascular disease in diabetic rats. High glucose (25 mM) significantly increased MALAT1 expression in macrophage-derived exosomes. MALAT1 suppressed miR-150-5p expression in macrophage-derived exosomes under high-glucose conditions. Silencing MALAT1 using MALAT1 siRNA significantly reversed miR-150-5p expression induced by macrophage-derived exosomes. Macrophage-derived exosomes under high-glucose treatment significantly increased resistin expression in macrophages. Silencing MALAT1 and overexpression of miR-150-5p significantly decreased resistin expression induced by macrophage-derived exosomes. Overexpression of miR-150-5p significantly decreased resistin luciferase activity induced by macrophage-derived exosomes. Macrophage-derived exosome significantly decreased glucose uptake in macrophages and silencing MALAT1, resistin or overexpression of miR-150-5p significantly reversed glucose uptake. Balloon injury to the carotid artery significantly increased MALAT1 and resistin expression and significantly decreased miR-150-5p expression in arterial tissue. Silencing MALAT1 significantly reversed miR-150-5p expression in arterial tissue after balloon injury. Silencing MALAT1 or overexpression of miR-150-5p significantly reduced resistin expression after balloon injury. In conclusion, high glucose up-regulates MALAT1 to suppress miR-150-5p expression and counteracts the inhibitory effect of miR-150-5p on resistin expression in macrophages to promote vascular disease. Macrophage-derived exosomes containing MALAT1 may serve as a novel cell-free approach for the treatment of vascular disease in diabetes mellitus.
Collapse
|
45
|
Mabeta P, Hull R, Dlamini Z. LncRNAs and the Angiogenic Switch in Cancer: Clinical Significance and Therapeutic Opportunities. Genes (Basel) 2022; 13:152. [PMID: 35052495 PMCID: PMC8774855 DOI: 10.3390/genes13010152] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Angiogenesis is one of the hallmarks of cancer, and the establishment of new blood vessels is vital to allow for a tumour to grow beyond 1-2 mm in size. The angiogenic switch is the term given to the point where the number or activity of the pro-angiogenic factors exceeds that of the anti-angiogenic factors, resulting in the angiogenic process proceeding, giving rise to new blood vessels accompanied by increased tumour growth, metastasis, and potential drug resistance. Long noncoding ribonucleic acids (lncRNAs) have been found to play a role in the angiogenic switch by regulating gene expression, transcription, translation, and post translation modification. In this regard they play both anti-angiogenic and pro-angiogenic roles. The expression levels of the pro-angiogenic lncRNAs have been found to correlate with patient survival. These lncRNAs are also potential drug targets for the development of therapies that will inhibit or modify tumour angiogenesis. Here we review the roles of lncRNAs in regulating the angiogenic switch. We cover specific examples of both pro and anti-angiogenic lncRNAs and discuss their potential use as both prognostic biomarkers and targets for the development of future therapies.
Collapse
Affiliation(s)
- Peace Mabeta
- Angiogenesis Laboratory, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Hatfield 0028, South Africa
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| |
Collapse
|
46
|
Elwazir MY, Hussein MH, Toraih EA, Al Ageeli E, Esmaeel SE, Fawzy MS, Faisal S. Association of Angio-LncRNAs MIAT rs1061540/MALAT1 rs3200401 Molecular Variants with Gensini Score in Coronary Artery Disease Patients Undergoing Angiography. Biomolecules 2022; 12:biom12010137. [PMID: 35053285 PMCID: PMC8773982 DOI: 10.3390/biom12010137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as essential biomolecules with variable diagnostic and/or prognostic utility in several diseases, including coronary artery disease (CAD). We aimed for the first time to investigate the potential association of five angiogenesis-related lncRNAs (PUNISHER, SENCR, MIAT, MALAT1, and GATA6-AS) variants with CAD susceptibility and/or severity. TaqMan Real-Time genotyping for PUNISHER rs12318065A/C, SENCR rs12420823C/T, MIAT rs1061540C/T, MALAT1 rs3200401T/C, and GATA6-AS1 rs73390820A/G were run on the extracted genomic DNA from 100 unrelated patients with stable CAD undergoing diagnostic coronary angiography and from 100 controls. After adjusting covariates, the studied variants showed no association with disease susceptibility; however, MIAT*T/T genotype was associated with a more severe Gensini score. In contrast, MALAT1*T/C heterozygosity was associated with a lower score. The lipid profile, and to a lesser extent smoking status, male sex, weight, hypertension, and MALAT1 (T > C) (negative correlation), explained the variance between patients/control groups via a principal component analysis. Incorporating the principal components into a logistic regression model to predict CAD yielded a 0.92 AUC. In conclusion: MIAT rs1061540 and MALAT1 rs3200401 variants were associated with CAD severity and Gensini score in the present sample of the Egyptian population. Further large multi-center and functional analyses are needed to confirm the results and identify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Mohamed Y. Elwazir
- Department of Cardiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohammad H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (E.A.T.); (M.S.F.); Tel.: +1-346-907-4237 (E.A.T.); +20-1008584720 (M.S.F.)
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Safya E. Esmaeel
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
- Correspondence: (E.A.T.); (M.S.F.); Tel.: +1-346-907-4237 (E.A.T.); +20-1008584720 (M.S.F.)
| | - Salwa Faisal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
47
|
Liu L, Wang N, Kalionis B, Xia S, He Q. HMGB1 plays an important role in pyroptosis induced blood brain barrier breakdown in diabetes-associated cognitive decline. J Neuroimmunol 2022; 362:577763. [PMID: 34844084 DOI: 10.1016/j.jneuroim.2021.577763] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus increases the risk of dementia, and evidence suggests hyperglycemia is a key contributor to neurodegeneration. However, our understanding of diabetes-associated cognitive decline, an important complication of diabetes mellitus, is lacking and the underlying mechanism is unclear. Blood brain barrier (BBB) breakdown is a possible cause of dementia in diabetes mellitus and Alzheimer's disease. Accumulating evidence shows BBB dysfunction caused by hyperglycemia contributes to cognitive decline. A specific type of inflammatory programmed cell death, called pyroptosis, has potential as a therapeutic target for BBB-associated diseases. Potential inducers of pyroptosis include inflammasomes such as NLRP3, whose activation relies on damage-associated molecular patterns. High mobility group box 1 (HMGB1) is a highly conserved, ubiquitous protein found in most cell types, and acts as a damage-associated molecular pattern when released from the nucleus. We propose that HMGB1 influences vascular inflammation by activating the NLRP3 inflammasome and thereby initiating pyroptosis in vascular cells. Moreover, HMGB1 plays a pivotal role in the pathogenesis of diabetes mellitus and diabetic complications. Here, we review the role of HMGB1 in BBB dysfunction induced by hyperglycemia and propose that HMGB1 is a promising therapeutic target for countering diabetes-associated cognitive decline.
Collapse
Affiliation(s)
- Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, PR China
| | - Neng Wang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, PR China
| | - Bill Kalionis
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Australia; University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Australia
| | - Shijin Xia
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, PR China.
| | - Qinghu He
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, PR China; Hunan University of Medicine, Huaihua, PR China.
| |
Collapse
|
48
|
Huang J, Xu C. LncRNA MALAT1-deficiency restrains lipopolysaccharide (LPS)-induced pyroptotic cell death and inflammation in HK-2 cells by releasing microRNA-135b-5p. Ren Fail 2021; 43:1288-1297. [PMID: 34503385 PMCID: PMC8439250 DOI: 10.1080/0886022x.2021.1974037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 02/09/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) participate in the regulation of chronic kidney disease (CKD), and acute kidney injury (AKI) is identified as an important risk factor for CKD. This study investigated the involvement of a novel LncRNA MALAT1 in regulating lipopolysaccharide (LPS)-induced cell pyroptosis and inflammation in the human renal tubular epithelial HK-2 cells. Here, the HK-2 cells were subjected to LPS (2 μg/mL) treatment to establish cellular AKI models in vitro, and we validated that LPS triggered NLRP3-mediated pyroptotic cell death, promoted cell apoptosis and inflammation-associated cytokines secretion to induce HK-2 cell injury. Then, a novel LncRNA MALAT1/miRNA (miRNA)-135b-5p axis was verified to rescue cell viability in LPS treated HK-2 cells by targeting NLRP3. Mechanistically, miRNA-135b-5p bound to LncRNA MALAT1, and LncRNA MALAT1 positively regulated NLRP3 through acting as RNA sponger for miRNA-135b-5p. Further gain- and loss-of-function experiments evidenced that both LncRNA MALAT1 ablation and miRNA-135b-5p overexpression reversed LPS-induced cell pyroptosis, apoptosis, and inflammation in the HK-2 cells, and the protective effects of LncRNA MALAT1 knock-down on LPS-treated HK-2 cells were abrogated by silencing miRNA-135b-5p. In general, our study firstly investigated the role of the LncRNA MALAT1/ miRNA-135b-5p/NLRP3 signaling cascade in regulating LPS-induced inflammatory death in HK-2 cells.
Collapse
Affiliation(s)
- Jie Huang
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, PR China
| | - Chen Xu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, PR China
| |
Collapse
|
49
|
Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed Pharmacother 2021; 145:112421. [PMID: 34798473 DOI: 10.1016/j.biopha.2021.112421] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are the novel class of transcripts involved in transcriptional, post-transcriptional, translational, and post-translational regulation of physiology and the pathology of diseases. Studies have evidenced that the impairment of endothelium is a critical event in the pathogenesis of atherosclerosis and its complications. Endothelial dysfunction is characterized by an imbalance in vasodilation and vasoconstriction, oxidative stress, proinflammatory factors, and nitric oxide bioavailability. Disruption of the endothelial barrier permeability, the first step in developing atherosclerotic lesions is a consequence of endothelial dysfunction. Though several factors interfere with the normal functioning of the endothelium, intrinsic epigenetic mechanisms governing endothelial function are regulated by lncRNAs and perturbations contribute to the pathogenesis of the disease. This review comprehensively addresses the biogenesis of lncRNA and molecular mechanisms underlying and regulation in endothelial function. An insight correlating lncRNAs and endothelial dysfunction-associated diseases can positively impact the development of novel biomarkers and therapeutic targets in endothelial dysfunction-associated diseases and treatment strategies.
Collapse
|
50
|
Feng X, Zhan F, Luo D, Hu J, Wei G, Hua F, Xu G. LncRNA 4344 promotes NLRP3-related neuroinflammation and cognitive impairment by targeting miR-138-5p. Brain Behav Immun 2021; 98:283-298. [PMID: 34455059 DOI: 10.1016/j.bbi.2021.08.230] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/01/2021] [Accepted: 08/21/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Cognitive impairment is a common neurological disease of which NLRP3-related neuroinflammation has been demonstrated to be an essential mediator. Previous studies have indicated that long non-coding RNAs (lncRNAs) are critical for the development of neurological disorders. However, the roles and functions of lncRNA 4344 in neuroinflammation during cognitive impairment are unknown and need to be further elucidated. METHODS Lipopolysaccharide (LPS)-induced rat cognitive impairment and rat microglia (RM) cell inflammation models were established in vitro and in vivo. The Morris water maze test was used to evaluate the cognitive behavior of the rats. Gene expression was assessed using real-time quantitative polymerase chain reaction, and protein levels using enzyme-linked immunosorbent assay, or western blot analysis. The targeting relationship between lncRNA 4344, miR-138-5p, and NLRP3 was identified using bioinformatics analysis and a dual-luciferase reporter gene assay. Hematoxylin-Eosin and Nissl stainings, terminal deoxynucleotidyl transferase dUTP nick end labeling, or immunofluorescence staining assays were performed to detect pathological changes, neuronal apoptosis, or positive cells in hippocampal tissues, respectively. RESULTS The expression levels of lncRNA 4344 and NLRP3 were upregulated in the hippocampal tissues of LPS-treated rats and RM cells, and showed a strong positive correlation between each other. LncRNA 4344 overexpression further enhanced the expression of NLRP3 and its downstream genes (caspase-1, IL-1β, and IL-18), as well as neuronal apoptosis in LPS-stimulated RM cells, whereas lncRNA 4344 silencing attenuated the inflammatory injuries. Moreover, miR-138-5p was the direct target of lncRNA 4344 and was downregulated in the RM cell inflammation model. We also found that miR-138-5p directly reduced the expression of NLRP3 and its downstream genes. Subsequently, the results of the animal experiments showed that the lncRNA 4344/miR-138-5p/NLRP3 axis plays an essential role in regulating the cognitive behavior, pathological changes and apoptosis of hippocampal neurons, expression of inflammation-related factors (NLRP3, caspase-1, IL-1β, and IL-18), and microglial activation in LPS-induced cognitive impairment rats. CONCLUSION Our results demonstrated for the first time that lncRNA 4344 regulates NLRP3-related neuroinflammation and cognitive impairment by targeting miR-138-5p, providing a possible target for the treatment of diseases characterized by a cognitive deficit.
Collapse
Affiliation(s)
- Xiaojin Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330006, Jiangxi, China; Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang 330006, Jiangxi, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang 330006, Jiangxi, China
| | - Deqiang Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jialing Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330006, Jiangxi, China.
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330006, Jiangxi, China.
| |
Collapse
|