1
|
Pu G, Li Y, Liu T, Li H, Wang L, Chen G, Cao S, Yin H, Amuda TO, Guo X, Luo X. mmu-miR-374b-5p modulated inflammatory factors via downregulation of C/EBP β/NF-κB signaling in Kupffer cells during Echinococcus multilocularis infection. Parasit Vectors 2024; 17:163. [PMID: 38553755 PMCID: PMC10981327 DOI: 10.1186/s13071-024-06238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Alveolar echinococcosis (AE) is an important infectious disease caused by the metacestode larvae of Echinococcus multilocularis, seriously threatening global public health security. Kupffer cells (KCs) play important roles in liver inflammatory response. However, their role in hepatic alveolar echinococcosis has not yet been fully elucidated. METHODS In this study, qRT-PCR was used to detect the expression level of miR-374b-5p in KCs. The target gene of miR-374b-5p was identified through luciferase reporter assays and loss of function and gains. Critical genes involved in NFκB signaling pathway were analyzed by qRT-PCR and western blot. RESULTS This study reported that miR-374b-5p was significantly upregulated in KCs during E. multilocularis infection and further showed that miR-374b-5p was able to bind to the 3'-UTR of the C/EBP β gene and suppressed its expression. The expression levels of NF-κBp65, p-NF-κBp65 and pro-inflammatory factors including iNOS, TNFα and IL6 were attenuated after overexpression of miR-374b-5p while enhanced after suppression of miR-374b-5p. However, the Arg1 expression level was promoted after overexpression of miR-374b-5p while suppressed after downregulation of miR-374b-5p. Additionally, increased protein levels of NF-κBp65 and p-NF-κBp65 were found in the C/EBP β-overexpressed KCs. CONCLUSIONS These results demonstrated that miR-374b-5p probably regulated the expression of inflammatory factors via C/EBP β/NF-κB signaling. This finding is helpful to explore the mechanism of inflammation regulation during E. multilocularis infection.
Collapse
Affiliation(s)
- Guiting Pu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Yanping Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Tingli Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Hong Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Liqun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Guoliang Chen
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Shanling Cao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Tharheer Oluwashola Amuda
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Xiaola Guo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China.
| | - Xuenong Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
2
|
He K, Meng X, Su J, Jiang S, Chu M, Huang B. Oleanolic acid inhibits the tumor progression by regulating Lactobacillus through the cytokine-cytokine receptor interaction pathway in 4T1-induced mice breast cancer model. Heliyon 2024; 10:e27028. [PMID: 38449659 PMCID: PMC10915379 DOI: 10.1016/j.heliyon.2024.e27028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
The therapeutic mechanism of oleanolic acid (OA) in breast cancer has been widely reported, but little has been known about the combined effects of transcriptome and gut microbiome. In this study, the phenotypic effect of oleanolic acid on mice was tested at the end of the administration cycle, and RNA sequencing on murine tumor tissue and 16S-rRNA sequencing on intestinal contents were conducted to analyze gene expression profiles and microbial diversity between the control group and OA treated group using 4T1-induced mice breast cancer model. As a result, it has been confirmed that oleanolic acid would play a significant inhibitory effect on the development of breast tumors in mice. Based on the integrative analysis of the transcriptomic and metagenomic data, it was found that the abundance of Lactobacillus in the intestinal flora of mice significantly increased in the OA group. Moreover, the up-regulation of Il10 had a significant effect on inhibiting the tumor progression, which played a role through cytokine-cytokine receptor interaction pathway.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Xia Meng
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jinxing Su
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Shangquan Jiang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Min Chu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Bei Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| |
Collapse
|
3
|
Xiao X, Kong Y, Li R, Wang Z, Lu H. Transformer with convolution and graph-node co-embedding: An accurate and interpretable vision backbone for predicting gene expressions from local histopathological image. Med Image Anal 2024; 91:103040. [PMID: 38007979 DOI: 10.1016/j.media.2023.103040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Inferring gene expressions from histopathological images has long been a fascinating yet challenging task, primarily due to the substantial disparities between the two modality. Existing strategies using local or global features of histological images are suffering model complexity, GPU consumption, low interpretability, insufficient encoding of local features, and over-smooth prediction of gene expressions among neighboring sites. In this paper, we develop TCGN (Transformer with Convolution and Graph-Node co-embedding method) for gene expression estimation from H&E-stained pathological slide images. TCGN comprises a combination of convolutional layers, transformer encoders, and graph neural networks, and is the first to integrate these blocks in a general and interpretable computer vision backbone. Notably, TCGN uniquely operates with just a single spot image as input for histopathological image analysis, simplifying the process while maintaining interpretability. We validate TCGN on three publicly available spatial transcriptomic datasets. TCGN consistently exhibited the best performance (with median PCC 0.232). TCGN offers superior accuracy while keeping parameters to a minimum (just 86.241 million), and it consumes minimal memory, allowing it to run smoothly even on personal computers. Moreover, TCGN can be extended to handle bulk RNA-seq data while providing the interpretability. Enhancing the accuracy of omics information prediction from pathological images not only establishes a connection between genotype and phenotype, enabling the prediction of costly-to-measure biomarkers from affordable histopathological images, but also lays the groundwork for future multi-modal data modeling. Our results confirm that TCGN is a powerful tool for inferring gene expressions from histopathological images in precision health applications.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU-Yale Joint Center for Biostatistics and Data Science, National Center for Translational Medicine, MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China; Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Yan Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU-Yale Joint Center for Biostatistics and Data Science, National Center for Translational Medicine, MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghan Li
- SJTU-Yale Joint Center for Biostatistics and Data Science, National Center for Translational Medicine, MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China; Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Hui Lu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU-Yale Joint Center for Biostatistics and Data Science, National Center for Translational Medicine, MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai, China.
| |
Collapse
|
4
|
Qin J, Cui Z, Zhou J, Zhang B, Lu R, Ding Y, Hu H, Cai J. IGF2BP3 drives gallbladder cancer progression by m6A-modified CLDN4 and inducing macrophage immunosuppressive polarization. Transl Oncol 2023; 37:101764. [PMID: 37643553 PMCID: PMC10472310 DOI: 10.1016/j.tranon.2023.101764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION N6-methyladenosine (m6A) is an emerging epigenetic modification, which plays a crucial role in the development of cancer. Nevertheless, the underlying mechanism of m6A-associated proteins and m6A modification in gallbladder cancer remains largely unknown. MATERIALS AND METHODS The Gene Expression Omnibus database and tissue microarray were used to identify the key m6A-related gene in gallbladder cancer. The function and mechanism of IGF2BP3 were further investigated by knockdown and overexpression techniques in vitro and in vivo. RESULTS We found that IGF2BP3 was elevated and correlated with poor prognosis in gallbladder cancer, which can be used as an independent prognostic factor for gallbladder cancer. IGF2BP3 accelerated the proliferation, invasion and migration of gallbladder cancer cells in vitro and in vivo. Mechanistically, IGF2BP3 interacted with and augmented the stability of CLDN4 mRNA by m6A modification. Enhancement of CLDN4 reversed the inhibitory effect of IGF2BP3 deficiency on gallbladder cancer. Furthermore, we demonstrated that IGF2BP3 promotes the activation of NF-κB signaling pathway by up-regulation of CLDN4. Overexpression of IGF2BP3 in gallbladder cancer cells obviously promoted the polarization of immunosuppressive phenotype in macrophages. Besides, Gallbladder cancer cells-derived IGF2BP3 up-regulated the levels of STAT3 in M2 macrophages, and promoted M2 polarization. CONCLUSIONS We manifested IGF2BP3 promotes the aggressive phenotype of gallbladder cancer by stabilizing CLDN4 mRNA in an m6A-dependent manner and induces macrophage immunosuppressive polarization, which might offer a new theoretical basis for against gallbladder cancer.
Collapse
Affiliation(s)
- Jian Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Zheng Cui
- Department of Ultrasonic Medicine, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Jingyi Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Bosen Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Ruiqi Lu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Youcheng Ding
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Hai Hu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Jingli Cai
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
5
|
Ren Y, Guo W, Qiao B. Abnormal expression of CEBPB promotes the progression of renal cell carcinoma through regulating the generation of IL-6. Heliyon 2023; 9:e20175. [PMID: 37767481 PMCID: PMC10520310 DOI: 10.1016/j.heliyon.2023.e20175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Background The CCAAT/enhancer-binding protein beta (CEBPB), a transcription factor regulating immune and inflammatory responses, has been implicated in the pathogenesis of various malignancies. However, its specific regulatory mechanism in renal cell carcinoma (RCC) remains poorly understood. Methods The expression of CEBPB was detected in RCC cells and tissues using qRT-PCR, western blotting and immunohistochemistry. ELISA assay was used to detect the immune factors regulated by CEBPB in supernatants. Additionally, western blotting was employed to measure the phosphorylation level of STAT3 and the expression levels of its downstream target genes. Results CEBPB was found to be overexpressed in both RCC tissues and cell lines, and its higher expression was associated with a lower survival rate. In RCC cells, CEBPB enhances the expression of IL6, consequently promoting the phosphorylation of STAT3 and the expression of its downstream target genes. This mechanism ultimately facilitates tumor progression. Conclusions The dysregulated expression of CEBPB facilitates RCC progression through the IL6/STAT3 pathway. CEBPB is a potential diagnostic markers and a novel effective therapeutic target for RCC patients.
Collapse
Affiliation(s)
- Yaoqiang Ren
- Departments of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenke Guo
- Department of Thyroid Surgery, Fenyang Hospital of Shanxi Province, Lüliang, Shanxi, China
| | - Baoping Qiao
- Departments of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Chai J, Liu X, Hu X, Wang C. Correlation analysis of circulating tumor cells and Claudin-4 in breast cancer. Pathol Oncol Res 2023; 29:1611224. [PMID: 37465316 PMCID: PMC10351536 DOI: 10.3389/pore.2023.1611224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023]
Abstract
Objective: We aimed to explore the relationship between peripheral blood circulating tumor cells (CTCs) and the expression of Claudin-4 in patients with breast cancer, and further explore the potential impact on clinical prognosis and risk assessment. Methods: We classified and enumerated circulating tumor cells in the blood of breast cancer patients by CTC-enriched in situ hybridization and the detection of Claudin-4 expression by immunohistochemistry. We carried out an analysis of the correlation between the two and the comparison of their impact on clinical parameters and prognosis. Results: There were 38 patients with a low expression of Claudin-4 and 27 patients with a high expression of Claudin-4. Compared with Claudin-4 low-expression patients, the number of CTCs was higher in patients with high Claudin-4 expression (11.7 vs. 7.4, p < 0.001). High Claudin-4 expression was associated with a lower count of epithelial CTCs (E-CTCs) (3.4 vs. 5.0, p = 0.033), higher counts of mesenchymal CTCs (M-CTC) (4.4 vs. 1.1, p < 0.001), and epithelial/mesenchymal CTCs (E/M-CTCs) (4.0 vs. 3.5, p = 0.021). The intensity of Claudin-4 was positively correlated with CTC (rs = 0.43, p = 0.001). Multivariate COX regression analysis showed that CTC counts (HR = 1.3, p < 0.001), Claudin-4 (HR = 4.6, p = 0.008), and Lymphatic metastasis (HR = 12.9, p = 0.001) were independent factors for poor prognosis. COX regression of CTC classification showed that epithelial/mesenchymal CTCs (E/M-CTC) (HR = 1.9, p = 0.001) and mesenchymal CTCs (M-CTC) (HR = 1.5, p = 0.001) were independent influencing factors of adverse reactions in breast cancer patients. Conclusion: The number of CTC in breast cancer is positively correlated with the expression of Claudin-4. High CTC counts and a high proportion of M-CTCs correlated with Claudin-4 expression. CTC counts and Claudin-4 expression were independent predictors of poor prognosis in breast cancer patients.
Collapse
Affiliation(s)
- Jie Chai
- Pathology Department, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiangli Liu
- Pathology Department, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xinju Hu
- Pathology Department, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Chunfang Wang
- Breast Surgery, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
7
|
Targeting Transcription Factors ATF5, CEBPB and CEBPD with Cell-Penetrating Peptides to Treat Brain and Other Cancers. Cells 2023; 12:cells12040581. [PMID: 36831248 PMCID: PMC9954556 DOI: 10.3390/cells12040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Developing novel therapeutics often follows three steps: target identification, design of strategies to suppress target activity and drug development to implement the strategies. In this review, we recount the evidence identifying the basic leucine zipper transcription factors ATF5, CEBPB, and CEBPD as targets for brain and other malignancies. We describe strategies that exploit the structures of the three factors to create inhibitory dominant-negative (DN) mutant forms that selectively suppress growth and survival of cancer cells. We then discuss and compare four peptides (CP-DN-ATF5, Dpep, Bpep and ST101) in which DN sequences are joined with cell-penetrating domains to create drugs that pass through tissue barriers and into cells. The peptide drugs show both efficacy and safety in suppressing growth and in the survival of brain and other cancers in vivo, and ST101 is currently in clinical trials for solid tumors, including GBM. We further consider known mechanisms by which the peptides act and how these have been exploited in rationally designed combination therapies. We additionally discuss lacunae in our knowledge about the peptides that merit further research. Finally, we suggest both short- and long-term directions for creating new generations of drugs targeting ATF5, CEBPB, CEBPD, and other transcription factors for treating brain and other malignancies.
Collapse
|
8
|
Hartl L, Roelofs JJTH, Dijk F, Bijlsma MF, Duitman J, Spek CA. C/EBP-Family Redundancy Determines Patient Survival and Lymph Node Involvement in PDAC. Int J Mol Sci 2023; 24:ijms24021537. [PMID: 36675048 PMCID: PMC9867044 DOI: 10.3390/ijms24021537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a poor clinical prognosis and unsatisfactory treatment options. We previously found that the transcription factor CCAAT/Enhancer-Binding Protein Delta (C/EBPδ) is lowly expressed in PDAC compared to healthy pancreas duct cells, and that patient survival and lymph node involvement in PDAC is correlated with the expression of C/EBPδ in primary tumor cells. C/EBPδ shares a homologous DNA-binding sequence with other C/EBP-proteins, leading to the presumption that other C/EBP-family members might act redundantly and compensate for the loss of C/EBPδ. This implies that patient stratification could be improved when expression levels of multiple C/EBP-family members are considered simultaneously. In this study, we assessed whether the quantification of C/EBPβ or C/EBPγ in addition to that of C/EBPδ might improve the prediction of patient survival and lymph node involvement using a cohort of 68 resectable PDAC patients. Using Kaplan-Meier analyses of patient groups with different C/EBP-expression levels, we found that both C/EBPβ and C/EBPγ can partially compensate for low C/EBPδ and improve patient survival. Further, we uncovered C/EBPβ as a novel predictor of a decreased likelihood of lymph node involvement in PDAC, and found that C/EBPβ and C/EBPδ can compensate for the lack of each other in order to reduce the risk of lymph node involvement. C/EBPγ, on the other hand, appears to promote lymph node involvement in the absence of C/EBPδ. Altogether, our results show that the redundancy of C/EBP-family members might have a profound influence on clinical prognoses and that the expression of both C/EPBβ and C/EBPγ should be taken into account when dichotomizing patients according to C/EBPδ expression.
Collapse
Affiliation(s)
- Leonie Hartl
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Joris J. T. H. Roelofs
- Department of Pathology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Frederike Dijk
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - JanWillem Duitman
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, The Netherlands
| | - C. Arnold Spek
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
9
|
Zhang F, Wang Y, Li H, Li L, Yang X, You X, Tang L. Pan-cancer analysis identifies LIFR as a prognostic and immunological biomarker for uterine corpus endometrial carcinoma. Front Oncol 2023; 13:1118906. [PMID: 36925915 PMCID: PMC10011451 DOI: 10.3389/fonc.2023.1118906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Background Leukemia inhibitory factor (LIF) exhibits significant tumor-promoting function, while its cognate receptor (LIFR) is considered to act as either a tumor promoter or suppressor. Dysregulation of LIF and LIFR is associated with the initiation, progression and metastasis of multiple cancer entities. Although increasing numbers of studies are revealing an indispensable critical role of LIFR in tumorigenesis for various different cancers, no systematic analysis of LIFR has appeared thus far. Methods Here, we comprehensively analyzed the expression profile and prognostic value of LIFR, and correlations between LIFR and the infiltration of immune cells and clinicopathological parameters across different tumor types using several bioinformatic tools. The expression profile of LIFR in various tumor types and clinical stages was investigated using the TIMER2 and GEPIA2 databases. Genetic alternations of LIFR were extracted from cBioPortal. The prognostic value of LIFR was assessed using GEPIA2 and Sanger box databases, and correlations between LIFR expression and immune infiltration were analyzed using the CIBERSORT method and TIMER2 database. The correlations between LIFR expression and immune and stromal scores were assessed using ESTIMATE. We also analyzed correlations between LIFR and immunoregulators. Finally, we detected an effect of LIFR on Uterine Corpus Endometrial Carcinoma (UCEC) and evaluated the expression level of LIFR in clinical UCEC samples. Results Aberrant expression of LIFR in cancers and its prognosis ability, especially in UCEC was documented. Significantly lower levels of LIFR expression level correlated with better prognosis in multiple tumor types. LIFR expression was positively correlated with the abundance of cancer-associated fibroblasts (CAFs) and endothelial cells in the tumor microenvironment. Additionally, LIFR expression was strongly associated with the presence of immune modulators and checkpoint genes. Overexpression of LIFR suppressed the migration and invasion of UCEC cells in vitro. Conclusion Our pan-cancer detection data provided a novel understanding of the roles of LIFR in oncogenesis.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yali Wang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Hongjuan Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaoyan You
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lina Tang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Tang L, Gao Y, Li T. Pan-cancer analysis identifies the immunological and prognostic role of PAK4. Life Sci 2023; 312:121263. [PMID: 36470541 DOI: 10.1016/j.lfs.2022.121263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
AIMS P21-activated kinase 4 (PAK4) belongs to the wider family of Serine/Threonine p21-activated kinases (PAKs) and functions as a hub for signaling pathways in cancer progression. Numerous studies have indicated the significance of PAK4 for tumorigenesis, but no systematic pan-cancer analysis has been performed. MAIN METHODS The current study aimed to investigate the prognostic and immunological functions of PAK4 through bioinformatic analysis of datasets from The Cancer Genome Atlas, UALCAN, GEPIA2, cBioPortal, TIMER2, and Human Protein Atlas. PAK4 expression was correlated with prognosis, DNA methylation, tumor mutational burden, microsatellite instability, and immune cell infiltration. KEY FINDINGS PAK4 was highly expressed in various cancers but showed decreased expression in colon adenocarcinoma, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, and thyroid carcinoma. PAK4 was found to have a positive or negative correlation with prognosis of different cancers. PAK4 expression was related to tumor mutational burden in 11 tumor types, and associated with microsatellite instability in 10 tumor types and was correlated with immune infiltration and immune checkpoint genes. SIGNIFICANCE PAK4 could be considered as a prognostic and immunotherapeutic marker for some types of malignant tumor.
Collapse
Affiliation(s)
- Lina Tang
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China.
| | - Yunling Gao
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Tingting Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| |
Collapse
|
11
|
Advani D, Kumar P. Deciphering the molecular mechanism and crosstalk between Parkinson's disease and breast cancer through multi-omics and drug repurposing approach. Neuropeptides 2022; 96:102283. [PMID: 35994781 DOI: 10.1016/j.npep.2022.102283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Epidemiological studies indicate a higher occurrence of breast cancer (BRCA) in patients with Parkinson's disease. However, the exact molecular mechanism is still not precise. Herein, we tested the hypothesis that this inverse comorbidity result from shared genetic and molecular processes. We conducted an integrated omics analysis to identify the common gene signatures associated with PD and BRCA. Secondly, several dysregulated biological processes in both indications were analyzed by functional enrichment methods, and significant overlapping processes were identified. To establish common regulatory mechanisms, information about transcription factors and miRNAs associated with both the disorders was extracted. Finally, disease-specific gene expression signatures were compared through LINCS L1000 analysis to identify potential repurposing drugs for PD. The potential repurposed drug candidates were then correlated with PD-specific gene signatures by Cmap analysis. In conclusion, this study highlights the shared genes, biological pathways and regulatory signatures associated with PD and BRCA with an improved understanding of crosstalk involved. Additionally, the role of therapeutics was investigated in context with their comorbid associations. These findings could help to explain the complex molecular patterns of associations between PD and BRCA.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
12
|
Mozibullah M, Junaid M. Biological Role of the PAK4 Signaling Pathway: A Prospective Therapeutic Target for Multivarious Cancers. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Li X, Li F. p21-Activated Kinase: Role in Gastrointestinal Cancer and Beyond. Cancers (Basel) 2022; 14:cancers14194736. [PMID: 36230657 PMCID: PMC9563254 DOI: 10.3390/cancers14194736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Gastrointestinal tumors are the most common tumors with a high mortality rate worldwide. Numerous protein kinases have been studied in anticipation of finding viable tumor therapeutic targets, including PAK. PAK is a serine/threonine kinase that plays an important role in the malignant phenotype of tumors. The function of PAK in tumors is highlighted in cell proliferation, survival, motility, tumor cell plasticity and the tumor microenvironment, therefore providing a new possible target for clinical tumor therapy. Based on the current research works of PAK, we summarize and analyze the PAK features and signaling pathways in cells, especially the role of PAK in gastrointestinal tumors, thereby hoping to provide a theoretical basis for both the future studies of PAK and potential tumor therapeutic targets. Abstract Gastrointestinal tumors are the most common tumors, and they are leading cause of cancer deaths worldwide, but their mechanisms are still unclear, which need to be clarified to discover therapeutic targets. p21-activating kinase (PAK), a serine/threonine kinase that is downstream of Rho GTPase, plays an important role in cellular signaling networks. According to the structural characteristics and activation mechanisms of them, PAKs are divided into two groups, both of which are involved in the biological processes that are critical to cells, including proliferation, migration, survival, transformation and metabolism. The biological functions of PAKs depend on a large number of interacting proteins and the signaling pathways they participate in. The role of PAKs in tumors is manifested in their abnormality and the consequential changes in the signaling pathways. Once they are overexpressed or overactivated, PAKs lead to tumorigenesis or a malignant phenotype, especially in tumor invasion and metastasis. Recently, the involvement of PAKs in cellular plasticity, stemness and the tumor microenvironment have attracted attention. Here, we summarize the biological characteristics and key signaling pathways of PAKs, and further analyze their mechanisms in gastrointestinal tumors and others, which will reveal new therapeutic targets and a theoretical basis for the clinical treatment of gastrointestinal cancer.
Collapse
|
14
|
Li Y, Lu Q, Xie C, Yu Y, Zhang A. Recent advances on development of p21-activated kinase 4 inhibitors as anti-tumor agents. Front Pharmacol 2022; 13:956220. [PMID: 36105226 PMCID: PMC9465411 DOI: 10.3389/fphar.2022.956220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
The p21-activated kinase 4 (PAK4) is a member of the PAKs family. It is overexpressed in multiple tumor tissues. Pharmacological inhibition of PAK4 attenuates proliferation, migration, and invasion of cancer cells. Recent studies revealed that inhibition of PAK4 sensitizes immunotherapy which has been extensively exploited as a new strategy to treat cancer. In the past few years, a large number of PAK4 inhibitors have been reported. Of note, the allosteric inhibitor KPT-9274 has been tested in phase Ⅰ clinic trials. Herein, we provide an update on recent research progress on the PAK4 mediated signaling pathway and highlight the development of the PAK4 small molecular inhibitors in recent 5 years. Meanwhile, challenges, limitations, and future developmental directions will be discussed as well.
Collapse
Affiliation(s)
- Yang Li
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghu Xie
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Yu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ao Zhang
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Ao Zhang,
| |
Collapse
|
15
|
Yuan Y, Zhang H, Li D, Li Y, Lin F, Wang Y, Song H, Liu X, Li F, Zhang J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett 2022; 545:215813. [DOI: 10.1016/j.canlet.2022.215813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
16
|
Yu X, Huang C, Liu J, Shi X, Li X. The significance of PAK4 in signaling and clinicopathology: A review. Open Life Sci 2022; 17:586-598. [PMID: 35800076 PMCID: PMC9210989 DOI: 10.1515/biol-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/17/2022] [Accepted: 03/12/2022] [Indexed: 11/15/2022] Open
Abstract
P21-activated protein kinases (PAKs) are thought to be at the center of tumor signaling pathways. As a representative member of the group II PAK family, P21-activated protein kinase 4 (PAK4) plays an important role in the development of tumors, with several biological functions such as participating in oncogenic transformation, promoting cell division, resisting aging and apoptosis, regulating cytoskeleton and adhesion, as well as suppressing antitumor immune responses. PAK4 is also crucial in biological processes, including the occurrence, proliferation, survival, migration, invasion, drug resistance, and immune escape of tumor cells. It is closely related to poor prognosis and tumor-related pathological indicators, which have significant clinical and pathological significance. Therefore, this article offers a review of the structure, activation, and biological functions of PAK4 and its clinical and pathological importance. This overview should be of assistance for future research on PAK4 and tumors and provide new ideas for tumor treatment and prognostic evaluation of patients.
Collapse
Affiliation(s)
- Xinbo Yu
- The First Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Changwei Huang
- The First Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Jiyuan Liu
- The First Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Xinyu Shi
- The Second Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning Province 110122, China
| |
Collapse
|
17
|
Mane A, Limaye S, Patil L, Kulkarni-Kale U. Genetic variations in the long control region of human papillomavirus type 16 isolates from India: implications for cervical carcinogenesis. J Med Microbiol 2022; 71. [PMID: 35040427 DOI: 10.1099/jmm.0.001475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Introduction. Infection with high-risk human papillomavirus (HPV) types, specifically HPV type 16 (HPV16), is considered to be the most important risk factor in the development of cervical intraepithelial neoplasia and cancer. The long control region (LCR) is a noncoding region that comprises approximately 10 % of the HPV genome and contains regulatory elements for viral transcription and replication. Sequence variations in LCR may impact on the replication efficiency and oncogenic potential of the virus.Gap statement. Studies documenting variations in LCR of HPV16 isolates pertaining to cervical neoplastic status in India are limited.Aim. The present study was designed to characterize variations in the LCR of Indian isolates of HPV16 and study their association with cervical disease grades.Methodology. The LCR was amplified and sequenced from HPV16 positive cervical samples belonging to different cervical disease grades. Sequences were aligned to identify variations and potential transcription factor binding sites (TFbs) were predicted using the JASPAR database in addition to phylogenetic studies.Results. Among the 163 HPV16 isolates analysed, 47 different nucleotide variations were detected in the LCR, of which 25 are reported for first time in Indian isolates. Point mutations were detected in 35/54 (64.8 %) samples with normal cervical status, 44/50 (88 %) samples with low-grade cervical disease and 53/59 (89.8 %) samples with high-grade cervical disease. Variations T6586C, G6657A and T6850G were significantly associated with high-grade cervical status. Thirteen LCR variations were detected in the binding sites for CEBPB, ETS1, JUN, MYB, NFIL3, PHOX2A and SOX9 transcription factors.Conclusion. The present study helped to identify unique variations in the LCRs of HPV16 Indian isolates. The variations in the A4 sub-lineage were significantly associated with high-grade disease status. The isolates belonging to the A4 and D3 sub-lineages harboured mutations in putative TFbs, implying a potential impact on viral replication and progression to cervical cancer.
Collapse
Affiliation(s)
- Arati Mane
- ICMR-National AIDS Research Institute, 73 G block, MIDC, Bhosari, Pune-411026, India
| | - Sanket Limaye
- Bioinformatics Centre, Savitribai Phule Pune University, Ganeshkhind, Pune-411007, India
| | - Linata Patil
- ICMR-National AIDS Research Institute, 73 G block, MIDC, Bhosari, Pune-411026, India
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University, Ganeshkhind, Pune-411007, India
| |
Collapse
|
18
|
SPTBN2 regulated by miR-424-5p promotes endometrial cancer progression via CLDN4/PI3K/AKT axis. Cell Death Dis 2021; 7:382. [PMID: 34887379 PMCID: PMC8660803 DOI: 10.1038/s41420-021-00776-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Endometrioid Endometrial Cancer (EEC) is the main subtype of endometrial cancer. In our study, we demonstrated that SPTBN2 was significantly overexpressed in EEC tissues. Upregulated SPTBN2 expression was positively associated with poor prognosis. In addition, we testified that SPTBN2 knockdown significantly inhibited the proliferation, migration, and invasion of EEC cells. Moreover, we found SPTBN2 could interact with CLDN4 to promote endometrial cancer metastasis via PI3K/AKT pathway. Then we further demonstrated that CLDN4 is upregulated in EEC and promotes EEC metastasis. CLDN4 overexpression could partially reversed the decrease in cell migration and invasion caused by SPTBN2 downregulation. In addition, we confirmed that SPTBN2 was a target of miR-424-5p, which plays a tumor suppressor in endometrial cancer. Rescue experiments showed that inhibition of SPTBN2 could partially reverse the effect of miR-424-5p in EEC. In conclusion, we demonstrated that by acting as a significant target of miR-424-5p, SPTBN2 could interact with CLDN4 to promote endometrial cancer metastasis via PI3K/AKT pathway in EEC. Our study revealed the prognostic and metastatic effects of SPTBN2 in EEC, suggesting that SPTBN2 could serve as a prognostic biomarker and a target for metastasis therapy.
Collapse
|
19
|
Pan J, Ma N, Zhong J, Yu B, Wan J, Zhang W. Age-associated changes in microglia and astrocytes ameliorate blood-brain barrier dysfunction. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:970-986. [PMID: 34760339 PMCID: PMC8561003 DOI: 10.1016/j.omtn.2021.08.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023]
Abstract
Blood-brain barrier (BBB) dysfunction is associated with an accumulation of neurotoxic molecules and increased infiltration of peripheral cells within the brain parenchyma. Accruing evidence suggests that microglia and astrocytes play a crucial role in the recovery of BBB integrity and the corralling of infiltrating cells into clusters after brain damage, but the mechanisms involved remain unclear. Intriguingly, the results of flow cytometry and immunofluorescence analyses have shown that BBB permeability to peripheral cells is substantially enhanced during normal aging at 12 months in mice. Thus, we used the SMART-seq2 method to perform RNA sequencing of microglia and astrocytes at five time points before and immediately after the BBB permeability change. Our comprehensive analyses revealed that microglia are characterized by marked alterations in the negative regulation of protein phosphorylation and phagocytic vesicles, whereas astrocytes show elevated enzyme or peptidase-inhibitor activity in the recovery of BBB function. Moreover, we identified a cassette of key genes that might ameliorate the insults of pathophysiological events in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Jie Pan
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China.,Department of Pathology and Neuropathology, Stanford University School of Medicine, CA 94305, USA
| | - Nana Ma
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Jie Zhong
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Bo Yu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China.,Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jun Wan
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province, PRC
| | - Wei Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| |
Collapse
|
20
|
Jiang Y, Wu SY, Chen YL, Zhang ZM, Tao YF, Xie Y, Liao XM, Li XL, Li G, Wu D, Wang HR, Zuo R, Cao HB, Pan JJ, Yu JJ, Jia SQ, Zhang Z, Chu XR, Zhang YP, Feng CX, Wang JW, Hu SY, Li ZH, Pan J, Fang F, Lu J. CEBPG promotes acute myeloid leukemia progression by enhancing EIF4EBP1. Cancer Cell Int 2021; 21:598. [PMID: 34743716 PMCID: PMC8574011 DOI: 10.1186/s12935-021-02305-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a myeloid neoplasm accounts for 7.6% of hematopoietic malignancies. AML is a complex disease, and understanding its pathophysiology is contributing to the improvement in the treatment and prognosis of AML. In this study, we assessed the expression profile and molecular functions of CCAAT enhancer binding protein gamma (CEBPG), a gene implicated in myeloid differentiation and AML progression. Methods shRNA mediated gene interference was used to down-regulate the expression of CEBPG in AML cell lines, and knockdown efficiency was detected by RT-qPCR and western blotting. The effect of knockdown on the growth of AML cell lines was evaluated by CCK-8. Western blotting was used to detect PARP cleavage, and flow cytometry were used to determine the effect of knockdown on apoptosis of AML cells. Genes and pathways affected by knockdown of CEBPG were identified by gene expression analysis using RNA-seq. One of the genes affected by knockdown of CEBPG was Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), a known repressor of translation. Knockdown of EIF4EBP1 was used to assess its potential role in AML progression downstream of CEBPG. Results We explored the ChIP-Seq data of AML cell lines and non-AML hematopoietic cells, and found CEBPG was activated through its distal enhancer in AML cell lines. Using the public transcriptomic dataset, the Cancer Cell Line Encyclopedia (CCLE) and western blotting, we also found CEBPG was overexpressed in AML. Moreover, we observed that CEBPG promotes AML cell proliferation by activating EIF4EBP1, thus contributing to the progression of AML. These findings indicate that CEBPG could act as a potential therapeutic target for AML patients. Conclusion In summary, we systematically explored the molecular characteristics of CEBPG in AML and identified CEBPG as a potential therapeutic target for AML patients. Our findings provide novel insights into the pathophysiology of AML and indicate a key role for CEBPG in promoting AML progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02305-z.
Collapse
Affiliation(s)
- You Jiang
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
| | - Shui-Yan Wu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.,Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yan-Ling Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.,School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215003, China
| | - Zi-Mu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yan-Fang Tao
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.,Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xin-Mei Liao
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xiao-Lu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Hai-Rong Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Ran Zuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Hai-Bo Cao
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Jing-Jing Pan
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.,Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Juan-Juan Yu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Si-Qi Jia
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.,School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215003, China
| | - Zheng Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xin-Ran Chu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
| | - Yong-Ping Zhang
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
| | - Chen-Xi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Jian-Wei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Shao-Yan Hu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.,Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Zhi-Heng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Jian Pan
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China. .,Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.
| |
Collapse
|
21
|
Bekusova V, Droessler L, Amasheh S, Markov AG. Effects of 1,2-Dimethylhydrazine on Barrier Properties of Rat Large Intestine and IPEC-J2 Cells. Int J Mol Sci 2021; 22:10278. [PMID: 34638619 PMCID: PMC8508681 DOI: 10.3390/ijms221910278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
Colon cancer is accompanied by a decrease of epithelial barrier properties, which are determined by tight junction (TJ) proteins between adjacent epithelial cells. The aim of the current study was to analyze the expression of TJ proteins in a rat model of 1,2-dimethylhydrazine (DMH)-induced colorectal cancer, as well as the barrier properties and TJ protein expression of IPEC-J2 cell monolayers after incubation with DMH. Transepithelial electrical resistance and paracellular permeability for sodium fluorescein of IPEC-J2 were examined by an epithelial volt/ohm meter and spectrophotometry. The expression and localization of TJ proteins were analyzed by immunoblotting and immunohistochemistry. In the colonic tumors of rats with DMH-induced carcinogenesis, the expression of claudin-3 and -4 was significantly increased compared to controls. The transepithelial electrical resistance of IPEC-J2 cells increased, while paracellular permeability for sodium fluorescein decreased, accompanied by an increased expression of claudin-4. The increase of claudin-4 in rat colon after chronic DMH exposure was consistent with the acute effect of DMH on IPEC-J2 cells, which may indicate an essential role of this protein in colorectal cancer development.
Collapse
Affiliation(s)
- Viktoria Bekusova
- Department of General Physiology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, 199034 Saint Petersburg, Russia;
| | - Linda Droessler
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (L.D.); (S.A.)
| | - Salah Amasheh
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (L.D.); (S.A.)
| | - Alexander G. Markov
- Department of General Physiology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, 199034 Saint Petersburg, Russia;
| |
Collapse
|
22
|
Kui L, Kong Q, Yang X, Pan Y, Xu Z, Wang S, Chen J, Wei K, Zhou X, Yang X, Wu T, Mastan A, Liu Y, Miao J. High-Throughput In Vitro Gene Expression Profile to Screen of Natural Herbals for Breast Cancer Treatment. Front Oncol 2021; 11:684351. [PMID: 34490085 PMCID: PMC8418118 DOI: 10.3389/fonc.2021.684351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has surpassed lung cancer as the most commonly diagnosed cancer in women worldwide. Some therapeutic drugs and approaches could cause side effects and weaken the immune system. The combination of conventional therapies and traditional Chinese medicine (TCM) significantly improves treatment efficacy in breast cancer. However, the chemical composition and underlying anti-tumor mechanisms of TCM still need to be investigated. The primary aim of this study is to provide unique insights to screen the natural components for breast cancer therapy using high-throughput transcriptome analysis. Differentially expressed genes were identified based on two conditions: single samples and groups were classified according to their pharmaceutical effect. Subsequently, the sample treated with E. cochinchinensis Lour. generated the most significant DEGs set, including 1,459 DEGs, 805 upregulated and 654 downregulated. Similarly, group 3 treatment contained the most DEGs (414 DEGs, 311 upregulated and 103 downregulated). KEGG pathway analyses showed five significant pathways associated with the inflammatory and metastasis processes in cancer, which include the TNF, IL−17, NF-kappa B, MAPK signaling pathways, and transcriptional misregulation in cancer. Samples were classified into 13 groups based on their pharmaceutical effects. The results of the KEGG pathway analyses remained consistent with signal samples; group 3 presents a high significance. A total of 21 genes were significantly regulated in these five pathways, interestingly, IL6, TNFAIP3, and BRIC3 were enriched on at least two pathways, seven genes (FOSL1, S100A9, CXCL12, ID2, PRS6KA3, AREG, and DUSP6) have been reported as the target biomarkers and even the diagnostic tools in cancer therapy. In addition, weighted correlation network analysis (WGCNA) was used to identify 18 modules. Among them, blue and thistle2 were the most relevant modules. A total of 26 hub genes in blue and thistle2 modules were identified as the hub genes. In conclusion, we screened out three new TCM (R. communis L., E. cochinchinensis Lour., and B. fruticosa) that have the potential to develop natural drugs for breast cancer therapy, and obtained the therapeutic targets.
Collapse
Affiliation(s)
- Ling Kui
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.,School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qinghua Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaonan Yang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China.,Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yunbing Pan
- Nowbio Biotechnology Company, Kunming, China
| | - Zetan Xu
- Nowbio Biotechnology Company, Kunming, China
| | | | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China.,Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xiaolei Zhou
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China.,Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xingzhi Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tingqin Wu
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Anthati Mastan
- Research Center, Microbial Technology Laboratory, Council of Scientific & Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants, Bangalore, India
| | - Yao Liu
- Baoji High-tech Hospital , Baoji, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China.,School of Pharmacy, Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Amini E, Nabiuni M, Behzad SB, Seyfi D, Eisvand F, Sahebkar A, Shakeri A. Anticancer Potential of Aguerin B, a Sesquiterpene Lactone Isolated from Centaurea behen in Metastatic Breast Cancer Cells. Recent Pat Anticancer Drug Discov 2021; 15:165-173. [PMID: 32660408 DOI: 10.2174/1574892815666200713162304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast carcinoma is a malignant disease that represents the most common non-skin malignancy and a chief reason of cancer death in women. Large interest is growing in the use of natural products for cancer treatment, especially with goal of suppression angiogenesis, tumor cell growth, motility, as well as invasion and metastasis with low/no toxicity. It is evident from recent patents on the anticancer properties of sesquiterpene lactones such as parthenolide. OBJECTIVE In this study, using MDA-MB-231 cells of a human breast adenocarcinoma, the effects of aguerin B, as a natural sesquiterpene lactone, has been evaluated, in terms of the expression of metastatic-related genes (Pak-1, Rac-1 and HIF-1α). METHODS Cytotoxicity of aguerin B was tested toward MDA-MB-231 breast tumor cells using MTT. Scratch assay was accomplished to evaluate the tumor cell invasion. To understand the underlying molecular basis, the mRNA expressions were evaluated by real time PCR. RESULTS It was found that aguerin B significantly inhibited human breast cancer cell growth in vitro (IC50 = 2μg/mL) and this effect was accompanied with a persuasive suppression on metastasis. Our results showed that aguerin B in IC50 concentration down-regulated Rac-1, Pak-1, Hif-1α and Zeb-1 transcriptional levels. CONCLUSION Taken together, this study demonstrated that aguerin B possessed potential anti-metastatic effect, suggesting that it may consider as a potential multi target bio compound for treatment of breast metastatic carcinoma.
Collapse
Affiliation(s)
- Elaheh Amini
- Department of Cellular & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Cellular & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Seyed Bahram Behzad
- Department of Cellular & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Danial Seyfi
- Department of Cellular & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical
Sciences, Mashhad, Iran,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Zhou Q, Sun X, Pasquier N, Jefferson P, Nguyen TTT, Siegelin MD, Angelastro JM, Greene LA. Cell-Penetrating CEBPB and CEBPD Leucine Zipper Decoys as Broadly Acting Anti-Cancer Agents. Cancers (Basel) 2021; 13:cancers13102504. [PMID: 34065488 PMCID: PMC8161188 DOI: 10.3390/cancers13102504] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The gene-regulatory factors ATF5, CEBPB and CEBPD promote survival, growth, metastasis and treatment resistance of a range of cancer cell types. Presently, no drugs target all three at once. Here, with the aim of treating cancers, we designed novel cell-penetrating peptides that interact with and inactivate all three. The peptides Bpep and Dpep kill a range of cancer cell types in culture and in animals. In animals with tumors, they also significantly increase survival time. In contrast, they do not affect survival of non-cancer cells and have no apparent side effects in animals. The peptides work in combination with other anti-cancer treatments. Mechanism studies of how the peptides kill cancer cells indicate a decrease in survival proteins and increase in death proteins. These studies support the potential of Bpep and Dpep as novel, safe agents for the treatment of a variety of cancer types, both as mono- and combination therapies. Abstract Transcription factors are key players underlying cancer formation, growth, survival, metastasis and treatment resistance, yet few drugs exist to directly target them. Here, we characterized the in vitro and in vivo anti-cancer efficacy of novel synthetic cell-penetrating peptides (Bpep and Dpep) designed to interfere with the formation of active leucine-zipper-based dimers by CEBPB and CEBPD, transcription factors implicated in multiple malignancies. Both peptides similarly promoted apoptosis of multiple tumor lines of varying origins, without such effects on non-transformed cells. Combined with other treatments (radiation, Taxol, chloroquine, doxorubicin), the peptides acted additively to synergistically and were fully active on Taxol-resistant cells. The peptides suppressed expression of known direct CEBPB/CEBPD targets IL6, IL8 and asparagine synthetase (ASNS), supporting their inhibition of transcriptional activation. Mechanisms by which the peptides trigger apoptosis included depletion of pro-survival survivin and a required elevation of pro-apoptotic BMF. Bpep and Dpep significantly slowed tumor growth in mouse models without evident side effects. Dpep significantly prolonged survival in xenograft models. These findings indicate the efficacy and potential of Bpep and Dpep as novel agents to treat a variety of cancers as mono- or combination therapies.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Xiotian Sun
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Nicolas Pasquier
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Parvaneh Jefferson
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Trang T. T. Nguyen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - James M. Angelastro
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Lloyd A. Greene
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
- Correspondence:
| |
Collapse
|
25
|
Qin M, Han F, Wu J, Gao FX, Li Y, Yan DX, He XM, Long Y, Tang XP, Ren DL, Gao Y, Dai TY. KDM6B promotes ESCC cell proliferation and metastasis by facilitating C/EBPβ transcription. BMC Cancer 2021; 21:559. [PMID: 34001062 PMCID: PMC8130268 DOI: 10.1186/s12885-021-08282-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background As an H3K27me3 demethylase and counteracts polycomb-mediated transcription repression, KDM6B has been implicated in the development and malignant progression in various types of cancers. However, its potential roles in esophageal squamous cell carcinoma (ESCC) have not been explored. Methods The expression of KDM6B in human ESCC tissues and cell lines was examined using RT-qPCR, immunohistochemical staining and immunoblotting. The effects of KDM6B on the proliferation and metastasis of ESCC were examined using in vitro and in vivo functional tests. RNA-seq and ChIP-seq assay were used to demonstrate the molecular biological mechanism of KDM6B in ESCC. Results We show that the expression level of KDM6B increased significantly in patients with lymph node metastasis. Furthermore, we confirmed that KDM6B knockdown reduces proliferation and metastasis of ESCC cells, while KDM6B overexpression has the opposite effects. Mechanistically, KDM6B regulates TNFA_SIGNALING_VIA_NFκB signalling pathways, and H3K27me3 binds to the promoter region of C/EBPβ, leading to the promotion of C/EBPβ transcription. Besides, we show that GSK-J4, a chemical inhibitor of KDM6B, markedly inhibits proliferation and metastasis of ESCC cells. Conclusions The present study demonstrated that KDM6B promotes ESCC progression by increasing the transcriptional activity of C/EBPβ depending on its H3K27 demethylase activity. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08282-w.
Collapse
Affiliation(s)
- Mei Qin
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China
| | - Fei Han
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest, Medical University, Sichuan, Luzhou, China
| | - Jian Wu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest, Medical University, Sichuan, Luzhou, China
| | - Feng-Xia Gao
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China
| | - Yuan Li
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest, Medical University, Sichuan, Luzhou, China
| | - De-Xin Yan
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest, Medical University, Sichuan, Luzhou, China
| | - Xue-Mei He
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Long
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Ping Tang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - De-Lian Ren
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China
| | - Yan Gao
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China.
| | - Tian-Yang Dai
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest, Medical University, Sichuan, Luzhou, China.
| |
Collapse
|
26
|
Song Z, Cui Y, Li Q, Deng J, Ding X, He J, Liu Y, Ju Z, Fang L. The genetic variability, phylogeny and functional significance of E6, E7 and LCR in human papillomavirus type 52 isolates in Sichuan, China. Virol J 2021; 18:94. [PMID: 33941222 PMCID: PMC8091156 DOI: 10.1186/s12985-021-01565-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Variations in human papillomavirus (HPV) E6 and E7 have been shown to be closely related to the persistence of the virus and the occurrence and development of cervical cancer. Long control region (LCR) of HPV has been shown multiple functions on regulating viral transcription. In recent years, there have been reports on E6/E7/LCR of HPV-16 and HPV-58, but there are few studies on HPV-52, especially for LCR. In this study, we focused on gene polymorphism of the HPV-52 E6/E7/LCR sequences, assessed the effects of variations on the immune recognition of viral E6 and E7 antigens, predicted the effect of LCR variations on transcription factor binding sites and provided more basic date for further study of E6/E7/LCR in Chengdu, China. Methods LCR/E6/E7 of the HPV-52 were amplified and sequenced to do polymorphic and phylogenetic analysis. Sequences were aligned with the reference sequence by MEGA 7.0 to identify SNP. A neighbor-joining phylogenetic tree was constructed by MEGA 7.0, followed by the secondary structure prediction of the related proteins using PSIPRED 4.0. The selection pressure of E6 and E7 coding regions were estimated by Bayes empirical Bayes analysis of PAML 4.9. The HLA class-I and II binding peptides were predicted by the Immune Epitope Database server. The B cell epitopes were predicted by ABCpred server. Transcription factor binding sites in LCR were predicted by JASPAR database. Results 50 SNP sites (6 in E6, 10 in E7, 34 in LCR) were found. From the most variable to the least variable, the nucleotide variations were LCR > E7 > E6. Two deletions were found between the nucleotide sites 7387–7391 (TTATG) and 7698–7700 (CTT) in all samples. A deletion was found between the nucleotide sites 7287–7288 (TG) in 97.56% (40/41) of the samples. The combinations of all the SNP sites and deletions resulted in 12 unique sequences. As shown in the neighbor-joining phylogenetic tree, except for one belonging to sub-lineage C2, others sequences clustered into sub-lineage B2. No positive selection was observed in E6 and E7. 8 non-synonymous amino acid substitutions (including E3Q and K93R in the E6, and T37I, S52D, Y59D, H61Y, D64N and L99R in the E7) were potential affecting multiple putative epitopes for both CD4+ and CD8+ T-cells and B-cells. A7168G was the most variable site (100%) and the binding sites for transcription factor VAX1 in LCR. In addition, the prediction results showed that LCR had the high probability binding sites for transcription factors SOX9, FOS, RAX, HOXA5, VAX1 and SRY. Conclusion This study provides basic data for understanding the relation among E6/E7/LCR mutations, lineages and carcinogenesis. Furthermore, it provides an insight into the intrinsic geographical relatedness and biological differences of the HPV-52 variants, and contributes to further research on the HPV-52 therapeutic vaccine development. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01565-5.
Collapse
Affiliation(s)
- Zhilin Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Yanru Cui
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Qiufu Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Junhang Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Xianping Ding
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China. .,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China.
| | - Jiaoyu He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Yiran Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Zhuang Ju
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Liyuan Fang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
27
|
Lu H, Shi C, Liu X, Liang C, Yang C, Wan X, Li L, Liu Y. Identification of ZG16B as a prognostic biomarker in breast cancer. Open Med (Wars) 2020; 16:1-13. [PMID: 33336077 PMCID: PMC7718615 DOI: 10.1515/med-2021-0004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Zymogen granule protein 16B (ZG16B) has been identified in various cancers, while so far the association between ZG16B and breast cancer hasn’t been explored. Our aim is to confirm whether it can serve as a prognostic biomarker in breast cancer. In this study, Oncomine, Cancer Cell Line Encyclopedia (CCLE), Ualcan, and STRING database analyses were conducted to detect the expression level of ZG16B in breast cancer with different types. Kaplan–Meier plotter was used to analyze the prognosis of patients with high or low expression of ZG16B. We found that ZG16B was significantly upregulated in breast cancer. Moreover, ZG16B was closely associated with foregone biomarkers and crucial factors in breast cancer. In the survival analysis, high expression of ZG16B represents a favorable prognosis in patients. Our work demonstrates the latent capacity of ZG16B to be a biomarker for prognosis of breast cancer.
Collapse
Affiliation(s)
- Haotian Lu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Xinyu Liu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Chen Liang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Chaochao Yang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Xueqi Wan
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Ying Liu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
28
|
PAK4 methylation by the methyltransferase SETD6 attenuates cell adhesion. Sci Rep 2020; 10:17068. [PMID: 33051544 PMCID: PMC7555502 DOI: 10.1038/s41598-020-74081-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
P21-activated kinase 4 (PAK4), a member of serine/threonine kinases family is over-expressed in numerous cancer tumors and is associated with oncogenic cell proliferation, migration and invasion. Our recent work demonstrated that the SET-domain containing protein 6 (SETD6) interacts with and methylates PAK4 at chromatin in mammalian cells, leading to activation of the Wnt/β-catenin signaling pathway. In our current work, we identified lysine 473 (K473) on PAK4 as the primary methylation site by SETD6. Methylation of PAK4 at K473 activates β-catenin transcriptional activity and inhibits cell adhesion. Specific methylation of PAK4 at K473 also attenuates paxillin localization to focal adhesions leading to overall reduction in adhesion-related features, such as filopodia and actin structures. The altered adhesion of the PAK4 wild-type cells is accompanied with a decrease in the migrative and invasive characteristics of the cells. Taken together, our results suggest that methylation of PAK4 at K473 plays a vital role in the regulation of cell adhesion and migration.
Collapse
|
29
|
Zhao CC, Zhan MN, Liu WT, Jiao Y, Zhang YY, Lei Y, Zhang TT, Zhang CJ, Du YY, Gu KS, Wei W. Combined LIM kinase 1 and p21-Activated kinase 4 inhibitor treatment exhibits potent preclinical antitumor efficacy in breast cancer. Cancer Lett 2020; 493:120-127. [PMID: 32829006 DOI: 10.1016/j.canlet.2020.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022]
Abstract
LIM kinase 1 (LIMK1) and p21-activated kinase 4 (PAK4) are often over-expressed in breast tumors, which causes aggressive cancer phenotypes and unfavorable clinical outcomes. In addition to the well-defined role in regulating cell division, proliferation and invasion, the two kinases promote activation of the MAPK pathway and cause endocrine resistance through phosphorylating estrogen receptor alpha (ERα). PAK4 specifically phosphorylates LIMK1 and its functional partners, indicating possible value of suppressing both kinases in cancers that over-express PAK4 and/or LIMK1. Here, for the first time, we assessed the impact of combining LIMK1 inhibitor LIMKi 3 and PAK4 inhibitor PF-3758309 in preclinical breast cancer models. LIMK1 and PAK4 pharmacological inhibition synergistically reduced the survival of various cancer cell lines, exhibiting specific efficacy in luminal and HER2-enriched models, and suppressed development and ERα-driven signals in a BT474 xenograft model. In silico analysis demonstrated the cell lines with reliance on LIMK1 were the most prone to be susceptible to PAK4 inhibition. Double LIMK1 and PAK4 targeting therapy can be a successful therapeutic strategy for breast cancer, with a unique efficiency in the subtypes of luminal and HER2-enriched tumors.
Collapse
Affiliation(s)
- Chen-Chen Zhao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Meng-Na Zhan
- Department of Pathology, Zhong-Shan Hospital Affiliated to Fudan University, Shanghai, 200023, China
| | - Wan-Ting Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yang Jiao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yi-Yin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yu Lei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Teng-Teng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Cong-Jun Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Ying-Ying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Kang-Sheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Wei Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
30
|
Fang L, Lin X, Yang Y, Song Z, Ding X, Tan L, Gao P. Genetic variability, phylogeny and functional implication of the long control region in human papillomavirus type 16, 18 and 58 in Chengdu, China. Virol J 2020; 17:106. [PMID: 32677948 PMCID: PMC7364514 DOI: 10.1186/s12985-020-01349-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/03/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Long control region (LCR) of human papillomavirus (HPV) has shown multiple functions on regulating viral transcription. The variations of LCR related to different lineages/sub-lineages have been found to affect viral persistence and cervical cancer progression differently. In this study, we focused on gene polymorphism of HPV16/18/58 LCR to assess the effect variations caused on transcription factor binding sites (TFBS) and provided more data for further study of LCR in Southwest China. METHODS LCR of HPV16/18/58 were amplified and sequenced to do polymorphic and phylogenetic anlysis. Sequences of each type were aligned with the reference sequence by MEGA 6.0 to identify SNPs. Neighbor-joining phylogenetic trees were constructed using MEGA 6.0. Transcription factor binding sites were predicted by JASPAR database. RESULTS The prevalence of these three HPVs ranked as HPV16 (12.8%) > HPV58 (12.6%) > HPV18 (3.5%) in Chengdu, Southwest China. 59 SNPs were identified in HPV16-LCR, 18 of them were novel mutations. 30 SNP were found in HPV18-LCR, 8 of them were novel. 55 SNPs were detected in HPV58-LCR, 18 of them were novel. Also, an insertion (CTTGTCAGTTTC) was detected in HPV58-LCR between position 7279 and 7280. As shown in the neighbor-joining phylogenetic trees, most isolates of HPV16/18/58 were clustered into lineage A. In addition, one isolate of HPV16 was classified into lineage C and 3 isolates of HPV58 were classified as lineage B. JASPAR results suggested that TFBS were potentially influenced by 7/6 mutations on LCR of HPV16/18. The insertion and 5 mutations were shown effects in LCR of HPV58. CONCLUSION This study provides more data for understanding the relation among LCR mutations, lineages and carcinogenesis. It also helps performing further study to demonstrate biological function of LCR and find potential marker for diagnosis and therapy.
Collapse
Affiliation(s)
- Liyuan Fang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Xiaoli Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Yasi Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Zhilin Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Xianping Ding
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China.
| | - Liping Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Peng Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
31
|
Tang L, Gao Y, Song Y, Li Y, Li Y, Zhang H, Li D, Li J, Liu C, Li F. PAK4 phosphorylating RUNX1 promotes ERα-positive breast cancer-induced osteolytic bone destruction. Int J Biol Sci 2020; 16:2235-2247. [PMID: 32549768 PMCID: PMC7294946 DOI: 10.7150/ijbs.47225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022] Open
Abstract
The biological function of nuclear PAK4 in ERα-positive breast cancer osteolytic bone destruction remains unclear. Here, we find that the nuclear PAK4 promotes osteoclastogenesis and tumor-induced osteolysis via phosphorylating RUNX1. We show that nuclear PAK4 interacts with and phosphorylates RUNX1 at Thr-207, which induces its localization from the nucleus to the cytoplasm and influences direct interaction with SIN3A/HDAC1 and PRMT1. Furthermore, we reveal that RUNX1 phosphorylation by PAK4 at Thr-207 promotes osteolytic bone destruction via targeting downstream genes related to osteoclast differentiation and maturation. Importantly, we verify changes in RUNX1 subcellular localization when nuclear PAK4 is positive in breast cancer bone metastasis tissues. Functionally, we demonstrate that RUNX1 phosphorylation promotes osteolytic bone maturation and ERα-positive breast cancer-induced osteolytic bone damage in the mouse model of orthotopic breast cancer bone metastasis. Our results suggest PAK4 can be a therapeutic target for ERα-positive breast cancer osteolytic bone destruction.
Collapse
Affiliation(s)
- Lina Tang
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yunling Gao
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yongqi Song
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Hongyan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jiabin Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Caigang Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, 110001, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| |
Collapse
|
32
|
Zinc finger protein 703 induces EMT and sorafenib resistance in hepatocellular carcinoma by transactivating CLDN4 expression. Cell Death Dis 2020; 11:225. [PMID: 32269215 PMCID: PMC7142083 DOI: 10.1038/s41419-020-2422-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/18/2022]
Abstract
Metastasis is one of the most common reasons of hepatocellular carcinoma (HCC) death; however, the molecular mechanism underlying HCC metastasis remains incompletely defined. Here we report a new function of Zinc Finger Protein 703 (ZNF703), a member of the NET/NlZ family of zinc finger transcription factors, in promoting hepatocellular carcinoma metastasis. We demonstrated that the overexpression of ZNF703 in human HCC tissue is correlated with tumor metastasis and recurrence, it is also related with the prognosis and survival rate of patients. ZNF703 overexpression promotes HCC progression in vitro and in vivo, whereas ZNF703 knockdown has the opposite effect. In addition, ZNF703 induces epithelialmesenchymal transition (EMT) via directly binding to the CLDN4 promoter and transactivating CLDN4 expression. Downregulation of CLDN4 can attenuate ZNF703-mediated HCC metastasis, whereas upregulation of CLDN4 can reverse the decreased metastasis induced by ZNF703 knockdown. Our data revealed that ZNF703 expression is correlated with CLDN4 level, the overexpression of both ZNF703 and CLDN4 are leaded to poorer prognosis of patients with HCC. Moreover, ZNF703 knockdown can enhance the sensitivity of HCC cell to sorafenib, whereas ZNF703 overexpression has the opposite effect. These results suggested that ZNF703 might be a potential target for cancer therapies and a candidate prognostic biomarker for predicting whether patients with HCC are befitting for sorafenib treatment.
Collapse
|
33
|
ASPP2 suppression promotes malignancy via LSR and YAP in human endometrial cancer. Histochem Cell Biol 2020; 154:197-213. [PMID: 32266459 DOI: 10.1007/s00418-020-01876-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2020] [Indexed: 12/19/2022]
Abstract
Apoptosis-stimulating p53 protein 2 (ASPP2) is an apoptosis inducer that acts via binding with p53 and epithelial polarity molecule PAR3. Lipolysis-stimulated lipoprotein receptor (LSR) is an important molecule at tricellular contacts, and loss of LSR promotes cell migration and invasion via Yes-associated protein (YAP) in human endometrial cancer cells. In the present study, to find how ASPP2 suppression promotes malignancy in human endometrial cancer, we investigated its mechanisms including the relationship with LSR. In endometriosis and endometrial cancers (G1 and G2), ASPP2 was observed as well as PAR3 and LSR in the subapical region. ASPP2 decreased in G3 endometrial cancer compared to G1. In human endometrial cancer cell line Sawano, ASPP2 was colocalized with LSR and tricellulin at tricellular contacts and binding to PAR3, LSR, and tricellulin in the confluent state. ASPP2 suppression promoted cell migration and invasion, decreased LSR expression, and induced expression of phosphorylated YAP, claudin-1, -4, and -7 as effectively as the loss of LSR. Knockdown of YAP prevented the upregulation of pYAP, cell migration and invasion induced by the ASPP2 suppression. Treatment with a specific antibody against ASPP2 downregulated ASPP2 and LSR, affected F-actin at tricellular contacts, upregulated expression of pYAP and claudin-1, and induced cell migration and invasion via YAP. In normal human endometrial epithelial cells, ASPP2 was in part colocalized with LSR at tricellular contacts and knockdown of ASPP2 or LSR induced expression of claudin-1 and claudin-4. ASPP2 suppression promoted cell invasion and migration via LSR and YAP in human endometrial cancer cells.
Collapse
|
34
|
Cordover E, Wei J, Patel C, Shan NL, Gionco J, Sargsyan D, Wu R, Cai L, Kong AN, Jacinto E, Minden A. KPT-9274, an Inhibitor of PAK4 and NAMPT, Leads to Downregulation of mTORC2 in Triple Negative Breast Cancer Cells. Chem Res Toxicol 2020; 33:482-491. [PMID: 31876149 DOI: 10.1021/acs.chemrestox.9b00376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is difficult to treat due to lack of druggable targets. We have found that treatment with the small molecule inhibitor KPT-9274 inhibits growth of TNBC cells and eventually leads to cell death. KPT-9274 is a dual specific inhibitor of PAK4 and Nicotinamide Phosphoribosyltransferase (NAMPT). The PAK4 protein kinase is often highly expressed in TNBC cells and has important roles in cell growth, survival, and migration. Previously we have found that inhibition of PAK4 leads to growth inhibition of TNBC cells both in vitro and in vivo. Likewise, NAMPT has been shown to be dysregulated in cancer due to its role in cell metabolism. In order to understand better how treating cells with KPT-9274 abrogates TNBC cell growth, we carried out an RNA sequencing of TNBC cells treated with KPT-9274. As a result, we identified Rictor as an important target that is inhibited in the KPT-9274 treated cells. Conversely, we found that Rictor is predicted to be activated when PAK4 is overexpressed in cells, which suggests a role for PAK4 in the regulation of Rictor. Rictor is a component of mTORC2, one of the complexes formed by the serine/threonine kinase mTOR. mTOR is important for the control of cell growth and metabolism. Our results suggest a new mechanism by which the KPT-9274 compound may block the growth of breast cancer cells, which is via inhibition of mTORC2 signaling. Consistent with this, sequencing analysis of PAK4 overexpressing cells indicates that PAK4 has a role in activation of the mTOR pathway.
Collapse
Affiliation(s)
- Emma Cordover
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Janet Wei
- Department of Biochemistry and Molecular Biology , Rutgers-Robert Wood Johnson Medical School , 683 Hoes Lane , Piscataway , New Jersey 08854 , United States
| | - Chadni Patel
- Department of Biochemistry and Molecular Biology , Rutgers-Robert Wood Johnson Medical School , 683 Hoes Lane , Piscataway , New Jersey 08854 , United States
| | - Naing Lin Shan
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - John Gionco
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Li Cai
- Department of Biomedical Engineering , Rutgers, The State University of New Jersey , 599 Taylor Road , Piscataway , New Jersey 08854 , United States
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology , Rutgers-Robert Wood Johnson Medical School , 683 Hoes Lane , Piscataway , New Jersey 08854 , United States
| | - Audrey Minden
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| |
Collapse
|