1
|
Zhao J, Zhang T, Wu P, Qiu J, Wu K, Shi L, Zhu Q, Zhou J. circRNA-0015004 act as a ceRNA to promote RCC2 expression in hepatocellular carcinoma. Sci Rep 2024; 14:16913. [PMID: 39043840 PMCID: PMC11266727 DOI: 10.1038/s41598-024-67819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Although circular RNAs (circRNA) have been demonstrated to modulate tumor initiation and progression, their roles in the proliferation of hepatocellular carcinoma (HCC) are still poorly understood. Based on the analysis of GEO data (GSE12174), hsa-circRNA-0015004 (circ-0015004) was screened and validated in 80 sets of HCC specimens. Subcellular fractionation analysis was designed to determine the cellular location of circ-0015004. Colony formation and cell counting kit-8 were performed to investigate the role of circ-0015004 in HCC. Dual-luciferase reporter gene assays, RNA immunoprecipitation and chromatin immunoprecipitation were employed to verify the interaction among circ-0015004, miR-330-3p and regulator of chromatin condensation 2 (RCC2). The expression level of circ-0015004 was significantly upregulated in HCC cell lines and HCC tissues. HCC patients with higher circ-0015004 levels displayed shorter overall survival, and higher tumor size and TNM stage. Moreover, knockdown of circ-0015004 significantly reduced HCC cell proliferation in vitro and inhibited the growth of HCC in nude mice. Mechanistic studies revealed that circ-0015004 could upregulate the expression of RCC2 by sponging miR-330-3p, thereby promoting HCC cell proliferation. Furthermore, we identified that Ying Yang 1 (YY1) could function as an important regulator of circ-0015004 transcription. This study systematically demonstrated the novel regulatory signaling of circ-0015004/miR-330-3p/RCC2 axis in promoting HCC progression, providing insight into HCC diagnosis and treatment from bench to clinic.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Animals
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Gene Expression Regulation, Neoplastic
- Cell Proliferation/genetics
- Mice
- Cell Line, Tumor
- Male
- Female
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Mice, Nude
- Middle Aged
- YY1 Transcription Factor/metabolism
- YY1 Transcription Factor/genetics
- Up-Regulation
- RNA, Competitive Endogenous
- Chromosomal Proteins, Non-Histone
Collapse
Affiliation(s)
- Jie Zhao
- Department of General Surgery, Wujin Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Tong Zhang
- Department of Hepatobiliary Surgery, Xinghua People's Hospital Affiliated Yangzhou University, Xinghua, China
| | - Peng Wu
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiajing Qiu
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Kejia Wu
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Longqing Shi
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Qiang Zhu
- Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Jun Zhou
- Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Choquet H, Jiang C, Yin J, Kim Y, Hoffmann TJ, Jorgenson E, Asgari MM. Multi-ancestry genome-wide meta-analysis identifies novel basal cell carcinoma loci and shared genetic effects with squamous cell carcinoma. Commun Biol 2024; 7:33. [PMID: 38182794 PMCID: PMC10770328 DOI: 10.1038/s42003-023-05753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Basal cell carcinoma (BCC) is one of the most common malignancies worldwide, yet its genetic determinants are incompletely defined. We perform a European ancestry genome-wide association (GWA) meta-analysis and a Hispanic/Latino ancestry GWA meta-analysis and meta-analyze both in a multi-ancestry GWAS meta-analysis of BCC, totaling 50,531 BCC cases and 762,234 controls from four cohorts (GERA, Mass-General Brigham Biobank, UK Biobank, and 23andMe research cohort). Here we identify 122 BCC-associated loci, of which 36 were novel, and subsequently fine-mapped these associations. We also identify an association of the well-known pigment gene SLC45A2 as well as associations at RCC2 and CLPTM1L with BCC in Hispanic/Latinos. We examine these BCC loci for association with cutaneous squamous cell carcinoma (cSCC) in 16,407 SCC cases and 762,486 controls of European ancestry, and 33 SNPs show evidence of association. Our study findings provide important insights into the genetic basis of BCC and cSCC susceptibility.
Collapse
Affiliation(s)
- Hélène Choquet
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA.
| | - Chen Jiang
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - Jie Yin
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - Yuhree Kim
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Thomas J Hoffmann
- Institute for Human Genetics, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | | | - Maryam M Asgari
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| |
Collapse
|
3
|
Wang S, Lei Z, Liu W, Xiong J, Shi Y, Yang L, Gao Q, Le K, Zhang B. RCC2 promotes prostate cancer cell proliferation and migration through Hh/GLI1 signaling pathway and cancer stem-like cells. Biol Direct 2023; 18:80. [PMID: 38008751 PMCID: PMC10680210 DOI: 10.1186/s13062-023-00439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Regulator of chromosome condensation 2 (RCC2) was a telophase disk-binding protein on mitosis, and functions as an oncogene in many human cancers. However, its role on prostate cancer (PCa) was unknown. The goal of this study is to explore the function of RCC 2 on PCa development. METHODS The expression of RCC2 and its methylation level, its correlation with lymph node metastasis or disease-free survival (DFS) was analyzed using TCGA database. The effect of RCC2 on PCa cell proliferation, migration and invasion were detected using CCK-8, cell colony formation, Transwell and wood healing assays. RNA-seq and GSEA analysis were used to search the downstream genes and pathways of RCC2 in mediated PCa progression. Western blot was used to detect the proteins in PCa cells transfected with indicated siRNAs or plasmids. RESULTS RCC2 had high expression and low promoter methylation level in PCa, and its expression was correlated with regional node metastasis and disease-free survival. Cell proliferation, migration, invasion and EMT of PCa cells in vitro were greatly enhanced after RCC2 overexpression, while the RCC2 knockdown suppressed these processes. RNA-seq and GSEA results showed the Hedgehog signaling regulator Gli1 and Gli3 were involved in RCC2 knockdown DU145 cells. Gli1 was also a marker of cancer stem-like cells (CSCs). Mechanistically, RCC2 induced cell growth, EMT, CSCs markers through Gli1; inhibiting Gli1 expression using siGli1 or GLI inhibitor suppressed cell progression in vitro and tumor growth in vivo. CONCLUSION In summary, RCC2 promoted PCa development through Hh/Gli1 signaling pathway via regulating EMT and CSCs.
Collapse
Affiliation(s)
- Shenghan Wang
- Department of Urology, Aerospace Center Hospital, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Zhentao Lei
- Department of Urology, Aerospace Center Hospital, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Wei Liu
- Department of Urology, Aerospace Center Hospital, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Xiong
- Department of Urology, Aerospace Center Hospital, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Yuqiang Shi
- Department of Urology, Aerospace Center Hospital, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Lin Yang
- Department of Urology, Aerospace Center Hospital, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Qiang Gao
- Department of Urology, Aerospace Center Hospital, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Kai Le
- Department of Urology, Aerospace Center Hospital, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Bao Zhang
- Department of Urology, Aerospace Center Hospital, No.15, Yuquan Road, Haidian District, Beijing, 100049, China.
| |
Collapse
|
4
|
LncRNA HOTAIR enhances RCC2 to accelerate cervical cancer progression by sponging miR-331-3p. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1650-1660. [PMID: 36593385 DOI: 10.1007/s12094-022-03059-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE Long noncoding RNAs (lncRNAs) have been gradually regarded as influential indicators of various cancers. The present study aimed to identify the effects of lncRNA HOTAIR on cervical cancer progression. METHODS RNA and protein expressions were quantified by RT-qPCR and western blot assays. Fluorescence in situ hybridization (FISH) assay was carried out to examine the intracellular location of HOTAIR. Cancer cell viability and mobility were detected by CCK-8, colony formation, transwell and wound healing assays. Binding relationships between miR-331-3p and HOTAIR/RCC2 were validated by luciferase reporter assay. RESULTS RT-qPCR assays showed that HOTAIR levels were notably upregulated in cervical cancer tissues and cell lines. Furthermore, a fluorescence in situ hybridization (FISH) assay suggested that HOTAIR was mostly located in the cytoplasm of cancer cells, indicating a sponging function. CCK-8, colony formation, Transwell and wound-healing assays indicated that knockdown of HOTAIR in HeLa and SiHa cells significantly reduced cell growth, migration and invasion. Subsequently, miR-331-3p was proven to be the target molecule of HOTAIR. In addition, results from Pearson's correlation analysis indicated negative correlation between HOTAIR and miR-331-3p in cervical cancer tissues. HOTAIR negatively modulated miR-331-3p expression. Ultimately, the target gene of miR-331-3p was verified to be RCC2, and miR-331-3p negatively modulated RCC2 expression. In addition, analysis on clinical cervical cancer tissues confirmed the negative correlation between miR-331-3p and RCC2. HOTAIR and RCC2 showed oncogenic functions in HeLa and SiHa cells, while miR-331-3p exerted the reverse effect. CONCLUSIONS HOTAIR plays a carcinogenic role in cervical cancer by targeting the miR-331-3p/RCC2 axis. Moreover, clinical cervical cancer tissues confirmed the negative correlation between miR-331-3p with lncRNA HOTAIR and RCC2. These data suggested an underlying therapeutic target for cervical cancer.
Collapse
|
5
|
Fu W, Hou X, Dong L, Hou W. Roles of STAT3 in the pathogenesis and treatment of glioblastoma. Front Cell Dev Biol 2023; 11:1098482. [PMID: 36923251 PMCID: PMC10009693 DOI: 10.3389/fcell.2023.1098482] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant of astrocytomas mainly involving the cerebral hemispheres and the cerebral cortex. It is one of the fatal and refractory solid tumors, with a 5-year survival rate of merely 5% among the adults. IL6/JAK/STAT3 is an important signaling pathway involved in the pathogenesis and progression of GBM. The expression of STAT3 in GBM tissues is substantially higher than that of normal brain cells. The abnormal activation of STAT3 renders the tumor microenvironment of GBM immunosuppression. Besides, blocking the STAT3 pathway can effectively inhibit the growth and metastasis of GBM. On this basis, inhibition of STAT3 may be a new therapeutic approach for GBM, and the combination of STAT3 targeted therapy and conventional therapies may improve the current status of GBM treatment. This review summarized the roles of STAT3 in the pathogenesis of GBM and the feasibility of STAT3 for GBM target therapy.
Collapse
Affiliation(s)
- Weijia Fu
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xue Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lihua Dong
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wei Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
6
|
Li X, Kang K, Peng Y, Shen L, Shen L, Zhou Y. Comprehensive analysis of the expression profile and clinical implications of regulator of chromosome condensation 2 in pan-cancers. Aging (Albany NY) 2022; 14:9221-9242. [PMID: 36441563 PMCID: PMC9740375 DOI: 10.18632/aging.204403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
The Regulator of Chromosome Condensation 2 (RCC2) is an important gene that regulates mitosis and cytoplasmic division in the cell cycle. Although there have been reported in several individual tumors, an integrative analysis of RCC2 and its clinical significance across diverse cancer types is poorly elucidated. In this study, we performed integrative bioinformatics analyses to profile the expression landscape and assess the prognostic value of RCC2 in pan-cancers. Correlations between RCC2 expression and tumor-infiltrating immune cells, tumor mutation burden (TMB), microsatellite instability (MSI), chemokine and their receptors were analyzed using TCGA, ESTIMATE algorithm, and TISIDB database. We also explored the potential molecular functions of RCC2 through functional enrichment analysis and protein interaction networks. We discovered that RCC2 was highly expressed in various tumor tissues and was closely associated with cancer prognosis. Different RCC2-associated immune infiltration patterns were exhibited in different tumor-infiltrating immune cells. In addition, the RCC2 had a potential role in regulating the tumor immune microenvironment and the formation of cancer-associated fibroblasts (CAFs). Meanwhile, RCC2 showed a significant correlation with TMB, MSI, chemokines and their receptors in different tumor types. The role of RCC2 as a clinical therapeutic target was further revealed from the perspective of the immune microenvironment. In conclusion, RCC2 is closely associated with tumorigenesis and cancer-immune infiltration, and could be a promising prognostic and therapeutic biomarker in diverse cancers.
Collapse
Affiliation(s)
- Xuanxuan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kuo Kang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, Hunan 410008, China
| | - Yuanhao Peng
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Lin Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
7
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
8
|
Liu T, Wang Y, Wang Y, Cheung SKK, Or PMY, Wong CW, Guan J, Li Z, Yang W, Tu Y, Wang J, Ho WLH, Gu H, Cheng ASL, Tsui SKW, Chan AM. The mitotic regulator RCC2 promotes glucose metabolism through BACH1-dependent transcriptional upregulation of hexokinase II in glioma. Cancer Lett 2022; 549:215914. [PMID: 36116740 DOI: 10.1016/j.canlet.2022.215914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
Weighted gene co-expression network analysis (WGCNA) identified a cell-cycle module that is associated with poor prognosis and aggressiveness of glioma. One of the core members, Regulator of chromatin condensation 2 (RCC2) is a component of the chromosome passenger complex. Accumulating evidence suggests that RCC2 plays a vital role in the mitotic process and that abnormal RCC2 expression is involved in cancer development. Gene silencing experiments show that RCC2 is required for glioma cell proliferation and migration. RNA-Sequencing analysis reveals a dual role of RCC2 in both the cell cycle and metabolism. Specifically, RCC2 regulates G2/M progression via CDC2 phosphorylation at Tyrosine 15. Metabolomic analysis identifies a role for RCC2 in promoting the glycolysis and pentose phosphate pathway. RCC2 exerts effects on metabolism by stabilizing the transcription factor BACH1 at its C-terminus leading to the transcriptional upregulation of hexokinase 2 (HK2). These findings elucidate a novel PTEN/RCC2/BACH1/HK2 signaling axis that drives glioma progression through the dual regulation of mitotic cell cycle and glycolytic events.
Collapse
Affiliation(s)
- Tian Liu
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yubing Wang
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Life Science and Technology, Weifang Medical University, Shandong Province, China
| | - Yiwei Wang
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stanley Kwok-Kuen Cheung
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Penelope Mei-Yu Or
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi-Wai Wong
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jingyu Guan
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhining Li
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weiqin Yang
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yalin Tu
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing Wang
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne Lut-Heng Ho
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haiwei Gu
- Center of Translational Science, Florida International University, Port Saint Lucie, FL, USA
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Andrew M Chan
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Chen B, Zhou X, Yang L, Zhou H, Meng M, Wu H, Liu Z, Zhang L, Li C. Glioma stem cell signature predicts the prognosis and the response to tumor treating fields treatment. CNS Neurosci Ther 2022; 28:2148-2162. [PMID: 36070228 PMCID: PMC9627385 DOI: 10.1111/cns.13956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Glioma stem cells (GSCs) play an important role in glioma recurrence and chemo-radiotherapy (CRT) resistance. Currently, there is a lack of efficient treatment approaches targeting GSCs. This study aimed to explore the potential personalized treatment of patients with GSC-enriched gliomas. METHODS Single-cell RNA sequencing (scRNA-seq) was used to identify the GSC-related genes. Then, machine learning methods were applied for clustering and validation. The least absolute shrinkage and selection operator (LASSO) and COX regression were used to construct the risk scores. Survival analysis was performed. Additionally, the incidence of chemo-radiotherapy resistance, immunotherapy status, and tumor treating field (TTF) therapy response were evaluated in high- and low-risk scores groups. RESULTS Two GSC clusters exhibited significantly different stemness indices, immune microenvironments, and genomic alterations. Based on GSC clusters, 11-gene GSC risk scores were constructed, which exhibited a high predictive value for prognosis. In terms of therapy, patients with high GSC risk scores had a higher risk of resistance to chemotherapy. TTF therapy can comprehensively inhibit the malignant biological characteristics of the high GSC-risk-score gliomas. CONCLUSION Our study constructed a GSC signature consisting of 11 GSC-specific genes and identified its prognostic value in gliomas. TTF is a promising therapeutic approach for patients with GSC-enriched glioma.
Collapse
Affiliation(s)
- Bo Chen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoxi Zhou
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Liting Yang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina,Hypothalamic‐Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaChina,Clinical Diagnosis and Therapy Center for Glioma, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hongshu Zhou
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ming Meng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hao Wu
- Department of Neurosurgery, The Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina,Hypothalamic‐Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaChina,Clinical Diagnosis and Therapy Center for Glioma, Xiangya HospitalCentral South UniversityChangshaChina
| | - Chuntao Li
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina,Hypothalamic‐Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaChina,Clinical Diagnosis and Therapy Center for Glioma, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
10
|
Guo K, Duan X, Zhao J, Sun B, Liu X, Zhao Z. A novel necroptosis-related gene signature for predict prognosis of glioma based on single-cell and bulk RNA sequencing. Front Mol Biosci 2022; 9:984712. [PMID: 36111134 PMCID: PMC9469195 DOI: 10.3389/fmolb.2022.984712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Glioma is the most fatal neoplasm among the primary intracranial cancers. Necroptosis, a form of programmed cell death, is correlated with tumor progression and immune response. But, the role of necroptosis-related genes (NRGs) in glioma has not been well-uncovered.Methods: Single-cell and bulk RNA sequencing data, obtained from publicly accessed databases, were used to establish a necroptosis-related gene signature for predicting the prognosis of glioma patients. Multiple bioinformatics algorithms were conducted to evaluate the efficacy of the signature. The relative mRNA level of each signature gene was validated by quantitative real-time reverse transcription PCR (qRT-PCR) in glioma cell lines compared to human astrocytes.Results: In this predicted prognosis model, patients with a high risk score showed a shorter overall survival, which was verified in the testing cohorts. The signature risk score was positively related with immune cell infiltration and some immune check points, such as CD276 (B7-H3), CD152 (CTLA-4), CD223 (LAG-3), and CD274 (PD-L1). Single-cell RNA sequencing analysis confirmed that the glioma microenvironment consists of various immune cells with different markers. The eight NRGs of the signature were detected to be expressed in several immune cells. QRT-PCR results verified that all the eight signature genes were differentially expressed between human astrocytes and glioma cells.Conclusion: The eight NRGs correlate with the immune microenvironment of glioma according to our bioinformatics analysis. This necroptosis-related gene signature may evaluate the precise methodology of predicting prognosis of glioma and provide a novel thought in glioma investigation.
Collapse
Affiliation(s)
- Kai Guo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China
| | - Xinxin Duan
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
- Graduate School, North China University of Science and Technology, Tangshan, China
| | - Jiahui Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Boyu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoming Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Zongmao Zhao,
| |
Collapse
|
11
|
Zeng W, Jiang H, Wang Y, Wang C, Yu B. TCF3 Induces DNMT1 Expression to Regulate Wnt Signaling Pathway in Glioma. Neurotox Res 2022; 40:721-732. [PMID: 35446002 DOI: 10.1007/s12640-022-00510-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 01/19/2023]
Abstract
The epigenetic alteration is widely understood as the key to cancer initiation. Herein, we intended to clarify the role of transcription factor 3 (TCF3) in the development of glioma and the behind epigenetic mechanism. Through bioinformatics analysis, we identified a TCF3-DNA methyltransferase 1 (DNMT1)-secreted frizzled related protein 1 (SFRP1) axis which was differentially expressed and interacted in gliomas. More specifically, TCF3 activated DNMT1 transcription, and DNMT1 repressed SFRP1 expression. TCF3 and DNMT1 were overexpressed, while SFRP1 was downregulated in glioma. Functionally, TCF3 silencing inhibited cell proliferation and migration, and promoted apoptosis, which were reversed by DNMT1. SFRP1 inhibited the tumor supporting effects of DNMT1 on glioma cells. Moreover, TCF3 downregulation or SFRP1 overexpression inhibited tumorigenesis and enhanced apoptosis of glioma cells, while DNMT1 enhanced tumorigenesis and repressed apoptosis in tumor tissues in vivo. The Wnt pathway was a downstream effector of the TCF3-DNMT1-SFRP1 axis. Collectively, this study determined a novel therapeutic target TCF3 for glioma from the perspective of epigenetic alteration via regulation of SFRP1 expression in a DNMT1-dependent manner.
Collapse
Affiliation(s)
- Wei Zeng
- Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Haixiao Jiang
- Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Ying Wang
- Department of Paediatrics, Lianyungang Third People's Hospital, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Cunzu Wang
- Department of Neurosurgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Bo Yu
- Department of Neurosurgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225000, People's Republic of China.
| |
Collapse
|
12
|
Wu Q, Liu F, Ge M, Laster KV, Wei L, Du R, Jiang M, Zhang J, Zhi Y, Jin G, Zhao S, Kim DJ, Dong Z, Liu K. BRD4 drives esophageal squamous cell carcinoma growth by promoting RCC2 expression. Oncogene 2022; 41:347-360. [PMID: 34750516 DOI: 10.1038/s41388-021-02099-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
The low survival rate of esophageal squamous cell carcinoma patients is primarily attributed to technical limitations and a lack of insight regarding the molecular mechanisms contributing to its progression. Alterations in epigenetic modulators are critical to cancer development and prognosis. BRD4, a chromatin reader protein, plays an essential role in regulating oncogene expression. Here, we investigated the contributing role of BRD4 and its related mechanisms in the context of ESCC tumor progression. Our observations showed that BRD4 transcript and protein expression levels are significantly increased in ESCC patient tissues. Genetic or pharmacological inhibition of BRD4 suppressed ESCC cell proliferation in vitro and in vivo. Proteomic and transcriptomic analyses were subsequently used to deduce the potential targets of BRD4. Mechanistic studies showed that RCC2 is a downstream target of BRD4. Inhibition of either BRD4 or RCC2 resulted in decreased ESCC cell proliferation. The BRD4-TP73 interaction facilitated the binding of BRD4 complex to the promoter region of RCC2, and subsequently modulated RCC2 transcription. Furthermore, targeting BRD4 with inhibitors significantly decreased tumor volume in ESCC PDX models, indicating that BRD4 expression may contribute to tumor progression. Collectively, these findings suggest that BRD4 inhibition could be a promising strategy to treat ESCC by downregulating RCC2.
Collapse
Affiliation(s)
- Qiong Wu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Fangfang Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Mengmeng Ge
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | | | - Lixiao Wei
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Ruijuan Du
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Ming Jiang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Jing Zhang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Yafei Zhi
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Guoguo Jin
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.,The Henan Luoyang Orthopedic Hospital, Zhengzhou, 450000, Henan, China
| | - Simin Zhao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.,Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dong Joon Kim
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
| | - Zigang Dong
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450000, Henan, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Kangdong Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450000, Henan, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China. .,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
13
|
Najem H, Khasraw M, Heimberger AB. Immune Microenvironment Landscape in CNS Tumors and Role in Responses to Immunotherapy. Cells 2021; 10:2032. [PMID: 34440802 PMCID: PMC8393758 DOI: 10.3390/cells10082032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the important evolution of immunotherapeutic agents, brain tumors remain, in general, refractory to immune therapeutics. Recent discoveries have revealed that the glioma microenvironment includes a wide variety of immune cells in various states that play an important role in the process of tumorigenesis. Anti-tumor immune activity may be occurring or induced in immunogenic hot spots or at the invasive edge of central nervous system (CNS) tumors. Understanding the complex heterogeneity of the immune microenvironment in gliomas will likely be the key to unlocking the full potential of immunotherapeutic strategies. An essential consideration will be the induction of immunological effector responses in the setting of the numerous aspects of immunosuppression and evasion. As such, immune therapeutic combinations are a fundamental objective for clinical studies in gliomas. Through immune profiling conducted on immune competent murine models of glioma and ex vivo human glioma tissue, we will discuss how the frequency, distribution of immune cells within the microenvironment, and immune modulatory processes, may be therapeutically modulated to lead to clinical benefits.
Collapse
Affiliation(s)
- Hinda Najem
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA;
| | - Amy B. Heimberger
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
14
|
Intravesical Instillation of Azacitidine Suppresses Tumor Formation through TNF-R1 and TRAIL-R2 Signaling in Genotoxic Carcinogen-Induced Bladder Cancer. Cancers (Basel) 2021; 13:cancers13163933. [PMID: 34439091 PMCID: PMC8392848 DOI: 10.3390/cancers13163933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Azacitidine, an inhibitor of DNA methylation, shows therapeutic effects against several malignancies by inducing apoptosis and inhibiting tumor cell proliferation. However, the anti-tumor effects of azacitidine on urinary bladder urothelial carcinoma (UBUC), especially following intravesical instillation (IVI), are not established. Here, UBUC cell lines were used to analyze the in vitro therapeutic effects of azacitidine. Potential signaling pathways were investigated by antibody arrays and Western blotting. The N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced rat UBUC model was used for in vivo quantitative analysis of tumor burden. Azacitidine significantly inhibited DNMT expression in UBUC cell lines and reduced cell viability and clonogenic activity, as determined by MTT and colony formation assays, while also inducing significant cytotoxic effects in the form of increased sub-G1 and Annexin V-PI populations (all p < 0.05). Antibody arrays confirmed the in vitro suppression of TNF-R1 and the induction of TRAIL-R2 and their downstream signaling molecules. TNF-R1 suppression reduced claspin and survivin expression, while TRAIL-R2 activation induced cytochrome C and caspase 3 expression. Rats with BBN-induced bladder cancer had a significantly reduced tumor burden and Ki67 index following IVI of azacitidine (p < 0.01). Our study provides evidence for a reduction in BBN-induced bladder cancer by IVI of azacitidine through alterations in the TRAIL-R2 and TNF-R1 signaling pathways. These findings might provide new insights for further clinical trials.
Collapse
|
15
|
Calderon-Aparicio A, Bode AM. Roles of regulator of chromosome condensation 2 in cancer: Beyond its regulatory function in cell cycle. Oncol Rev 2021; 15:525. [PMID: 33824700 PMCID: PMC8018209 DOI: 10.4081/oncol.2021.525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
Regulator of chromosome condensation 2 (RCC2) is an essential protein in order for mitosis to proceed properly. It localizes in the centrosome of chromosomes where is involved in chromosome segregation and cytokinesis. Furthermore, RCC2 associates with integrin networks at the plasma membrane where participates in the control of cell movement. Because of its known role in cell cycle, RCC2 has been linked with cancer progression. Several reports show that RCC2 induces cancer hallmarks, but the mechanisms explaining how RCC2 exerts these roles are widely unknown. Here, we aim to summarize the main findings explaining the roles and mechanisms of RCC2 in cancer promotion. RCC2 is overexpressed in different cancers, including glioblastoma, lung, ovarian, and esophageal which is related to proliferation, migration, invasion promotion in vitro and tumor progression and metastasis in vivo. Besides, RCC2 overexpression induces epithelial-mesenchymal transition and causes poorer prognosis in cancer patients. RCC2 overexpression has also been linked with resistance development to chemotherapy and radiotherapy by inhibiting apoptosis and activating cancer-promoting transcription factors. Unfortunately, not RCC2 inhibitors are currently available for further pre-clinical and clinical assays. Therefore, these findings emphasize the potential use of RCC2 as a targetable biomarker in cancer and highlight the importance for designing RCC2 chemical inhibitors to evaluate its efficacy in animal studies and clinical trials.
Collapse
Affiliation(s)
- Ali Calderon-Aparicio
- The Hormel Institute, University of Minnesota, Austin, MN.,Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN
| |
Collapse
|
16
|
Ou A, Ott M, Fang D, Heimberger AB. The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers (Basel) 2021; 13:437. [PMID: 33498872 PMCID: PMC7865703 DOI: 10.3390/cancers13030437] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma remains one of the deadliest and treatment-refractory human malignancies in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes substantively to a wide variety of protumorigenic functions, including proliferation, anti-apoptosis, angiogenesis, stem cell maintenance, and immune suppression. We review the current state of knowledge regarding the biological role of JAK/STAT signaling in glioblastoma, therapeutic strategies, and future directions for the field.
Collapse
Affiliation(s)
- Alexander Ou
- Department of Neuro-Oncology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA;
| | - Martina Ott
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Dexing Fang
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Amy B. Heimberger
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| |
Collapse
|
17
|
Guo K, Zhao C, Lang B, Wang H, Zheng H, Zhang F. Regulator of Chromosome Condensation 2 Modulates Cell Cycle Progression, Tumorigenesis, and Therapeutic Resistance. Front Mol Biosci 2021; 7:620973. [PMID: 33521058 PMCID: PMC7838589 DOI: 10.3389/fmolb.2020.620973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/08/2020] [Indexed: 01/03/2023] Open
Abstract
Accurate regulation of cell cycle is important for normal tissue development and homeostasis. RCC2 (Regulator of Chromosome Condensation 2) play a role as chromosomal passenger complex (CPC) implicated in all cell cycle phases. RCC2 was initially identified as Ran guanine exchange factor (GEF) for small G proteins. Therefore, RCC2 plays a key role in oncogenesis of most cancers. RCC2 is implicated in Colorectal Cancer (CRC), Lung Adenocarcinoma (LUAD), breast cancer, and ovarian cancer. Expression level of RCC2 protein determines regulation of tumor cell proliferation, invasion, metastasis, and radio-chemotherapeutic resistance. In this review, we explored proteins that interact with RCC2 to modulate tumor development and cancer therapeutic resistance by regulation of cell cycle process through various signaling pathways.
Collapse
Affiliation(s)
- Kun Guo
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Cheng Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Bin Lang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Huiqin Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hang Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Feng Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
18
|
Calderon-Aparicio A, Yamamoto H, De Vitto H, Zhang T, Wang Q, Bode AM, Dong Z. RCC2 Promotes Esophageal Cancer Growth by Regulating Activity and Expression of the Sox2 Transcription Factor. Mol Cancer Res 2020; 18:1660-1674. [PMID: 32801160 DOI: 10.1158/1541-7786.mcr-19-1152] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/29/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022]
Abstract
Regulator of chromosome condensation 2 (RCC2) is a protein located in the centrosome, which ensures that cell division proceeds properly. Previous reports show that RCC2 is overexpressed in some cancers and could play a key role in tumor development, but the mechanisms concerning how this occurs are not understood. Furthermore, no evidence exists regarding its role in esophageal cancer. We studied the relevance of RCC2 in esophageal cancer growth and its regulation on Sox2, an important transcription factor promoting esophageal cancer. RCC2 was overexpressed in esophageal tumors compared with normal tissue, and this overexpression was associated with tumorigenicity by increasing cell proliferation, anchorage-independent growth, and migration. These oncogenic effects were accompanied by overexpression of Sox2. RCC2 upregulated and stabilized Sox2 expression and its target genes by inhibiting ubiquitination-mediated proteasome degradation. Likewise, RCC2 increased the transcriptional activity and promoter binding of Sox2. In vivo studies indicated that RCC2 and Sox2 were overexpressed in esophageal tumors compared with normal tissue, and this upregulation occurs in the esophageal basal cell layer for both proteins. In conditional knockout mice, RCC2 deletion decreased the tumor nodule formation and progression in the esophagus compared with wild-type mice. Proliferating cell nuclear antigen expression, a cell proliferation marker, was also downregulated in RCC2 knockout mice. Overall, our data show for the first time that RCC2 is an important protein for the stabilization and transcriptional activation of Sox2 and further promotion of malignancy in esophageal cancer. IMPLICATIONS: This study shows that RCC2 controls Sox2 expression and transcriptional activity to mediate esophageal cancer formation.
Collapse
Affiliation(s)
| | | | | | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Qiushi Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota. .,Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Henan, China
| |
Collapse
|
19
|
Chen Q, Jiang P, Jia B, Liu Y, Zhang Z. RCC2 contributes to tumor invasion and chemoresistance to cisplatin in hepatocellular carcinoma. Hum Cell 2020; 33:709-720. [PMID: 32239438 DOI: 10.1007/s13577-020-00353-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/22/2020] [Indexed: 12/21/2022]
Abstract
Tumor metastasis and chemoresistance are the main causes of treatment failure and high mortality in hepatocellular carcinoma (HCC). Therefore, it is critical to clarify the biological action and potential mechanisms in HCC cells to develop novel therapeutics. The regulator of chromosome condensation 2 (RCC2), a component of the chromosomal passenger complex, was shown to have important roles in tumor development and radio-chemotherapy resistance. However, its role in the aggressive phenotypes and cisplatin (DDP)-resistance of HCC is not known. Therefore, this study aimed to investigate the role of RCC2 in HCC pathogenesis. Interestingly, we found that RCC2 was upregulated in HCC patient specimens and HCC cell lines and was correlated with the pathological grade of HCC. To evaluate the function of RCC2 in HCC cell, lentivirus vector-based shRNAs were transfected into HCC cells. Silencing RCC2 inhibited the HCC cell proliferation, migration, invasion, and increased the apoptosis rate upon DDP treatment. Further analysis showed that RCC2-mediated downregulation of the expression of survival proteins occurred via the AKT and Bcl2 pathways. Our results suggest that RCC2 might act as an oncogenic protein promoting metastatic behaviors and cisplatin resistance in HCC cells, and thereby could be a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Qingmin Chen
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Peiqiang Jiang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Baoxing Jia
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yahui Liu
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130000, Jilin, China.
| |
Collapse
|
20
|
Alafate W, Li X, Zuo J, Zhang H, Xiang J, Wu W, Xie W, Bai X, Wang M, Wang J. Elevation of CXCL1 indicates poor prognosis and radioresistance by inducing mesenchymal transition in glioblastoma. CNS Neurosci Ther 2020; 26:475-485. [PMID: 32187449 PMCID: PMC7080429 DOI: 10.1111/cns.13297] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is identified as a lethal malignant tumor derived from the nervous system. Despite the standard clinical strategy including maximum surgical resection, temozolomide (TMZ) chemotherapy, and radiotherapy, the median survival of GBM patients remains <15 months. Accumulating evidence indicates that rapid-acquired radioresistance is one of the most common reasons for GBM recurrence. Therefore, developing novel therapeutic targets for radioresistant GBM could yield long-term cures. AIMS To investigate the functional role of CXCL1 in the acquired radioresistance and identify the molecular pathway correlated to CXCL1. RESULTS In this study, we identified that CXCL1 is highly expressed in GBM and the elevation of CXCL1 is involved in radioresistance and poor prognosis in GBM patients. Additionally, silencing CXCL1 attenuated the proliferation and radioresistance of GBM cells. Furthermore, we demonstrated that CXCL1-overexpression induced radioresistance through mesenchymal transition of GBM via the activation of nuclear factor-kappa B (NF-κB) signaling. CONCLUSION CXCL1 was highly enriched in GBM and positively correlated with poor prognosis in GBM patients. Additionally, elevated CXCL1 induced radioresistance in GBM through regulation of NF-κB signaling by promoting mesenchymal transition in GBM.
Collapse
Affiliation(s)
- Wahafu Alafate
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaodong Li
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jie Zuo
- The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Hua Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jianyang Xiang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wei Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wanfu Xie
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaobin Bai
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Maode Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jia Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|