1
|
Chen Y, Yang R, Wang H, Xiao X, Xing B, Li Y, Liu Q, Lu Q, Peng R, Chen G, Wang Y, Li P. Genome-Wide Identification of the Oxidative Stress 3 ( OXS3) Gene Family and Analysis of Its Expression Pattern During Ovule Development and Under Abiotic Stress in Cotton. BIOLOGY 2024; 13:903. [PMID: 39596858 PMCID: PMC11591572 DOI: 10.3390/biology13110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Oxidative Stress 3 (OXS3) encodes a plant-specific protein that makes great contributions to a plant's stress tolerance. However, reports on genome-wide identification and expression pattern analyses of OXS3 were only found for Arabidopsis, wheat, and rice. The genus Gossypium (cotton) serves as an ideal model for studying allopolyploidy. Therefore, two diploid species (G. raimondii and G. arboreum) and two tetraploid species (G. hirsutum and G. barbadense) were chosen in this study for a bioinformatics analysis, resulting in 12, 12, 22, and 23 OXS3 members, respectively. A phylogenetic tree was constructed using 69 cotton OXS3 genes alongside 8 Arabidopsis, 10 rice, and 9 wheat genes, which were classified into three groups (Group 1-3). A consistent evolutionary relationship with the phylogenetic tree was observed in our structural analysis of the cotton OXS3 genes and the clustering of six conserved motifs. Gene duplication analysis across the four representative Gossypium species suggested that whole-genome duplication, segmental duplication, and tandem duplication might play significant roles in the expansion of the OXS3 gene family. Some existing elements responsive to salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) were identified by cis-regulatory element analysis in the promoter regions, which could influence the expression levels of cotton OXS3 genes. Furthermore, the expression patterns of the GhOXS3 gene were examined in different tissues or organs, as well as in developing ovules and fibers, with the highest expression observed in ovules. GhOXS3 genes exhibited a more pronounced regulatory response to abiotic stresses, of which ten GhOXS3 genes showed similar expression patterns under cold, heat, salt, and drought treatments. These observations were verified by quantitative real-time PCR experiments. These findings enhance our understanding of the evolutionary relationships and expression patterns of the OXS3 gene family and provide valuable insights for the identification of vital candidate genes for trait improvement in cotton breeding.
Collapse
Affiliation(s)
- Yu Chen
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.C.); (R.Y.); (H.W.); (X.X.); (B.X.); (Y.L.); (Q.L.); (Q.L.); (R.P.)
| | - Rui Yang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.C.); (R.Y.); (H.W.); (X.X.); (B.X.); (Y.L.); (Q.L.); (Q.L.); (R.P.)
- Xinjiang Production and Construction Corps Seventh Division Agricultural Research Institute, Kuitun 833200, China
| | - Haojie Wang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.C.); (R.Y.); (H.W.); (X.X.); (B.X.); (Y.L.); (Q.L.); (Q.L.); (R.P.)
| | - Xianghui Xiao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.C.); (R.Y.); (H.W.); (X.X.); (B.X.); (Y.L.); (Q.L.); (Q.L.); (R.P.)
| | - Baoguang Xing
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.C.); (R.Y.); (H.W.); (X.X.); (B.X.); (Y.L.); (Q.L.); (Q.L.); (R.P.)
| | - Yanfang Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.C.); (R.Y.); (H.W.); (X.X.); (B.X.); (Y.L.); (Q.L.); (Q.L.); (R.P.)
| | - Qiankun Liu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.C.); (R.Y.); (H.W.); (X.X.); (B.X.); (Y.L.); (Q.L.); (Q.L.); (R.P.)
| | - Quanwei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.C.); (R.Y.); (H.W.); (X.X.); (B.X.); (Y.L.); (Q.L.); (Q.L.); (R.P.)
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.C.); (R.Y.); (H.W.); (X.X.); (B.X.); (Y.L.); (Q.L.); (Q.L.); (R.P.)
| | - Guodong Chen
- College of Agriculture, Tarim University, Alar 843300, China
| | - Yongbo Wang
- Cotton Sciences Research Institute of Hunan, Changde 415101, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.C.); (R.Y.); (H.W.); (X.X.); (B.X.); (Y.L.); (Q.L.); (Q.L.); (R.P.)
| |
Collapse
|
2
|
Laanen P, Cuypers A, Saenen E, Horemans N. Flowering under enhanced ionising radiation conditions and its regulation through epigenetic mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:246-259. [PMID: 36731286 DOI: 10.1016/j.plaphy.2023.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As sessile organisms, plants have to deal with unfavourable conditions by acclimating or adapting in order to survive. Regulation of flower induction is one such mechanism to ensure reproduction and species survival. Flowering is a tightly regulated process under the control of a network of genes, which can be affected by environmental cues and stress. The effects of ionising radiation (IR) on flowering, however, have been poorly studied. Understanding the effects of ionising radiation on flowering, including the timing, gene pathways, and epigenetics involved, is crucial in the continuing effort of environmental radiation protection. The review shows that plants alter their flowering pattern in response to IR, with various flowering related genes (eg. FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT), CONSTANS (CO), GIGANTEA (GI), APETALA1 (AP1), LEAFY (LFY)) and epigenetic processes (DNA methylation, and miRNA expression eg. miRNA169, miR156, miR172) being affected. Thereby, showing a hypothetical IR-induced flowering mechanism. Further research on the interaction between IR and flowering in plants is, however, needed to elucidate the mechanisms behind the stress-induced flowering response.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Ann Cuypers
- Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium.
| | - Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
3
|
Zhou H, Zeng RF, Liu TJ, Ai XY, Ren MK, Zhou JJ, Hu CG, Zhang JZ. Drought and low temperature-induced NF-YA1 activates FT expression to promote citrus flowering. PLANT, CELL & ENVIRONMENT 2022; 45:3505-3522. [PMID: 36117312 DOI: 10.1111/pce.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Flower induction in adult citrus is mainly regulated by drought and low temperatures. However, the mechanism of FLOWERING LOCUS T regulation of citrus flowering (CiFT) under two flower-inductive stimuli remains largely unclear. In this study, a citrus transcription factor, nuclear factor YA (CiNF-YA1), was found to specifically bind to the CiFT promoter by forming a complex with CiNF-YB2 and CiNF-YC2 to activate CiFT expression. CiNF-YA1 was induced in juvenile citrus by low temperature and drought treatments. Overexpression of CiNF-YA1 increased drought susceptibility in transgenic citrus, whereas suppression of CiNF-YA1 enhanced drought tolerance in silenced citrus plants. Furthermore, a GOLDEN2 - LIKE protein (CiFE) that interacts with CiFT protein was also isolated. Further experimental evidence showed that CiFE binds to the citrus LEAFY (CiLFY) promoter and activates its expression. In addition, the expressions of CiNF-YA1 and CiFE showed a seasonal increase during the floral induction period and were induced by artificial drought and low-temperature treatments at which floral induction occurred. These results indicate that CiNF-YA1 may activate CiFT expression in response to drought and low temperatures by binding to the CiFT promoter. CiFT then forms a complex with CiFE to activate CiLFY, thereby promoting the flowering of adult citrus.
Collapse
Affiliation(s)
- Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Tian-Jia Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Yan Ai
- Institute of Pomology and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Meng-Ke Ren
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing-Jing Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Wang Z, Wu J, Sun Z, Jiang W, Liu Y, Tang J, Meng X, Su X, Wu L, Wang L, Guo X, Peng D, Xing S. ICP-MS based metallomics and GC-MS based metabolomics reveals the physiological and metabolic responses of Dendrobium huoshanense plants exposed to Fe 3O 4 nanoparticles. Front Nutr 2022; 9:1013756. [PMID: 36245500 PMCID: PMC9558897 DOI: 10.3389/fnut.2022.1013756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
It is found that the growth of Dendrobium huoshanense was dependent on Fe3O4, while the bioavailability of plants to ordinary Fe3O4 was low on the earth. In order to improve the growth, quality and yield of D. huoshanense, we used Fe3O4 NPs (100 or 200 mg/L) that was easily absorbed by plants as nano-fertilizer to hydroponically treat seedlings of D. huoshanense for 3 weeks. Fe3O4 NPs induced not only earlier flowering and increased sugar content and photosynthesis, but also stressed to plants, increased MDA content and related antioxidant enzymes activities. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) revealed that Fe3O4 NPs caused a significant accumulation of Fe and some other nutrient elements (Mn, Co, B, Mo) in stems of D. huoshanense. Metabolomics revealed that the metabolites were reprogrammed in D. huoshanense when under Fe3O4 NPs exposure. Fe3O4 NPs inhibited antioxidant defense-related pathways, demonstrating that Fe3O4 NPs have antioxidant capacity to protect D. huoshanense from damage. As the first study associating Fe3O4 NPs with the quality of D. huoshanense, it provided vital insights into the molecular mechanisms of how D. huoshanense responds to Fe3O4 NPs, ensuring the reasonable use of Fe3O4 NPs as nano-fertilizer.
Collapse
Affiliation(s)
- Zhaojian Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zongping Sun
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Tang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, United States
| | - Xinglong Su
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Liping Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Longhai Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohu Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Xu YY, Zeng RF, Zhou H, Qiu MQ, Gan ZM, Yang YL, Hu SF, Zhou JJ, Hu CG, Zhang JZ. Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:164-182. [PMID: 35460135 DOI: 10.1111/tpj.15785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored the functional role of the citrus FRI ortholog (CiFRI) under drought. Drought treatment induced CiFRI expression. CiFRI overexpression enhanced drought tolerance in transgenic Arabidopsis and citrus, while CiFRI suppression increased drought susceptibility in citrus. Moreover, transcriptomic profiling under drought conditions suggested that CiFRI overexpression altered the expression of numerous genes involved in the stress response, hormone biosynthesis, and signal transduction. Mechanistic studies revealed that citrus dehydrin likely protects CiFRI from stress-induced degradation, thereby enhancing plant drought tolerance. In addition, a citrus brassinazole-resistant (BZR) transcription factor family member (CiBZR1) directly binds to the CiFRI promoter to activate its expression under drought conditions. CiBZR1 also enhanced drought tolerance in transgenic Arabidopsis and citrus. These findings further our understanding of the molecular mechanisms underlying the CiFRI-mediated drought stress response in citrus.
Collapse
Affiliation(s)
- Yuan-Yuan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Qi Qiu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Lin Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Fan Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Jing Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Abstract
Rapeseed (Brassica napus) is one of the most important oil crops worldwide. However, an intriguing new use for rapeseed has recently developed: as an ornamental. Tourism based on blossoming fields of these yellow flowers has become a new economic growth opportunity in China. From a breeding perspective, two main problems currently limit the potential of rapeseed as an ornamental. First, the flowering period is quite short (30 days on average), which limits economic income; second, the flower color in commercial cultivars is currently limited to bright yellow, which may pall quickly for sightseers. This review summarizes the possible problems of using rapeseed as an ornamental, and details factors affecting the flowering period, how the flowering period can be prolonged by integrating optimal cultivation measures or/and spraying with chemical reagents, and ways of creating and breeding rapeseed with diverse flower colors.
Collapse
|