1
|
Lei X, Wang J, Zuo K, Xia T, Zhang J, Xu X, Liu Q, Li X. Alpinia officinarum Hance: a comprehensive review of traditional uses, phytochemistry, pharmacokinetic and pharmacology. Front Pharmacol 2024; 15:1414635. [PMID: 39221146 PMCID: PMC11362038 DOI: 10.3389/fphar.2024.1414635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The dried root and rhizome of Alpinia officinarum Hance (A. officinarum) have been widely used in traditional Chinese medicine for thousands of years to alleviate pain, promote digestion, warm the stomach, and disperse cold. This review aims to comprehensively and in-depth summarize the most recent research on the traditional uses, phytochemistry, pharmacokinetics, and pharmacology of A. officinarum. By searching various databases including Web of Science, PubMed, Google Scholar, Elsevier, Springer, ScienceDirect, and China National Knowledge Infrastructure (CNKI) for literature on "A. officinarum Hance," as well as relevant textbooks and digital documents, an overall and critical review of the subject was conducted. The traditional uses of A. officinarum were summarized, and 337 compounds from A. officinarum were summarized, including flavonoids, diarylheptanoids, volatile oils, and other compounds. Studies have found that the crude extract of A. officinarum and its compounds has a wide range of biological activities, such as improving gastrointestinal function, anti-inflammatory properties, anti-tumor activity, antibacterial properties, memory enhancement, and analgesic effects. Modern pharmacological studies have provided strong evidence and explanations for the traditional medicinal uses of A. officinarum, which brings a broad prospect for its medicinal use. However, more research is needed to explore the structure-activity relationship and potential mechanisms of action of its bioactive chemicals. Furthermore, it is essential to conduct more clinical trials in order to accelerate research and development of the drug.
Collapse
Affiliation(s)
- Xia Lei
- Jiangsu MC Clinical Innovation Center of Degenerative Bone and Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Jiapeng Wang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education and International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province and Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs and Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, Hainan, China
- Hubei University of Chinese Medicine Affiliated Gongan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Kun Zuo
- Jiangsu MC Clinical Innovation Center of Degenerative Bone and Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Tianli Xia
- Jiangsu MC Clinical Innovation Center of Degenerative Bone and Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Jinfeng Zhang
- Jiangsu MC Clinical Innovation Center of Degenerative Bone and Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Xiangyue Xu
- Jiangsu MC Clinical Innovation Center of Degenerative Bone and Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Qing Liu
- Jiangsu MC Clinical Innovation Center of Degenerative Bone and Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Xiaoliang Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education and International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province and Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs and Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
2
|
Khawaja G, El-Orfali Y, Shoujaa A, Abou Najem S. Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis-Mechanisms, Evidence, and Therapeutic Potential. Pharmaceuticals (Basel) 2024; 17:963. [PMID: 39065811 PMCID: PMC11279697 DOI: 10.3390/ph17070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by progressive joint inflammation and damage. Oxidative stress plays a critical role in the onset and progression of RA, significantly contributing to the disease's symptoms. The complex nature of RA and the role of oxidative stress make it particularly challenging to treat effectively. This article presents a comprehensive review of RA's development, progression, and the emergence of novel treatments, introducing Galangin (GAL), a natural flavonoid compound sourced from various plants, as a promising candidate. The bioactive properties of GAL, including its anti-inflammatory, antioxidant, and immunomodulatory effects, are discussed in detail. The review elucidates GAL's mechanisms of action, focusing on its interactions with key targets such as inflammatory cytokines (e.g., TNF-α, IL-6), enzymes (e.g., SOD, MMPs), and signaling pathways (e.g., NF-κB, MAPK), which impact inflammatory responses, immune cell activation, and joint damage. The review also addresses the lack of comprehensive understanding of potential treatment options for RA, particularly in relation to the role of GAL as a therapeutic candidate. It highlights the need for further research and clinical studies to ascertain the effectiveness of GAL in RA treatment and to elucidate its mechanisms of action. Overall, this review provides valuable insights into the potential of GAL as a therapeutic option for RA, shedding light on its multifaceted pharmacological properties and mechanisms of action, while suggesting avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
| | - Youmna El-Orfali
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Aya Shoujaa
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
| | - Sonia Abou Najem
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi P.O. Box 25026, United Arab Emirates;
| |
Collapse
|
3
|
Wang D, Chen J, Pu L, Yu L, Xiong F, Sun L, Yu Q, Cao X, Chen Y, Peng F, Peng C. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother Res 2023; 37:5700-5723. [PMID: 37748788 DOI: 10.1002/ptr.8013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Galangin is an important flavonoid with natural activity, that is abundant in galangal and propolis. Currently, various biological activities of galangin have been disclosed, including anti-inflammation, antibacterial effect, anti-oxidative stress and aging, anti-fibrosis, and antihypertensive effect. Based on the above bioactivities, more and more attention has been paid to the role of galangin in neurodegenerative diseases, rheumatoid arthritis, osteoarthritis, osteoporosis, skin diseases, and cancer. In this paper, the natural sources, pharmacokinetics, bioactivities, and therapeutic potential of galangin against various diseases were systematically reviewed by collecting and summarizing relevant literature. In addition, the molecular mechanism and new preparation of galangin in the treatment of related diseases are also discussed, to broaden the application prospect and provide reference for its clinical application. Furthermore, it should be noted that current toxicity and clinical studies of galangin are insufficient, and more evidence is needed to support its possibility as a functional food.
Collapse
Affiliation(s)
- Daibo Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Pu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Xiong
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyao Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Zhang F, Yan Y, Zhang LM, Li DX, Li L, Lian WW, Xia CY, He J, Xu JK, Zhang WK. Pharmacological activities and therapeutic potential of galangin, a promising natural flavone, in age-related diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155061. [PMID: 37689035 DOI: 10.1016/j.phymed.2023.155061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The extension of average life expectancy and the aggravation of population aging have become the inevitable trend of human development. In an aging society, various problems related to medical care for the elderly have become increasingly prominent. However, most of the age-related diseases have the characteristics of multiple diseases at the same time, prone to complications, and atypical clinical manifestations, which bring great difficulties to its treatment. Galangin (3,5,7-trihydroxyflavone) is a natural active compound extracted from the root of Alpinia officinarum Hance (Zingiberaceae). Recently, many studies have shown that galangin has potential advantages in the treatment of neurodegenerative diseases and cardiovascular and cerebrovascular diseases, which are common in the elderly. In addition, it also showed that galangin had prospective activities in the treatment of tumor, diabetes, liver injury, asthma and arthritis. PURPOSE This review aims to systematically summarize and discuss the effects and the underlying mechanism of galangin in the treatment of age-related diseases. METHODS We searched PubMed, SciFinder, Web of Science and CNKI literature database resources, combined with the keywords "galangin", "neurodegenerative disease", "tumor", "diabetes", "pharmacological activity", "drug combination", "pharmacokinetics", "drug delivery system" and "safety", and comprehensively reviewed the pharmacological activities and mechanism of galangin in treating age-related diseases. RESULTS According to the previous studies on galangin, the anti-neurodegenerative activity, cardiovascular and cerebrovascular protective activity, anti-tumor activity, anti-diabetes activity, anti-arthritis activity, hepatoprotective activity and antiasthmatic activity of galangin were discussed, and the related mechanisms were classified and summarized in detail. In addition, the drug combination, pharmacokinetics, drug delivery system and safety of galangin were furtherly discussed. CONCLUSIONS This review will provide reference for galangin in the treatment of age-related diseases. Meanwhile, further experimental research and long-term clinical trials are needed to determine the therapeutic safety and efficacy of galangin.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lin-Mei Zhang
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dong-Xu Li
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Jie-Kun Xu
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
5
|
Thapa R, Afzal O, Alfawaz Altamimi AS, Goyal A, Almalki WH, Alzarea SI, Kazmi I, Jakhmola V, Singh SK, Dua K, Gilhotra R, Gupta G. Galangin as an inflammatory response modulator: An updated overview and therapeutic potential. Chem Biol Interact 2023; 378:110482. [PMID: 37044286 DOI: 10.1016/j.cbi.2023.110482] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Numerous chronic diseases, such as cancer, diabetes, rheumatoid arthritis, cardiovascular disease, and gastrointestinal disorders, all have an inflammation-based etiology. In cellular and animal models of inflammation, flavonols were used to show potent anti-inflammatory activity. The flavonols enhanced the synthesis of the anti-inflammatory cytokines transforming growth factor and interleukin-10 (IL-10) and reduced the synthesis of the prostaglandins IL-6, tumor necrosis factor-alpha (TNF-α), and prostaglandin E2 (PGE2), IL-1. Galangin (GAL), a natural flavonol, has a strong ability to control apoptosis and inflammation. GAL was discovered to suppress extracellular signal-regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)p65 phosphorylation, which results in anti-inflammatory actions. Arthritis, inflammatory bronchitis, stroke, and cognitive dysfunction have all been treated with GAL. The current review aimed to demonstrate the anti-inflammatory properties of GAL and their protective effects in treating various chronic illnesses, including those of the heart, brain, skin, lungs, liver, and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, U.P, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Vikash Jakhmola
- Uttaranchal Institute of pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Ritu Gilhotra
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
6
|
Ko H, Jang H, An S, Park IG, Ahn S, Gong J, Hwang SY, Oh S, Kwak SY, Choi WJ, Kim H, Noh M. Galangin 3-benzyl-5-methylether derivatives function as an adiponectin synthesis-promoting peroxisome proliferator-activated receptor γ partial agonist. Bioorg Med Chem 2021; 54:116564. [PMID: 34922307 DOI: 10.1016/j.bmc.2021.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022]
Abstract
The upregulation of adiponectin production has been suggested as a novel strategy for the treatment of metabolic diseases. Galangin, a natural flavonoid, exhibited adiponectin synthesis-promoting activity during adipogenesis in human bone marrow mesenchymal stem cells. In target identification, galangin bound both peroxisome proliferator-activated receptor (PPAR) γ and estrogen receptor (ER) β. Novel galangin derivatives were synthesized to improve adiponectin synthesis-promoting compounds by increasing the PPARγ activity of galangin and reducing its ERβ activity, because PPARγ functions can be inhibited by ERβ. Three galangin 3-benzyl-5-methylether derivatives significantly promoted adiponectin production by 2.88-, 4.47-, and 2.76-fold, respectively, compared to the effect of galangin. The most potent compound, galangin 3-benzyl-5,7-dimethylether, selectively bound to PPARγ (Ki, 1.7 μM), whereas it did not bind to ERβ. Galangin 3-benzyl-5,7-dimethylether was identified as a PPARγ partial agonist in docking and pharmacological competition studies, suggesting that it may have diverse therapeutic potential in a variety of metabolic diseases.
Collapse
Affiliation(s)
- Hyejin Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hongjun Jang
- Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Seungchan An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - In Guk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungjin Ahn
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junpyo Gong
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Young Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soyeon Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soo Yeon Kwak
- Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Won Jun Choi
- College of Pharmacy, Dongguk University-Seoul, 32 Dongguk-ro, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Hyoungsu Kim
- Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea.
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Wang J, Wu Q, Ding L, Song S, Li Y, Shi L, Wang T, Zhao D, Wang Z, Li X. Therapeutic Effects and Molecular Mechanisms of Bioactive Compounds Against Respiratory Diseases: Traditional Chinese Medicine Theory and High-Frequency Use. Front Pharmacol 2021; 12:734450. [PMID: 34512360 PMCID: PMC8429615 DOI: 10.3389/fphar.2021.734450] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
Respiratory diseases, especially the pandemic of respiratory infectious diseases and refractory chronic lung diseases, remain a key clinical issue and research hot spot due to their high prevalence rates and poor prognosis. In this review, we aimed to summarize the recent advances in the therapeutic effects and molecular mechanisms of key common bioactive compounds from Chinese herbal medicine. Based on the theories of traditional Chinese medicine related to lung diseases, we searched several electronic databases to determine the high-frequency Chinese medicines in clinical application. The active compounds and metabolites from the selected medicines were identified using the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) by analyzing oral bioavailability and drug similarity index. Then, the pharmacological effects and molecular mechanisms of the selected bioactive compounds in the viral and bacterial infections, inflammation, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, and lung cancer were summarized. We found that 31 bioactive compounds from the selected 10 common Chinese herbs, such as epigallocatechin-3-gallate (EGCG), kaempferol, isorhamnetin, quercetin, and β-sitosterol, can mainly regulate NF-κB, Nrf2/HO-1, NLRP3, TGF-β/Smad, MAPK, and PI3K/Akt/mTOR pathways to inhibit infection, inflammation, extracellular matrix deposition, and tumor growth in a series of lung-related diseases. This review provides novel perspectives on the preclinical study and clinical application of Chinese herbal medicines and their bioactive compounds against respiratory diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Ding
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yaxin Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Shi
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Tan Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
8
|
Abd El Hady Mousa M, Mansour H, Eid F, Mashaal A. Anti-inflammatory activity of ginger modulates macrophage activation against the inflammatory pathway of monosodium glutamate. J Food Biochem 2021; 45:e13819. [PMID: 34159624 DOI: 10.1111/jfbc.13819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/01/2022]
Abstract
Monosodium glutamate (MSG) has been traditionally used as a flavor enhancer and is added to many foods. The chronic consumption of MSG has been suggested as causing toxicity, inflammation, obesity, type 2 diabetes, and pre-malignant changes. The use of medicinal plants and their products, such as ginger, against the effects of MSG has been suggested to have a protective effect. To evaluate the anti-inflammatory activity of ginger against the effects of MSG, we conducted a serial inflammatory analysis of MSG- and ginger-treated rats, focusing particularly on liver pathology. The consumption of ginger as an unconventional therapy against the effects of MSG resulted in significant anti-inflammatory activity. We found that it was possible to diagnose MSG-associated inflammatory pathogenesis using inflammatory mediators. Ginger consumption produced protective effects on health, minimized adverse effects, and may be applicable for food development and the treatment of many inflammatory diseases. PRACTICAL APPLICATIONS: The chronic administration of monosodium glutamate (MSG) as a flavor enhancer has been suggested to produce toxicity, inflammation, and pre-malignant changes in organs. Ginger has protective effects, with potent anti-inflammatory and anti-fibrotic activity against MSG administration. This study is the first to report that ginger modulated the inflammatory and fibrotic effects of MSG and improved immunological indices reflecting the involvement of inflammatory and fibrotic markers and polysaccharide content in the activation of macrophages. These findings support the further use of ginger as a supplement for food enhancement and as an anti-fibrotic, anti-inflammatory, and therapeutic agent in pharmaceutical therapies against autoimmune and inflammatory diseases, such as rheumatoid arthritis, lupus, and ulcerative colitis, as well as MSG-associated inflammatory diseases.
Collapse
Affiliation(s)
- Mai Abd El Hady Mousa
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| | - Hemmat Mansour
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| | - Fatma Eid
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| | - Alya Mashaal
- Immunology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
9
|
Yang CC, Yang CM. Chinese Herbs and Repurposing Old Drugs as Therapeutic Agents in the Regulation of Oxidative Stress and Inflammation in Pulmonary Diseases. J Inflamm Res 2021; 14:657-687. [PMID: 33707963 PMCID: PMC7940992 DOI: 10.2147/jir.s293135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Several pro-inflammatory factors and proteins have been characterized that are involved in the pathogenesis of inflammatory diseases, including acute respiratory distress syndrome, chronic obstructive pulmonary disease, and asthma, induced by oxidative stress, cytokines, bacterial toxins, and viruses. Reactive oxygen species (ROS) act as secondary messengers and are products of normal cellular metabolism. Under physiological conditions, ROS protect cells against oxidative stress through the maintenance of cellular redox homeostasis, which is important for proliferation, viability, cell activation, and organ function. However, overproduction of ROS is most frequently due to excessive stimulation of either the mitochondrial electron transport chain and xanthine oxidase or reduced nicotinamide adenine dinucleotide phosphate (NADPH) by pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor α. NADPH oxidase activation and ROS overproduction could further induce numerous inflammatory target proteins that are potentially mediated via Nox/ROS-related transcription factors triggered by various intracellular signaling pathways. Thus, oxidative stress is considered important in pulmonary inflammatory processes. Previous studies have demonstrated that redox signals can induce pulmonary inflammatory diseases. Thus, therapeutic strategies directly targeting oxidative stress may be effective for pulmonary inflammatory diseases. Therefore, drugs with anti-inflammatory and anti-oxidative properties may be beneficial to these diseases. Recent studies have suggested that traditional Chinese medicines, statins, and peroxisome proliferation-activated receptor agonists could modulate inflammation-related signaling processes and may be beneficial for pulmonary inflammatory diseases. In particular, several herbal medicines have attracted attention for the management of pulmonary inflammatory diseases. Therefore, we reviewed the pharmacological effects of these drugs to dissect how they induce host defense mechanisms against oxidative injury to combat pulmonary inflammation. Moreover, the cytotoxicity of oxidative stress and apoptotic cell death can be protected via the induction of HO-1 by these drugs. The main objective of this review is to focus on Chinese herbs and old drugs to develop anti-inflammatory drugs able to induce HO-1 expression for the management of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, 33302, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan.,Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
10
|
Khalil A, Tazeddinova D. The upshot of Polyphenolic compounds on immunity amid COVID-19 pandemic and other emerging communicable diseases: An appraisal. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:411-429. [PMID: 33057955 PMCID: PMC7558243 DOI: 10.1007/s13659-020-00271-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/06/2020] [Indexed: 05/15/2023]
Abstract
Polyphenols are a large family of more than 10,000 naturally occurring compounds, which exert countless pharmacological, biological and physiological benefits for human health including several chronic diseases such as cancer, diabetes, cardiovascular, and neurological diseases. Their role in traditional medicine, such as the use of a wide range of remedial herbs (thyme, oregano, rosemary, sage, mint, basil), has been well and long known for treating common respiratory problems and cold infections. This review reports on the most highlighted polyphenolic compounds present in up to date literature and their specific antiviral perceptive properties that might enhance the body immunity facing COVID-19, and other viral infectious diseases. In fact, several studies and clinical trials increasingly proved the role of polyphenols in controlling numerous human pathogens including SARS and MERS, which are quite similar to COVID-19 through the enhancement of host immune response against viral infections by different biological mechanisms. Thus, polyphenols ought to be considered as a potential and valuable source for designing new drugs that could be used effectively in the combat against COVID-19 and other rigorous diseases.
Collapse
Affiliation(s)
- Ayman Khalil
- Department of Food Technology, South Ural State University, Chelyabinsk, Russian Federation
| | - Diana Tazeddinova
- Department of Food Technology, South Ural State University, Chelyabinsk, Russian Federation
| |
Collapse
|