1
|
Michail C, Rodrigues Lima F, Viguier M, Deshayes F. Structure and function of the lysine methyltransferase SETD2 in cancer: From histones to cytoskeleton. Neoplasia 2025; 59:101090. [PMID: 39591760 PMCID: PMC11626819 DOI: 10.1016/j.neo.2024.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
SETD2 is known to be the unique histone methyltransferase responsible for the trimethylation of the lysine 36 of histone H3 thus generating H3K36me3. This epigenetic mark is critical for transcriptional activation and elongation, DNA repair, mRNA splicing, and DNA methylation. Recurrent SETD2-inactivating mutations and altered H3K36me3 levels are found in cancer at high frequency and numerous studies indicate that SETD2 acts as a tumor suppressor. Recently, SETD2 was further shown to methylate non-histone proteins particularly the cytoskeletal proteins tubulin and actin with subsequent impacts on cytoskeleton structure, mitosis and cell migration. Herein, we provide a review of the role of SETD2 in different cancers with special emphasis on the structural basis of the functions of this key lysine methyltransferase. Moreover, beyond the role of this enzyme in epigenetics and H3K36me3-dependent processes, we highlight the putative role of "non-epigenetic/H3K36me3" functions of SETD2 in cancer, particularly those involving the cytoskeleton.
Collapse
Affiliation(s)
- Christina Michail
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Fernando Rodrigues Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Mireille Viguier
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France.
| | - Frédérique Deshayes
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France.
| |
Collapse
|
2
|
Johnson M, Turcotte S. Loss of SETD2 in wild-type VHL clear cell renal cell carcinoma sensitizes cells to STF-62247 and leads to DNA damage, cell cycle arrest, and cell death characteristic of pyroptosis. Mol Oncol 2024. [PMID: 39592433 DOI: 10.1002/1878-0261.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/01/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Loss of chromosome 3p and loss of heterogeneity of the von Hippel-Lindau (VHL) gene are common characteristics of clear cell renal cell carcinoma (ccRCC). Despite frequent mutations on VHL, a fraction of tumors still grows with the expression of wild-type (WT) VHL and evolve into an aggressive subtype. Additionally, mutations on chromatin-modifying genes, such as the gene coding for the histone methyltransferase SET containing domain 2 (SETD2), are essential to ccRCC evolution. We previously identified STF-62247, a small molecule first discovered as a synthetically lethal molecule for VHL-deficient cells by blocking late stages of autophagy. This study investigated how other commonly mutated genes in ccRCC could impact the response to STF-62247. We showed that SETD2 inactivation in ccRCC cells expressing WT-VHL became vulnerable to STF-62247, as indicated by decreases in cell proliferation and survival. Furthermore, activation of the DNA damage response pathway leads to the loss of M-phase inducer phosphatase 1 (CDC25A) and cell cycle arrest in S phase. Cleavage of both caspase-3 and gasdermin E suggests that STF-62247 eliminates WT-VHL ccRCC cells through pyroptosis specifically when SETD2 is inactivated.
Collapse
Affiliation(s)
- Mathieu Johnson
- Department of Chemistry and Biochemistry, Université de Moncton, Canada
- Atlantic Cancer Research Institute, Moncton, Canada
| | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Canada
- Atlantic Cancer Research Institute, Moncton, Canada
| |
Collapse
|
3
|
Lewerissa EI, Nadif Kasri N, Linda K. Epigenetic regulation of autophagy-related genes: Implications for neurodevelopmental disorders. Autophagy 2024; 20:15-28. [PMID: 37674294 PMCID: PMC10761153 DOI: 10.1080/15548627.2023.2250217] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily highly conserved catabolic process that is important for the clearance of cytosolic contents to maintain cellular homeostasis and survival. Recent findings point toward a critical role for autophagy in brain function, not only by preserving neuronal health, but especially by controlling different aspects of neuronal development and functioning. In line with this, mutations in autophagy-related genes are linked to various key characteristics and symptoms of neurodevelopmental disorders (NDDs), including autism, micro-/macrocephaly, and epilepsy. However, the group of NDDs caused by mutations in autophagy-related genes is relatively small. A significant proportion of NDDs are associated with mutations in genes encoding epigenetic regulatory proteins that modulate gene expression, so-called chromatinopathies. Intriguingly, several of the NDD-linked chromatinopathy genes have been shown to regulate autophagy-related genes, albeit in non-neuronal contexts. From these studies it becomes evident that tight transcriptional regulation of autophagy-related genes is crucial to control autophagic activity. This opens the exciting possibility that aberrant autophagic regulation might underly nervous system impairments in NDDs with disturbed epigenetic regulation. We here summarize NDD-related chromatinopathy genes that are known to regulate transcriptional regulation of autophagy-related genes. Thereby, we want to highlight autophagy as a candidate key hub mechanism in NDD-related chromatinopathies.Abbreviations: ADNP: activity dependent neuroprotector homeobox; ASD: autism spectrum disorder; ATG: AutTophaGy related; CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; EHMT: euchromatic histone lysine methyltransferase; EP300: E1A binding protein p300; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; H3K4me3: histone 3 lysine 4 trimethylation; H3K9me1/2/3: histone 3 lysine 9 mono-, di-, or trimethylation; H3K27me2/3: histone 3 lysine 27 di-, or trimethylation; hiPSCs: human induced pluripotent stem cells; HSP: hereditary spastic paraplegia; ID: intellectual disability; KANSL1: KAT8 regulatory NSL complex subunit 1; KAT8: lysine acetyltransferase 8; KDM1A/LSD1: lysine demethylase 1A; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NDD: neurodevelopmental disorder; PHF8: PHD finger protein 8; PHF8-XLID: PHF8-X linked intellectual disability syndrome; PTM: post-translational modification; SESN2: sestrin 2; YY1: YY1 transcription factor; YY1AP1: YY1 associated protein 1.
Collapse
Affiliation(s)
- Elly I. Lewerissa
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Gelderland, The Netherlands
| | - Katrin Linda
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Flemish Brabant, Belgium
- Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Flemish Brabant, Belgium
| |
Collapse
|
4
|
Zhang Y, Zhang H, Wu W, Wang D, Lv Y, Zhao D, Wang L, Liu Y, Zhang K. Clinical and genetic features of luscan-lumish syndrome associated with a novel de novo variant of SETD2 gene: Case report and literature review. Front Genet 2023; 14:1081391. [PMID: 36777730 PMCID: PMC9911649 DOI: 10.3389/fgene.2023.1081391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction: Luscan-Lumish syndrome (LLS) is currently recognized as a rarely-observed condition featured with overgrowth, macrocephaly, obesity, type I Chiari malformation, and linguistic retardation. So far, there have been only a few LLS cases registered worldwide, but with none of them reported from China. To acquire a deeper understanding on the clinical and genetic features of this disease, a Chinese boy with LLS caused by a heterozygous variant in SETD2 gene was investigated in the present study. Methods: The patient was clinically examined and the medical history of his family was collected. Genetic testing was performed to determine the genetic etiology. Results: The proband was a boy aged 5-year-7-month-old, who was referred to our hospital due to "being a slow learner in kindergarten". The child had a history of delayed motor and language development in comparison to his peers. After admission, physical examination revealed tall stature and macrocephaly as the major manifestation, in addition to a relatively lower rating in intelligence assessment as well as abnormal MRI images showing a slightly shorter corpus callosum accompanied by a mildly thinner corpus callosum body. Whole exome sequencing (WES) revealed a heterozygous c.2514_2516delTAG (p.Ser838del) variant in SETD2 gene, which was subsequently identified as a novel de novo variant. According to the standardized genetic variant classification published by the American College of Medical Genetics and Genomics (ACMG), the variant, with a pathogenicity analysis result indicating PS2 + PM2_Supporting + PM4, was determined to be likely pathogenic. Through literature review, the clinical phenotypes of the 15 LLS cases were summarized, including 8 cases of overgrowth (53%), 13 cases of macrocephaly (87%), 11 cases of developmental delay (73%), 8 cases of autism (53%), and 7 cases of special facial features (47%). Besides, abnormal craniocerebral MRI findings were noticed in 7 cases. Despite that the mutation sites of the 15 patients varied from case to case, they showed a uniformly distributed pattern throughout the whole SETD2 gene, including 5 missense mutations, 5 frameshift mutations and 5 non-sense mutations. Conclusion: LLS, not having been recognized till recent years, is identified as an autosomal dominant syndrome triggered by SETD2 gene mutation. As the first report of LLS in China, the case in our study was proved to be associated with a unique type of SETD2 gene mutation that has never been reported previously, which is believed to enrich the mutation spectrum of SETD2 gene and also, deepening the clinicians' understanding on the disease.
Collapse
Affiliation(s)
- Yanqing Zhang
- Pediatric Healthcare Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospital), Jinan, Shandong, China
| | - Haozheng Zhang
- Pediatric Research Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospita), Jinan, Shandong, China
| | - Wei Wu
- Pediatric Healthcare Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospital), Jinan, Shandong, China
| | - Dong Wang
- Pediatric Research Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospita), Jinan, Shandong, China
| | - Yuqiang Lv
- Pediatric Research Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospita), Jinan, Shandong, China
| | - Dongmei Zhao
- Pediatric Healthcare Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospital), Jinan, Shandong, China
| | - Lingxiao Wang
- Department of General Pediatric, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China,*Correspondence: Lingxiao Wang, ; Yi Liu, ; Kaihui Zhang,
| | - Yi Liu
- Pediatric Research Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospita), Jinan, Shandong, China,*Correspondence: Lingxiao Wang, ; Yi Liu, ; Kaihui Zhang,
| | - Kaihui Zhang
- Pediatric Research Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospita), Jinan, Shandong, China,*Correspondence: Lingxiao Wang, ; Yi Liu, ; Kaihui Zhang,
| |
Collapse
|
5
|
Yu M, Qian K, Wang G, Xiao Y, Zhu Y, Ju L. Histone methyltransferase SETD2: An epigenetic driver in clear cell renal cell carcinoma. Front Oncol 2023; 13:1114461. [PMID: 37025591 PMCID: PMC10070805 DOI: 10.3389/fonc.2023.1114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
SET domain-containing 2 (SETD2) is a lysine methyltransferase that catalyzes histone H3 lysine36 trimethylation (H3K36me3) and has been revealed to play important roles in the regulation of transcriptional elongation, RNA splicing, and DNA damage repair. SETD2 mutations have been documented in several cancers, including clear cell renal cell carcinoma (ccRCC). SETD2 deficiency is associated with cancer occurrence and progression by regulating autophagy flux, general metabolic activity, and replication fork speed. Therefore, SETD2 is considered a potential epigenetic therapeutic target and is the subject of ongoing research on cancer-related diagnosis and treatment. This review presents an overview of the molecular functions of SETD2 in H3K36me3 regulation and its relationship with ccRCC, providing a theoretical basis for subsequent antitumor therapy based on SETD2 or H3K36me3 targets.
Collapse
Affiliation(s)
- Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Yu Xiao
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuan Zhu
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| |
Collapse
|
6
|
Dai Y, Luo W, Li W, Chen Z, Wang X, Chang J. FIP200 Methylation by SETD2 Prevents Trim21-Induced Degradation and Preserves Autophagy Initiation. Cells 2022; 11:3333. [PMID: 36359729 PMCID: PMC9653720 DOI: 10.3390/cells11213333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/19/2024] Open
Abstract
FIP200, also known as RB1CC1, is a protein that assembles the autophagy initiation complex. Its post-translational modifications and degradation mechanisms are unclear. Upon autophagy activation, we find that FIP200 is methylated at lysine1133 (K1133) by methyltransferase SETD2. We identify the E3 ligase Trim21 to be responsible for FIP200 ubiquitination by targeting K1133, resulting in FIP200 degradation through the ubiquitin-proteasome system. SETD2-induced methylation blocks Trim21-mediated ubiquitination and degradation, preserving autophagy activity. SETD2 and Trim21 orchestrate FIP200 protein stability to achieve dynamic and precise control of autophagy flux.
Collapse
Affiliation(s)
- Yuan Dai
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Weijia Luo
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Wenjiao Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhishi Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Xinjie Wang
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Jiang Chang
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|