1
|
Teruya K, Oguma A, Iwabuchi S, Nishizawa K, Doh-Ura K. Improvement of anti-prion efficacy with stearoxy conjugation of hydroxypropyl methylcellulose in prion-infected mice. Carbohydr Polym 2024; 337:122163. [PMID: 38710557 DOI: 10.1016/j.carbpol.2024.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders. Among known anti-prions, hydroxypropyl methylcellulose compounds (HPMCs) are unique in their chemical structure and action. They have several excellent anti-prion properties but the effectiveness depends on the prion-infected mouse model. In the present study, we investigated the effects of stearoxy-modified HPMCs on prion-infected cells and mice. Stearoxy modification improved the anti-prion efficacy of HPMCs in prion-infected cells and significantly prolonged the incubation period in a lower HPMC-responding mouse model. However, stearoxy modification showed no improvement over nonmodified HPMCs in an HPMC-responding mouse model. These results offer a new line of inquiry for use with prion-infected mice that do not respond well to HPMCs.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Ayumi Oguma
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Sara Iwabuchi
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Faculty of Medical Science & Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Teruya K, Oguma A, Iwabuchi S, Nishizawa K, Doh-Ura K. Combination of Styrylbenzoazole Compound and Hydroxypropyl Methylcellulose Enhances Therapeutic Effect in Prion-Infected Mice. Mol Neurobiol 2024; 61:4705-4711. [PMID: 38114760 PMCID: PMC11236910 DOI: 10.1007/s12035-023-03852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders. Tremendous efforts have been made for prion diseases; however, no effective treatment is available. Several anti-prion compounds have a preference for which prion strains or prion-infected animal models to target. Styrylbenzoazole compound called cpd-B is effective in RML prion-infected mice but less so in 263K prion-infected mice, whereas hydroxypropyl methylcellulose is effective in 263K prion-infected mice but less so in RML prion-infected mice. In the present study, we developed a combination therapy of cpd-B and hydroxypropyl methylcellulose expecting synergistic effects in both RML prion-infected mice and 263K prion-infected mice. A single subcutaneous administration of this combination had substantially a synergistic effect in RML prion-infected mice but had no additive effect in 263K prion-infected mice. These results showed that the effect of cpd-B was enhanced by hydroxypropyl methylcellulose. The complementary nature of the two compounds in efficacy against prion strains, chemical properties, pharmacokinetics, and physical properties appears to have contributed to the effective combination therapy. Our results pave the way for the strategy of new anti-prion agents.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| | - Ayumi Oguma
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Sara Iwabuchi
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
- Faculty of Medical Science & Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan
| |
Collapse
|
3
|
Ali T, Klein AN, McDonald K, Johansson L, Mukherjee PG, Hallbeck M, Doh-Ura K, Schatzl HM, Gilch S. Cellulose ether treatment inhibits amyloid beta aggregation, neuroinflammation and cognitive deficits in transgenic mouse model of Alzheimer's disease. J Neuroinflammation 2023; 20:177. [PMID: 37507761 PMCID: PMC10375631 DOI: 10.1186/s12974-023-02858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive and devastating neurodegenerative disease. Pathogenesis of AD is associated with the aggregation and accumulation of amyloid beta (Aβ), a major neurotoxic mediator that triggers neuroinflammation and memory impairment. Recently, we found that cellulose ether compounds (CEs) have beneficial effects against prion diseases by inhibiting protein misfolding and replication of prions, which share their replication mechanism with Aβ. CEs are FDA-approved safe additives in foods and pharmaceuticals. Herein, for the first time we determined the therapeutic effects of the representative CE (TC-5RW) in AD using in vitro and in vivo models. Our in vitro studies showed that TC-5RW inhibits Aβ aggregation, as well as neurotoxicity and immunoreactivity in Aβ-exposed human and murine neuroblastoma cells. In in vivo studies, for the first time we observed that single and weekly TC-5RW administration, respectively, improved memory functions of transgenic 5XFAD mouse model of AD. We further demonstrate that TC-5RW treatment of 5XFAD mice significantly inhibited Aβ oligomer and plaque burden and its associated neuroinflammation via regulating astrogliosis, microgliosis and proinflammatory mediator glial maturation factor beta (GMFβ). Additionally, we determined that TC-5RW reduced lipopolysaccharide-induced activated gliosis and GMFβ in vitro. In conclusion, our results demonstrate that CEs have therapeutic effects against Aβ pathologies and cognitive impairments, and direct, potent anti-inflammatory activity to rescue neuroinflammation. Therefore, these FDA-approved compounds are effective candidates for developing therapeutics for AD and related neurodegenerative diseases associated with protein misfolding.
Collapse
Affiliation(s)
- Tahir Ali
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Antonia N Klein
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Keegan McDonald
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Lovisa Johansson
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185, Linköping, Sweden
| | | | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185, Linköping, Sweden
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hermann M Schatzl
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Teruya K, Oguma A, Takahashi S, Watanabe-Matsui M, Tsuji-Kawahara S, Miyazawa M, Doh-ura K. Anti-prion activity of cellulose ether is impaired in mice lacking pre T-cell antigen receptor α, T-cell receptor δ, or lytic granule function. Int Immunopharmacol 2022; 107:108672. [DOI: 10.1016/j.intimp.2022.108672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 11/05/2022]
|
5
|
Teruya K, Doh-Ura K. Therapeutic development of polymers for prion disease. Cell Tissue Res 2022; 392:349-365. [PMID: 35307792 DOI: 10.1007/s00441-022-03604-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022]
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, are caused by the accumulation of abnormal isoforms of the prion protein (scrapie isoform of the prion protein, PrPSc) in the central nervous system. Many compounds with anti-prion activities have been found using in silico screening, in vitro models, persistently prion-infected cell models, and prion-infected rodent models. Some of these compounds include several types of polymers. Although the inhibition or removal of PrPSc production is the main target of therapy, the unique features of prions, namely protein aggregation and assembly accompanied by steric structural transformation, may require different strategies for the development of anti-prion drugs than those for conventional therapeutics targeting enzyme inhibition, agonist ligands, or modulation of signaling. In this paper, we first overview the history of the application of polymers to prion disease research. Next, we describe the characteristics of each type of polymer with anti-prion activity. Finally, we discuss the common features of these polymers. Although drug delivery of these polymers to the brain is a challenge, they are useful not only as leads for therapeutic drugs but also as tools to explore the structure of PrPSc and are indispensable for prion disease research.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|