1
|
Zhou X, Tao Y, Shi Y. Unraveling the NLRP family: Structure, function, activation, critical influence on tumor progression, and potential as targets for cancer therapy. Cancer Lett 2024; 605:217283. [PMID: 39366544 DOI: 10.1016/j.canlet.2024.217283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The innate immune system serves as the body's initial defense, swiftly detecting danger via pattern recognition receptors (PRRs). Among these, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing proteins (NLRPs) are pivotal in recognizing pathogen-associated and damage-associated molecular patterns, thereby triggering immune responses. NLRPs, the most extensively studied subset within the NLR family, form inflammasomes that regulate inflammation, essential for innate immunity activation. Recent research highlights NLRPs' significant impact on various human diseases, including cancer. With differential expression across organs, NLRPs influence cancer progression by modulating immune reactions, cell fate, and proliferation. Their clinical significance in cancer makes them promising therapeutic targets. This review provides a comprehensive overview of the structure, function, activation mechanism of the NLRPs family and its potential role in cancer progression. In addition, we particularly focused on the concept of NLRP as a therapeutic target and its potential value in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Xueqing Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| | - Ying Shi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
2
|
Fang B, Yang T, Chen Y, Duan Z, Hu J, Wang Q, He Y, Zhang Y, Dong W, Zhang Q, Zhao X. Activation of ARP2/3 and HSP70 Expression by Lipoteichoic Acid: Potential Bidirectional Regulation of Apoptosis in a Mastitis Inflammation Model. Biomolecules 2024; 14:901. [PMID: 39199289 PMCID: PMC11352453 DOI: 10.3390/biom14080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Mastitis typically arises from bacterial invasion, where host cell apoptosis significantly contributes to the inflammatory response. Gram-positive bacteria predominantly utilize the virulence factor lipoteichoic acid (LTA), which frequently leads to chronic breast infections, thereby impacting dairy production and animal husbandry adversely. This study employed LTA to develop models of mastitis in cow mammary gland cells and mice. Transcriptomic analysis identified 120 mRNAs associated with endocytosis and apoptosis pathways that were enriched in the LTA-induced inflammation of the Mammary Alveolar Cells-large T antigen (MAC-T), with numerous differential proteins also concentrated in the endocytosis pathway. Notably, actin-related protein 2/3 complex subunit 3 (ARPC3), actin-related protein 2/3 complex subunit 4 (ARPC4), and the heat shock protein 70 (HSP70) are closely related. STRING analysis revealed interactions among ARPC3, ARPC4, and HSP70 with components of the apoptosis pathway. Histological and molecular biological assessments confirmed that ARPC3, ARPC4, and HSP70 were mainly localized to the cell membrane of mammary epithelial cells. ARPC3 and ARPC4 are implicated in the mechanisms of bacterial invasion and the initiation of inflammation. Compared to the control group, the expression levels of these proteins were markedly increased, alongside the significant upregulation of apoptosis-related factors. While HSP70 appears to inhibit apoptosis and alleviate inflammation, its upregulation presents novel research opportunities. In conclusion, we deduced the development mechanism of ARPC3, ARPC4, and HSP70 in breast inflammation, laying the foundation for further exploring the interaction mechanism between the actin-related protein 2/3 (ARP2/3) complex and HSP70.
Collapse
Affiliation(s)
- Bo Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Tingji Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Zhiwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yuxuan He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Quanwei Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| |
Collapse
|
3
|
Tang C, Guo X, Li Y, Yi Y, Tang Z, Zhang Q, Luo B, Chen K, Liang K, Li G. Cryptotanshinone Inhibits Bladder Cancer Cell Malignant Progression in a Lipopolysaccharide-Induced Inflammatory Microenvironment through NLRP3 Inhibition. Mediators Inflamm 2024; 2024:8828367. [PMID: 39144184 PMCID: PMC11324363 DOI: 10.1155/2024/8828367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/08/2023] [Accepted: 01/11/2024] [Indexed: 08/16/2024] Open
Abstract
Background Bladder cancer (BC) is one of the most common malignancies of the urogenital system. This study assessed the nucleotide-binding oligomerization domain and leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) in BC as well as the effects of cryptotanshinone on changes in BC malignant behaviors and NLRP3 expression under a lipopolysaccharide (LPS)-induced inflammatory microenvironment. Methods BC tissue specimens from 62 patients were collected for immunohistochemical detection of NLRP3 protein. BC and normal urothelial cell lines were cultured for the detection of NLRP3 mRNA and protein. Then, BC cells were pretreated with LPS to mimic the inflammatory tumor microenvironment. Next, these cells were incubated with a low or high dose of cryptotanshinone to assess its effects on tumor cell malignant behaviors as well as transfected with NLRP3 cDNA to confirm the role of NLRP3 in BC cells in vitro. Results High NLRP3 expression was associated with larger tumor diameters (>2 cm), muscle invasion, and metastasis. The levels of NLRP3 mRNA and protein were greater in BC cells than in normal urothelial cells. LPS pretreatment significantly promoted NLRP3 and inflammatory cytokine expression in BC cells, and induced cell viability, migration, and invasion. However, cryptotanshinone was able to reduce the LPS-induced increase of NLRP3 and inflammatory cytokine expression as well as the BC cell malignant progression. NLRP3 overexpression using NLRP3 cDNA further promoted BC cell malignant progression after LPS stimulation and reversed cryptotanshinone-reduced LPS-induced BC cell malignant behaviors. Conclusion NLRP3 might possess oncogenic activity in BC, and the antitumor activity of cryptotanshinone in BC in vitro might be related to its inhibition of NLRP3 expression.
Collapse
Affiliation(s)
- Chenye Tang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314000, China
| | - Xiao Guo
- Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314000, China
| | - Yu Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yongxiang Yi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiling Tang
- Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314000, China
| | - Qihui Zhang
- Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314000, China
| | - Bairu Luo
- Department of Clinical Pathology, Jiaxing Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing 314001, China
| | - Kean Chen
- Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314000, China
| | - Ke Liang
- Department of Urology, The First People's Hospital of Pinghu, Jiaxing 314299, China
| | - Gang Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
4
|
Lou S, Wu M, Cui S. Targeting NLRP3 Inflammasome: Structure, Function, and Inhibitors. Curr Med Chem 2024; 31:2021-2051. [PMID: 38310392 DOI: 10.2174/0109298673289984231127062528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/05/2024]
Abstract
Inflammasomes are multimeric protein complexes that can detect various physiological stimuli and danger signals. As a result, they perform a crucial function in the innate immune response. The NLRP3 inflammasome, as a vital constituent of the inflammasome family, is significant in defending against pathogen invasion and preserving cellhomeostasis. NLRP3 inflammasome dysregulation is connected to various pathological conditions, including inflammatory diseases, cancer, and cardiovascular and neurodegenerative diseases. This profile makes NLRP3 an applicable target for treating related diseases, and therefore, there are rising NLRP3 inhibitors disclosed for therapy. Herein, we summarized the updated advances in the structure, function, and inhibitors of NLRP3 inflammasome. Moreover, we aimed to provide an overview of the existing products and future directions for drug research and development.
Collapse
Affiliation(s)
- Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Miaolian Wu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| |
Collapse
|
5
|
Olivera I, Luri-Rey C, Teijeira A, Eguren-Santamaria I, Gomis G, Palencia B, Berraondo P, Melero I. Facts and Hopes on Neutralization of Protumor Inflammatory Mediators in Cancer Immunotherapy. Clin Cancer Res 2023; 29:4711-4727. [PMID: 37522874 DOI: 10.1158/1078-0432.ccr-22-3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
In cancer pathogenesis, soluble mediators are responsible for a type of inflammation that favors the progression of tumors. The mechanisms chiefly involve changes in the cellular composition of the tumor tissue stroma and in the functional modulation of myeloid and lymphoid leukocytes. Active immunosuppression, proangiogenesis, changes in leukocyte traffic, extracellular matrix remodeling, and alterations in tumor-antigen presentation are the main mechanisms linked to the inflammation that fosters tumor growth and metastasis. Soluble inflammatory mediators and their receptors are amenable to various types of inhibitors that can be combined with other immunotherapy approaches. The main proinflammatory targets which can be interfered with at present and which are under preclinical and clinical development are IL1β, IL6, the CXCR1/2 chemokine axis, TNFα, VEGF, leukemia inhibitory factor, CCL2, IL35, and prostaglandins. In many instances, the corresponding neutralizing agents are already clinically available and can be repurposed as a result of their use in other areas of medicine such as autoimmune diseases and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Belen Palencia
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Zhu QM, Li HX, Ma PQ, Wu LX, Wang TH, Li WB, Zhang L, Yang X, Kong X, Sun YL, Yan T. A potential immunotherapy target for breast cancer: parenchymal and immune-stromal expression of the NLRP3 inflammasome pathway. BMC Cancer 2023; 23:1163. [PMID: 38031068 PMCID: PMC10685553 DOI: 10.1186/s12885-023-11609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The NOD-, LRR- and pyrin domain‑containing 3 (NLRP3) inflammasome is a critical component of the innate immune system. It has been known to play an important role in the carcinogenesis and prognosis of breast cancer patients. While the clinical evidence of the relationship between NLRP3 inflammasome activation and long-term survival is still limited, the possible roles of parenchymal or immune-stromal cells of breast cancer tissues in contributing to such carcinogenesis and progression still need to be clarified. This study is an analysis of patients receiving breast cancer surgery in a previous clinical trial. METHODS Immunohistochemistry (IHC) was used to detect the expression levels of NLRP3 inflammasome pathway-related proteins, including NLRP3, caspase-1, apoptosis-associated speck-like protein (ASC), IL-1β, and IL-18, in parenchymal and immune-stromal cells of breast cancer tissues compared to those of adjacent normal tissues, respectively. The relationship between NLRP3 inflammasome expression and clinicopathological characteristics, as well as 5-year survivals were analyzed using the Chi-square test, Kaplan-Meier survival curves, and Cox regression analysis. RESULTS In the parenchymal cells, ASC and IL-18 protein levels were significantly up-regulated in breast cancer tissues compared with adjacent normal tissues (P<0.05). In the immune-stromal cells, all the five NLRP3 inflammasome pathway-related proteins were significantly elevated in breast cancer tissues compared with adjacent normal tissues (P < 0.05). Carcinoma cell embolus was found to significantly correlate with high NLRP3 expression in parenchymal cells of the tumor (x2=4.592, P=0.032), while the expression of caspase-1 was negatively correlated with tumor progression. Histological grades were found to have a positive correlation with IL-18 expression in immune-stromal cells of the tumor (x2=14.808, P=0.001). Kaplan-Meier survival analysis revealed that high IL-18 expression in the immune-stromal cells and the positive carcinoma cell embolus were both associated with poor survival (P < 0.05). The multivariable Cox proportional hazards regression model implied that the high IL-18 expression and positive carcinoma cell embolus were both independent risk factors for unfavorable prognosis. CONCLUSIONS The activation of NLRP3 inflammasome pathways in immune-stromal and tumor parenchymal cells in the innate immune system was not isotropic and the main functions are somewhat different in breast cancer patients. Caspase-1 in parenchymal cells of the tumor was negatively correlated with tumor progression, and upregulation of IL-18 in immune-stromal cells of breast cancer tissues is a promising prognostic biomarker and a potential immunotherapy target. TRIAL REGISTRATION This clinical trial has been registered at the Chictr.org.cn registry system on 21/08/2018 (ChiCTR1800017910).
Collapse
Affiliation(s)
- Qian-Mei Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hui-Xian Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Pei-Qing Ma
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin-Xin Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tai-Hang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wen-Bin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Zhang
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
- The School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Xue Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu-Lin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Lu Q, Lao X, Gan J, Du P, Zhou Y, Nong W, Yang Z. Impact of NLRP3 gene polymorphisms (rs10754558 and rs10733113) on HPV infection and cervical cancer in southern Chinese population. Infect Agent Cancer 2023; 18:64. [PMID: 37885032 PMCID: PMC10601328 DOI: 10.1186/s13027-023-00529-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE Mutations in the NLRP3gene have previously been linked to certain forms of cancer, but there have not been any specific studies examining the association between NLRP3 polymorphisms and cervical cancer (CC). This study was therefore designed to investigate the effect of NLRP3 gene polymorphisms on HPV infection and cervical cancer in southern Chinese population. METHODS Multiplex PCR and next-generation sequencing approaches were used to assess the NLRP3 rs10754558 and rs10733113 polymorphisms in 404 cervical lesion patients, including 227 diagnosed with CC and 177 diagnosed with cervical intraepithelial neoplasia(CIN), with 419 healthy female controls being included for comparison. Correlations between the rs10754558 and rs10733113 genotypes and alleles in these patients and CC and CIN were then analyzed. RESULTS No correlations were found between NLRP3 rs10754558 and rs10733113 and human papillomavirus(HPV) infection status. Relative to the healthy control group, the NLRP3 rs10754558 GG genotype, CG + GG genotype, and G allele frequencies were significantly increased among patients with cervical lesions (CC and CIN) (OR = 1.815,P = 0.013;OR = 1.383, P = 0.026; OR = 1.284, P = 0.014,respectively), whereas no such differences were observed for rs10733113. A higher cervical lesion risk was detected for patients over the age of 45 exhibiting the rs10754558 GG genotype (OR = 1.848, P = 0.040). Additionally, the risk of CC was elevated in patients with the rs10754558 GG genotype or the G allele relative to patients with the CC genotype or the C allele(OR = 1.830, P = 0.029; OR = 1.281, P = 0.039). The rs10733113 genotypes or alleles were not significantly associated with CC risk (P > 0.05). No association between rs10754558 and rs10733113 genotypes and CC patient clinicopathological features were observed (P > 0.05). Serum NLRP3, IL-1β, and IL-18 levels were significantly elevated in CC patients relative to healthy controls(P < 0.05). Relative to the CC genotype, CC patients harboring the rs10754558 GG genotype exhibited significantly elevated IL-1β and IL-18 levels(P < 0.05). CONCLUSION The rs10754558 polymorphism in the NLRP3 gene may contribute to an elevated risk of CC, although it is not significantly correlated with HPV infection and CC progression.
Collapse
Affiliation(s)
- Qingchun Lu
- Department of Gynecology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Xiaoxia Lao
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Jinghua Gan
- Department of Gynecology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Ping Du
- Department of Gynecology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Yingpei Zhou
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Wenzheng Nong
- Department of Gynecology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China.
| | - Zhige Yang
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China.
| |
Collapse
|
8
|
Mészáros Á, Molnár K, Fazakas C, Nógrádi B, Lüvi A, Dudás T, Tiszlavicz L, Farkas AE, Krizbai IA, Wilhelm I. Inflammasome activation in peritumoral astrocytes is a key player in breast cancer brain metastasis development. Acta Neuropathol Commun 2023; 11:155. [PMID: 37749707 PMCID: PMC10521486 DOI: 10.1186/s40478-023-01646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/27/2023] [Indexed: 09/27/2023] Open
Abstract
Inflammasomes, primarily responsible for the activation of IL-1β, have emerged as critical regulators of the tumor microenvironment. By using in vivo and in vitro brain metastasis models, as well as human samples to study the role of the NLRP3 inflammasome in triple-negative breast cancer (TNBC) brain metastases, we found NLRP3 inflammasome components and IL-1β to be highly and specifically expressed in peritumoral astrocytes. Soluble factors from TNBC cells induced upregulation and activation of NLRP3 and IL-1β in astrocytes, while astrocyte-derived mediators augmented the proliferation of metastatic cells. In addition, inhibition of NLRP3 inflammasome activity using MCC950 or dampening the downstream effect of IL-1β prevented the proliferation increase in cancer cells. In vivo, MCC950 reduced IL-1β expression in peritumoral astrocytes, as well as the levels of inflammasome components and active IL-1β. Most importantly, significantly retarded growth of brain metastatic tumors was observed in mice treated with MCC950. Overall, astrocytes contribute to TNBC progression in the brain through activation of the NLRP3 inflammasome and consequent IL-1β release. We conclude that pharmacological targeting of inflammasomes may become a novel strategy in controlling brain metastatic diseases.
Collapse
Affiliation(s)
- Ádám Mészáros
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Bernát Nógrádi
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Adél Lüvi
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Tamás Dudás
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | | | - Attila Elek Farkas
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - István Adorján Krizbai
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary.
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania.
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary.
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania.
| |
Collapse
|
9
|
Elgohary S, Eissa RA, El Tayebi HM. Thymoquinone, a Novel Multi-Strike Inhibitor of Pro-Tumorigenic Breast Cancer (BC) Markers: CALR, NLRP3 Pathway and sPD-L1 in PBMCs of HR+ and TNBC Patients. Int J Mol Sci 2023; 24:14254. [PMID: 37762557 PMCID: PMC10531892 DOI: 10.3390/ijms241814254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is not only a mass of malignant cells but also a systemic inflammatory disease. BC pro-tumorigenic inflammation has been shown to promote immune evasion and provoke BC progression. The NOD-like receptor (NLR) family pyrin domain-containing protein 3 (NLRP3) inflammasome is activated when pattern recognition receptors (PRRs) sense danger signals such as calreticulin (CALR) from damaged/dying cells, leading to the secretion of interleukin-1β (IL-1β). CALR is a novel BC biological marker, and its high levels are associated with advanced tumors. NLRP3 expression is strongly correlated with an elevated proliferative index Ki67, BC progression, metastasis, and recurrence in patients with hormone receptor-positive (HR+) and triple-negative BC (TNBC). Tumor-associated macrophages (TAMs) secrete high levels of IL-1β promoting endocrine resistance in HR+ BC. Recently, an immunosuppressive soluble form of programmed death ligand 1 (sPD-L1) has been identified as a novel prognostic biomarker in triple-negative breast cancer (TNBC) patients. Interestingly, IL-1β induces sPD-L1 release. BC Patients with elevated IL-1β and sPD-L1 levels show significantly short progression-free survival. For the first time, this study aims to investigate the inhibitory impact of thymoquinone (TQ) on CALR, the NLRP3 pathway and sPD-L1 in HR+ and TNBC. Blood samples were collected from 45 patients with BC. The effect of differing TQ concentrations for different durations on the expression of CALR, NLRP3 complex components and IL-1β as well as the protein levels of sPD-L1 and IL-1β were investigated in the peripheral blood mononuclear cells (PBMCs) and TAMs of TNBC and HR+ BC patients, respectively. The findings showed that TQ significantly downregulated the expression of CALR, NLRP3 components and IL-1β together with the protein levels of secreted IL-1β and sPD-L1. The current findings demonstrated novel immunomodulatory effects of TQ, highlighting its potential role not only as an excellent adjuvant but also as a possible immunotherapeutic agent in HR+ and TNBC patients.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Reda A. Eissa
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| |
Collapse
|
10
|
Zheng Y, Wang S, Zhong Y, Huang C, Wu X. A20 affects macrophage polarization through the NLRP3 inflammasome signaling pathway and promotes breast cancer progression. Exp Ther Med 2023; 25:147. [PMID: 36911385 PMCID: PMC9995841 DOI: 10.3892/etm.2023.11846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
Breast cancer is the most common malignant tumor in females, and the majority of patients succumb to metastasis. The present study aimed to investigate the association between tumor necrosis factor alpha-induced protein 3 (A20), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) and tumor-associated macrophage polarization, and their effects on the proliferation and metastasis of breast cancer cells. The expression of A20 in breast cancer cells was analyzed by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. RT-qPCR and western blotting were also used to confirm the transfection efficiency. The viability, clone formation, migration, invasion and angiogenesis of transfected breast cancer cells were detected by Cell Counting Kit-8, colony formation, wound healing, Transwell and tube formation assays, respectively. Activated macrophages, namely M1 and M2 type macrophages, were observed by double staining immunofluorescence. The levels of M1 and M2 macrophage markers were analyzed by qPCR. The expression of angiogenesis-related proteins and NLRP3 inflammasome activation-associated proteins was detected by western blotting. The results revealed that A20 was highly expressed in breast cancer cells. Interference with A20 inhibited the proliferation, invasion, migration and angiogenesis of breast cancer cells, and inhibited the M2-like polarization of macrophages. Interference with A20 promoted the activation of the NLRP3 inflammasome. The NLRP3 inhibitor MCC950 alleviated the effect of interference with A20 to promote macrophage proliferation and recruitment, as well as M2-like polarization. In conclusion, interference with A20 inhibited macrophage proliferation and M2-like polarization through the NLRP3 inflammasome signaling pathway to inhibit breast cancer progression.
Collapse
Affiliation(s)
- Yanbin Zheng
- Department of Clinical Laboratory, LongYan First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 364000, P.R. China
| | - Shenglan Wang
- Department of Clinical Laboratory, LongYan First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 364000, P.R. China
| | - Yutong Zhong
- Department of Clinical Laboratory, LongYan First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 364000, P.R. China
| | - Chunhong Huang
- Department of Clinical Laboratory, LongYan First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 364000, P.R. China
| | - Xinjie Wu
- Department of Emergency, LongYan First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 364000, P.R. China
| |
Collapse
|
11
|
Chen C, Ye Q, Wang L, Zhou J, Xiang A, Lin X, Guo J, Hu S, Rui T, Liu J. Targeting pyroptosis in breast cancer: biological functions and therapeutic potentials on It. Cell Death Discov 2023; 9:75. [PMID: 36823153 PMCID: PMC9950129 DOI: 10.1038/s41420-023-01370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Pyroptosis is a lytic and inflammatory type of programmed cell death that is mediated by Gasdermin proteins (GSDMs). Attractively, recent evidence indicates that pyroptosis involves in the development of tumors and can serve as a new strategy for cancer treatment. Here, we present a basic knowledge of pyroptosis, and an overview of the expression patterns and roles of GSDMs in breast cancer. In addition, we further summarize the available evidence of pyroptosis in breast cancer progression and give insight into the clinical potential of applying pyroptosis in anticancer strategies for breast cancer. This review will deepen our understanding of the relationship between pyroptosis and breast cancer, and provide a novel potential therapeutic avenue for breast cancer.
Collapse
Affiliation(s)
- Cong Chen
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianwei Ye
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- grid.13402.340000 0004 1759 700XDepartment of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jichun Zhou
- grid.13402.340000 0004 1759 700XDepartment of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aizhai Xiang
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Lin
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jufeng Guo
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shufang Hu
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Rui
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Liu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
(Stămat) LRB, Dinescu S, Costache M. Regulation of Inflammasome by microRNAs in Triple-Negative Breast Cancer: New Opportunities for Therapy. Int J Mol Sci 2023; 24:ijms24043245. [PMID: 36834660 PMCID: PMC9963301 DOI: 10.3390/ijms24043245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
During the past decade, researchers have investigated the molecular mechanisms of breast cancer initiation and progression, especially triple-negative breast cancer (TNBC), in order to identify specific biomarkers that could serve as feasible targets for innovative therapeutic strategies development. TNBC is characterized by a dynamic and aggressive nature, due to the absence of estrogen, progesterone and human epidermal growth factor 2 receptors. TNBC progression is associated with the dysregulation of nucleotide-binding oligomerization domain-like receptor and pyrin domain-containing protein 3 (NLRP3) inflammasome, followed by the release of pro-inflammatory cytokines and caspase-1 dependent cell death, termed pyroptosis. The heterogeneity of the breast tumor microenvironment triggers the interest of non-coding RNAs' involvement in NLRP3 inflammasome assembly, TNBC progression and metastasis. Non-coding RNAs are paramount regulators of carcinogenesis and inflammasome pathways, which could help in the development of efficient treatments. This review aims to highlight the contribution of non-coding RNAs that support inflammasome activation and TNBC progression, pointing up their potential for clinical applications as biomarkers for diagnosis and therapy.
Collapse
Affiliation(s)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
13
|
Wang P, Gu Y, Yang J, Qiu J, Xu Y, Xu Z, Gao J, Wan C. The prognostic value of NLRP1/NLRP3 and its relationship with immune infiltration in human gastric cancer. Aging (Albany NY) 2022; 14:9980-10008. [PMID: 36541912 PMCID: PMC9831740 DOI: 10.18632/aging.204438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Inflammasomes are related to tumorigenesis and immune-regulation. Here, we investigated the prognostic value of the NLR family pyrin domain containing (NLRP) 1/NLRP3 inflammasome and its potential mechanisms in immune-regulation in gastric cancer (GC). METHODS We analyzed the differential expression of NLRP1/NLRP3 between tumor and normal tissues using the Oncomine and Tumor Immune Estimate Resource (TIMER) databases. Immunohistochemistry and western blotting were used to detect NLRP1/NLRP3 protein expression in GC tissues. Correlations between NLRP1/NLRP3 expression levels and patient survival were analyzed using Kaplan-Meier survival curves. The relationships of NLRP1/NLRP3 expression and tumor-infiltrating immune cells/marker genes were assessed using the TIMER database. NLRP1/NLRP3 and immune checkpoint gene correlations were verified by single-gene co-expression analyses, and tumor immune-related pathways involving NLRP1/NLRP3 were analyzed using gene set enrichment analysis (GSEA). RESULTS Elevated NLRP1/NLRP3 expression was significantly correlated with lymph node metastasis, poor survival, immune-infiltrating cell abundances, and immune cell markers. NLRP3 showed stronger correlations with immune infiltration and the prognosis of gastric cancer. NLRP1 and NLRP3 might be involved in the same tumor immune-related pathways. Thus, high NLRP1/NLRP3 expression promotes immune cell infiltration and poor prognosis in GC. NLRP1/NLRP3, particularly NLRP3, may have important roles in immune infiltration and may serve as a prognostic biomarker for GC. CONCLUSIONS NLRP1/NLRP3, particularly NLRP3, may have important roles in immune infiltration and may serve as a prognostic biomarker for GC.
Collapse
Affiliation(s)
- Ping Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Yulan Gu
- Department of Oncology, Changshu Second People’s Hospital, Changshu 215500, China
| | - Jianke Yang
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Jiamin Qiu
- Department of Pathology, Changshu Second People’s Hospital, Changshu 215500, China
| | - Yeqiong Xu
- Central laboratory of Changshu Medical examination Institute, Changshu 215500, China
| | - Zengxiang Xu
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Jiguang Gao
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Chuandan Wan
- Central laboratory of Changshu Medical examination Institute, Changshu 215500, China
| |
Collapse
|
14
|
Hashemi M, Arani HZ, Orouei S, Fallah S, Ghorbani A, Khaledabadi M, Kakavand A, Tavakolpournegari A, Saebfar H, Heidari H, Salimimoghadam S, Entezari M, Taheriazam A, Hushmandi K. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed Pharmacother 2022; 155:113774. [DOI: 10.1016/j.biopha.2022.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
|
15
|
Wu Y, Li X, Li Q, Cheng C, Zheng L. Adipose tissue-to-breast cancer crosstalk: Comprehensive insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188800. [PMID: 36103907 DOI: 10.1016/j.bbcan.2022.188800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The review focuses on mechanistic evidence for the link between obesity and breast cancer. According to the IARC study, there is sufficient evidence that obesity is closely related to a variety of cancers. Among them, breast cancer is particularly disturbed by adipose tissue due to the unique histological structure of the breast. The review introduces the relationship between obesity and breast cancer from two aspects, including factors that promote tumorigenesis or metastasis. We summarize alterations in adipokines and metabolic pathways that contribute to breast cancer development. Breast cancer metastasis is closely related to obesity-induced pro-inflammatory microenvironment, adipose stem cells, and miRNAs. Based on the mechanism by which obesity causes breast cancer, we list possible therapeutic directions, including reducing the risk of breast cancer and inhibiting the progression of breast cancer. We also discussed the risk of autologous breast remodeling and fat transplantation. Finally, the causes of the obesity paradox and the function of enhancing immunity are discussed. Evaluating the balance between obesity-induced inflammation and enhanced immunity warrants further study.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Xu Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Qiong Li
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Chienshan Cheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China.
| |
Collapse
|
16
|
Downstream Signaling of Inflammasome Pathway Affects Patients' Outcome in the Context of Distinct Molecular Breast Cancer Subtypes. Pharmaceuticals (Basel) 2022; 15:ph15060651. [PMID: 35745570 PMCID: PMC9229152 DOI: 10.3390/ph15060651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammasomes are protein complexes involved in the regulation of different biological conditions. Over the past few years, the role of NLRP3 in different tumor types has gained interest. In breast cancer (BC), NLRP3 has been associated with multiple processes including epithelia mesenchymal transition, invasion and metastization. Little is known about molecular modifications of NLRP3 up-regulation. In this study, in a cohort of BCs, the expression levels of NLRP3 and PYCARD were analyzed in combination with CyclinD1 and MYC ones and their gene alterations. We described a correlation between the NLRP3/PYCARD axis and CyclinD1 (p < 0.0001). NLRP3, PYCARD and CyclinD1’s positive expression was observed in estrogen receptor (ER) and progesterone receptor (PgR) positive cases (p < 0.0001). Furthermore, a reduction of NLRP3 and PYCARD expression has been observed in triple negative breast cancers (TNBCs) with respect to the Luminal phenotypes (p = 0.017 and p = 0.0015, respectively). The association NLRP3+/CCND1+ or PYCARD+/CCND1+ was related to more aggressive clinicopathological characteristics and a worse clinical outcome, both for progression free survival (PFS) and overall survival (OS) with respect to NLRP3+/CCND1− or PYCARD+/CCND1− patients, both in the whole cohort and also in the subset of Luminal tumors. In conclusion, our study shows that the NLRP3 inflammasome complex is down-regulated in TNBC compared to the Luminal subgroup. Moreover, the expression levels of NLRP3 and PYCARD together with the alterations of CCND1 results in Luminal subtype BC’ss poor prognosis.
Collapse
|
17
|
Overcoming Immunotherapy Resistance by Targeting the Tumor-Intrinsic NLRP3-HSP70 Signaling Axis. Cancers (Basel) 2021; 13:cancers13194753. [PMID: 34638239 PMCID: PMC8507548 DOI: 10.3390/cancers13194753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The tumor-intrinsic NLRP3 inflammasome is a newly recognized player in the regulation of tumor-directed immune responses and promises to provide fresh insight into how tumors respond to immunotherapy. This brief review discusses recent data describing how activation of the tumor-intrinsic NLRP3 inflammasome contributes to immune evasion and what this pathway may provide to the field of immuno-oncology both in terms of pharmacologic targets capable of boosting responses to checkpoint inhibitor therapies and predictive biomarkers indicating which tumors may be most susceptible to these new therapeutic strategies. Abstract The tumor-intrinsic NOD-like receptor family, pyrin-domain-containing-3 (NLRP3) inflammasome, plays an important role in regulating immunosuppressive myeloid cell populations in the tumor microenvironment (TME). While prior studies have described the activation of this inflammasome in driving pro-tumorigenic mechanisms, emerging data is now revealing the tumor NLRP3 inflammasome and the downstream release of heat shock protein-70 (HSP70) to regulate anti-tumor immunity and contribute to the development of adaptive resistance to anti-PD-1 immunotherapy. Genetic alterations that influence the activity of the NLRP3 signaling axis are likely to impact T cell-mediated tumor cell killing and may indicate which tumors rely on this pathway for immune escape. These studies suggest that the NLRP3 inflammasome and its secreted product, HSP70, represent promising pharmacologic targets for manipulating innate immune cell populations in the TME while enhancing responses to anti-PD-1 immunotherapy. Additional studies are needed to better understand tumor-specific regulatory mechanisms of NLRP3 to enable the development of tumor-selective pharmacologic strategies capable of augmenting responses to checkpoint inhibitor immunotherapy while minimizing unwanted off-target effects. The execution of upcoming clinical trials investigating this strategy to overcome anti-PD-1 resistance promises to provide novel insight into the role of this pathway in immuno-oncology.
Collapse
|