1
|
Rurek M. Mitochondria in COVID-19: from cellular and molecular perspective. Front Physiol 2024; 15:1406635. [PMID: 38974521 PMCID: PMC11224649 DOI: 10.3389/fphys.2024.1406635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during β-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
2
|
Kalashnyk O, Lykhmus O, Sullivan R, Komisarenko S, Skok M. Agonists or positive allosteric modulators of α7 nicotinic acetylcholine receptor prevent interaction of SARS-Cov-2 receptor-binding domain with astrocytoma cells. Biochem Biophys Res Commun 2024; 709:149825. [PMID: 38537599 DOI: 10.1016/j.bbrc.2024.149825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
SARS-Cov-2, the virus causing COVID-19, penetrates host target cells via the receptor of angiotensin-converting enzyme 2 (ACE2). Disrupting the virus interaction with ACE2 affords a plausible mechanism for prevention of cell penetration and inhibiting dissemination of the virus. Our studies demonstrate that ACE2 interaction with the receptor binding domain of SARS-Cov-2 spike protein (RBD) can be impaired by modulating the α7 nicotinic acetylcholine receptor (α7 nAChR) contiguous with ACE2. U373 cells of human astrocytoma origin were shown to bind both ACE2-specific antibody and recombinant RBD in Cell-ELISA. ACE2 was found to interact with α7 nAChR in U373 cell lysates studied by Sandwich ELISA. Our studies demonstrate that inhibition of RBD binding to ACE2-expressing U373 cells were defined with α7 nAChR agonists choline and PNU282987, but not a competitive antagonist methyllicaconitine (MLA). Additionally, the type 2 positive allosteric modulator (PAM2) PNU120596 and hydroxyurea (HU) also inhibited the binding. Our studies demonstrate that activation of α7 AChRs has efficacy in inhibiting the SARS-Cov-2 interaction with the ACE2 receptor and in such a way can prevent virus target cell penetration. These studies also help to clarify the consistent efficacy and positive outcomes for utilizing HU in treating COVID-19.
Collapse
Affiliation(s)
- Olena Kalashnyk
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Str., 01054, Kyiv, Ukraine.
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Str., 01054, Kyiv, Ukraine.
| | | | - Serhiy Komisarenko
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Str., 01054, Kyiv, Ukraine.
| | - Maryna Skok
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Str., 01054, Kyiv, Ukraine.
| |
Collapse
|
3
|
Skok M. The role of α7 nicotinic acetylcholine receptors in post-acute sequelae of covid-19. Int J Biochem Cell Biol 2024; 168:106519. [PMID: 38218363 DOI: 10.1016/j.biocel.2024.106519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Post-Acute Sequelae of COVID-19 or Long COVID becomes evident some weeks to months following acute COVID-19. Symptoms include cognitive impairment and varying degrees of memory loss with no definitive etiologies or efficacious therapies forthcoming even after four years of the SARS-Cov2 pandemic virus. The aim of this review is to demonstrate the important role of α7 nicotinic acetylcholine receptors in both acute COVID-19 and Long COVID. Evidence presented implicates immune mechanisms stimulated by SARS-Cov-2 S-protein fragment 674-685 that possesses homology with α7-specific ligands. Cognitive dysfunctions observed in Long COVID patients may be derived from anti-idiotypic α7-specific antibodies stimulated by (674-685)-specific antibodies. Therapeutic interventions capable of neutralizing these antibodies and restoring full functions of α7 nicotinic acetylcholine receptors appear to be of paramount importance in post-acute sequelae of COVID-19.
Collapse
Affiliation(s)
- Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovycha str, 01054 Kyiv, Ukraine.
| |
Collapse
|
4
|
Bele T, Turk T, Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166875. [PMID: 37673358 DOI: 10.1016/j.bbadis.2023.166875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
Collapse
Affiliation(s)
- T Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - T Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Lykhmus O, Kalashnyk O, Sullivan R, Skok M. Hydroxyurea interaction with α7 nicotinic acetylcholine receptor can underlie its therapeutic efficacy upon COVID-19. J Neuroimmunol 2023; 385:578244. [PMID: 38016403 DOI: 10.1016/j.jneuroim.2023.578244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
In this paper the authors provide evidence that hydroxyurea (hydroxycarbamide) interacts with α7 nicotinic acetylcholine receptor, exerts anti-inflammatory and pro-survival effect, prevents α7 nicotinic receptor interaction with angiotensin-converting enzyme-2 and stimulates IgM to IgG class switch upon immunization with SARS spike protein fragment 674-685. Hydroxyurea shifts immunoglobulin glycosylation profile to anti-inflammatory phenotype and prevents the appearance of anti-idiotypic α7(179-190)-specific antibodies, as well as memory impairment. According to these results, interaction with α7 nicotinic acetylcholine receptor may underlie positive therapeutic effects of hydroxyurea upon SARS-Cov-2 infection by interfering with virus penetration into the cell and providing anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
| | | | | | - Maryna Skok
- Palladin Institute of Biochemistry, Kyiv, Ukraine.
| |
Collapse
|
6
|
O'Brien BCV, Weber L, Hueffer K, Weltzin MM. SARS-CoV-2 spike ectodomain targets α7 nicotinic acetylcholine receptors. J Biol Chem 2023; 299:104707. [PMID: 37061001 PMCID: PMC10101490 DOI: 10.1016/j.jbc.2023.104707] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
Virus entry into animal cells is initiated by attachment to target macromolecules located on host cells. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) trimeric spike glycoprotein targets host angiotensin converting enzyme 2 to gain cellular access. The SARS-CoV-2 glycoprotein contains a neurotoxin-like region that has sequence similarities to the rabies virus and the HIV glycoproteins, as well as to snake neurotoxins, which interact with nicotinic acetylcholine receptor (nAChR) subtypes via this region. Using a peptide of the neurotoxin-like region of SARS-CoV-2 (SARS-CoV-2 glycoprotein peptide [SCoV2P]), we identified that this area moderately inhibits α3β2, α3β4, and α4β2 subtypes, while potentiating and inhibiting α7 nAChRs. These nAChR subtypes are found in target tissues including the nose, lung, central nervous system, and immune cells. Importantly, SCoV2P potentiates and inhibits ACh-induced α7 nAChR responses by an allosteric mechanism, with nicotine enhancing these effects. Live-cell confocal microscopy was used to confirm that SCoV2P interacts with α7 nAChRs in transfected neuronal-like N2a and human embryonic kidney 293 cells. The SARS-CoV-2 ectodomain functionally potentiates and inhibits the α7 subtype with nanomolar potency. Our functional findings identify that the α7 nAChR is a target for the SARS-CoV-2 glycoprotein, providing a new aspect to our understanding of SARS-CoV-2 and host cell interactions, in addition to disease pathogenesis.
Collapse
Affiliation(s)
- Brittany C V O'Brien
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Lahra Weber
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Maegan M Weltzin
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA.
| |
Collapse
|
7
|
Keever KR, Yakubenko VP, Hoover DB. Neuroimmune nexus in the pathophysiology and therapy of inflammatory disorders: role of α7 nicotinic acetylcholine receptors. Pharmacol Res 2023; 191:106758. [PMID: 37028776 DOI: 10.1016/j.phrs.2023.106758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
The α7-nicotinic acetylcholine receptor (α7nAChR) is a key protein in the cholinergic anti-inflammatory pathway (CAP) that links the nervous and immune systems. Initially, the pathway was discovered based on the observation that vagal nerve stimulation (VNS) reduced the systemic inflammatory response in septic animals. Subsequent studies form a foundation for the leading hypothesis about the central role of the spleen in CAP activation. VNS evokes noradrenergic stimulation of ACh release from T cells in the spleen, which in turn activates α7nAChRs on the surface of macrophages. α7nAChR-mediated signaling in macrophages reduces inflammatory cytokine secretion and modifies apoptosis, proliferation, and macrophage polarization, eventually reducing the systemic inflammatory response. A protective role of the CAP has been demonstrated in preclinical studies for multiple diseases including sepsis, metabolic disease, cardiovascular diseases, arthritis, Crohn's disease, ulcerative colitis, endometriosis, and potentially COVID-19, sparking interest in using bioelectronic and pharmacological approaches to target α7nAChRs for treating inflammatory conditions in patients. Despite a keen interest, many aspects of the cholinergic pathway are still unknown. α7nAChRs are expressed on many other subsets of immune cells that can affect the development of inflammation differently. There are also other sources of ACh that modify immune cell functions. How the interplay of ACh and α7nAChR on different cells and in various tissues contributes to the anti-inflammatory responses requires additional study. This review provides an update on basic and translational studies of the CAP in inflammatory diseases, the relevant pharmacology of α7nAChR-activated drugs and raises some questions that require further investigation.
Collapse
|
8
|
Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications. Mitochondrion 2023; 69:43-56. [PMID: 36690315 PMCID: PMC9854144 DOI: 10.1016/j.mito.2023.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Mitochondria play a central role in oxidative phosphorylation (OXPHOS), bioenergetics linked with ATP production, fatty acids biosynthesis, calcium signaling, cell cycle regulation, apoptosis, and innate immune response. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection manipulates the host cellular machinery for its survival and replication in the host cell. The infectiaon causes perturbed the cellular metabolism that favours viral replication leading to mitochondrial dysfunction and chronic inflammation. By localizing to the mitochondria, SARS CoV proteins increase reactive oxygen species (ROS) levels, perturbation of Ca2+ signaling, changes in mtDNA copy number, mitochondrial membrane potential (MMP), mitochondrial mass, and induction of mitophagy. These proteins also influence the fusion and fission kinetics, size, structure, and distribution of mitochondria in the infected host cells. This results in compromised bioenergetics, altered metabolism, and innate immune signaling, and hence can be a key player in determining the outcome of SARS-CoV infection. SARS-CoV infection contributes to stress and activates apoptotic pathways. This review summarizes how mitochondrial function and dynamics are affected by SARS-CoV and how the mitochondria-SARS-CoV interaction benefits viral survival and growth by evading innate host immunity. We also highlight how the SARS-CoV-mediated mitochondrial dysfunction contributes to post-COVID complications. Besides, a discussion on targeting virus-mitochondria interactions as a therapeutic strategy is presented.
Collapse
|
9
|
Liu CJ, Fan XD, Jiang JG, Chen QX, Zhu W. Potential anticancer activities of securinine and its molecular targets. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154417. [PMID: 36063584 DOI: 10.1016/j.phymed.2022.154417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Securinine is an alkaloid identified from the roots and leaves of the shrub Flueggea suffruticosa (Pall.) Baill. The molecular structure of securinine consists of four rings, including three chiral centers. It has been suggested that securinine can be chemically synthesized from tyrosine and lysine. Securinine has long been used to treat central nervous system diseases. In recent years, more and more evidence shows that securinine also has anticancer activity, which has not been systematically discussed and analyzed. PURPOSE This study aims to propose an overall framework to describe the molecular targets of securinine in different signal pathways, and discuss the current status and prospects of each pathway, so as to provide a theoretical basis for the development securinine as an effective anticancer drug. METHODS The research databases on the anticancer activity of securinine from PubMed, Scopus, Web of Science and ScienceDirect to 2021 were systematically searched. This paper follows the Preferred Reporting Items and Meta-Analysis guidelines. RESULTS Securinine has the ability to kill a variety of human cancer cells, including, leukemia as well as prostate, cervical, breast, lung, and colon cancer cells. It can regulate the signal pathways of phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin, Wnt and Janus kinase-signal transducer and activator of transcription, promote cancer cell apoptosis and autophagy, and inhibit cancer cell metastasis. Securinine also has the activity of inducing leukemia cell differentiation. CONCLUSION Although there has been some experimental evidence indicating the anticancer effect of securinine and its possible pharmacology, in order to design more effective anticancer drugs, it is necessary to study the synergy of intracellular signaling pathways. More in vivo experiments and even clinical studies are needed, and the synergy between securinine and other drugs is also worth studying.
Collapse
Affiliation(s)
- Chang-Jun Liu
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Dan Fan
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| | - Qiu-Xiong Chen
- The second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Wei Zhu
- The second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
10
|
Lykhmus O, Kalashnyk O, Koval L, Krynina O, Komisarenko S, Skok M. Immunization with 674-685 fragment of SARS-Cov-2 spike protein induces neuroinflammation and impairs episodic memory of mice. Biochem Biophys Res Commun 2022; 622:57-63. [PMID: 35843095 PMCID: PMC9263688 DOI: 10.1016/j.bbrc.2022.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
COVID-19 is accompanied by strong inflammatory reaction and is often followed by long-term cognitive disorders. The fragment 674-685 of SARS-Cov-2 spike protein was shown to interact with α7 nicotinic acetylcholine receptor involved in regulating both inflammatory reactions and cognitive functions. Here we show that mice immunized with the peptide corresponding to 674-685 fragment of SARS-Cov-2 spike protein conjugated to hemocyanin (KLH-674-685) demonstrate decreased level of α7 nicotinic acetylcholine receptors, increased levels of IL-1β and TNFα in the brain and impairment of episodic memory. Choline injections prevented α7 nicotinic receptor decline and memory loss. Mice injected with immunoglobulins obtained from the blood of (KLH-674-685)-immunized mice also demonstrated episodic memory decline. These data allow suggesting that post-COVID memory impairment in humans is related to SARS-Cov-2 spike protein-specific immune reaction. The mechanisms of such effect are being discussed.
Collapse
Affiliation(s)
- Olena Lykhmus
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Olena Kalashnyk
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Lyudmyla Koval
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Olga Krynina
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Serhiy Komisarenko
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Maryna Skok
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| |
Collapse
|
11
|
Mohd Fuad SH, Juliana N, Mohd Azmi NAS, Mohd Fahmi Teng NI, Azmani S, Abu IF, Das S. Circadian Disruption and Occupational Toxicants Exposure Affecting the Immunity of Shift Workers During SARS CoV-2 Pandemic. Front Public Health 2022; 10:829013. [PMID: 35392476 PMCID: PMC8980348 DOI: 10.3389/fpubh.2022.829013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
In several regions of the world, the recent Coronavirus Disease-2019 (COVID-19) pandemic outbreak increased morbidity and mortality. The pandemic situation disrupted many workers' previously established lifestyles. The main aim of the present review was to describe the circadian disruption and occupational toxicant exposure affecting the immunity of shift workers during the SARS CoV-2 pandemic. We retrieved pertinent published literature from the Google Scholar, PubMed, and Scopus databases. In the present review, we discuss the circadian rhythm involving the hypothalamic-pituitary-adrenal (HPA) axis at the molecular level, its disruption, occupational toxicant exposure causing immunomodulatory effects, and the role of immunity during the SARS CoV-2 pandemic. The severity of the progression of the viral infection depends on multiple factors affecting immunity. Hence, shift workers may need to be aware of those factors such as circadian rhythm disruption as well as occupational toxicant exposure. The timing of shift workers' energy intake is also important concerning the shift of the workers. The information in the present review may be important for all workers who are at risk during the pandemic. In the absence of any published literature related to association of circadian rhythm disruption with occupational toxicant exposure, the present review may have greater importance.
Collapse
Affiliation(s)
- Siti Hanisah Mohd Fuad
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | | | | | - Sahar Azmani
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine and Health Sciences, Muscat, Oman
| |
Collapse
|
12
|
Skok M. Universal nature of cholinergic regulation demonstrated with nicotinic acetylcholine receptors. BBA ADVANCES 2022; 2:100061. [PMID: 37082580 PMCID: PMC10074969 DOI: 10.1016/j.bbadva.2022.100061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022] Open
Abstract
Mammalian nicotinic acetylcholine receptors (nAChRs) were initially discovered as ligand-gated ion channels mediating fast synaptic transmission in the neuro-muscular junctions and autonomic ganglia. They were further found to be involved in a wide range of basic biological processes within the brain and in non-excitable tissues. The present review summarizes the data obtained in our laboratory during last two decades. Investigation of autonomic ganglia with the nAChR subunit-specific antibodies was followed by identification of nAChRs in B lymphocytes, discovery of mitochondrial nAChRs and their role in mitochondrial apoptosis pathway, and revealing the role of α7 nAChRs and α7-specific antibodies in neuroinflammation-related Alzheimer disease and COVID-19. The data obtained demonstrate the involvement of nAChRs in cell survival, proliferation, cell-to-cell communication and inflammatory reaction. Together with the ability of nAChRs to function in both ionotropic and metabotropic way, these data illustrate the universal nature of cholinergic regulation mediated by nAChRs.
Collapse
|
13
|
Skok M. Mitochondrial nicotinic acetylcholine receptors: Mechanisms of functioning and biological significance. Int J Biochem Cell Biol 2021; 143:106138. [PMID: 34929396 DOI: 10.1016/j.biocel.2021.106138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Nicotinic acetylcholine receptors mediate fast synaptic transmission in neuro-muscular junctions and autonomic ganglia and modulate survival, proliferation and neurotransmitter or cytokine release in the brain and non-excitable cells. The neuronal-type nicotinic acetylcholine receptors are expressed in the outer mitochondria membrane to regulate the release of pro-apoptotic substances like cytochrome c or reactive oxygen species. In the intracellular environment, nicotinic acetylcholine receptor signaling is ion-independent and triggers intramitochondrial kinases, similar to those activated by plasma membrane nicotinic acetylcholine receptors. The present review will describe the data obtained during the last five years including, in particular, post-translational glycosylation as a targeting signal to mitochondria, mechanisms of mitochondrial nicotinic acetylcholine receptor signaling studied with subtype-specific agonists, antagonists, positive allosteric modulators and knockout mice lacking certain nicotinic acetylcholine receptor subunits, interaction of mitochondrial nicotinic acetylcholine receptors with Bcl-2 family proteins and their involvement in important pathologies like neuroinflammation, liver damage and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01054 Kyiv, Ukraine.
| |
Collapse
|
14
|
Mitochondria as a Cellular Hub in Infection and Inflammation. Int J Mol Sci 2021; 22:ijms222111338. [PMID: 34768767 PMCID: PMC8583510 DOI: 10.3390/ijms222111338] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the energy center of the cell. They are found in the cell cytoplasm as dynamic networks where they adapt energy production based on the cell’s needs. They are also at the center of the proinflammatory response and have essential roles in the response against pathogenic infections. Mitochondria are a major site for production of Reactive Oxygen Species (ROS; or free radicals), which are essential to fight infection. However, excessive and uncontrolled production can become deleterious to the cell, leading to mitochondrial and tissue damage. Pathogens exploit the role of mitochondria during infection by affecting the oxidative phosphorylation mechanism (OXPHOS), mitochondrial network and disrupting the communication between the nucleus and the mitochondria. The role of mitochondria in these biological processes makes these organelle good targets for the development of therapeutic strategies. In this review, we presented a summary of the endosymbiotic origin of mitochondria and their involvement in the pathogen response, as well as the potential promising mitochondrial targets for the fight against infectious diseases and chronic inflammatory diseases.
Collapse
|