1
|
Secombes CJ. Cytokines - Early vertebrate genes and evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 160:105239. [PMID: 39117166 DOI: 10.1016/j.dci.2024.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
|
2
|
Lara J, Mastela C, Abd M, Pitstick L, Ventrella R. Tail Tales: What We Have Learned About Regeneration from Xenopus Laevis Tadpoles. Int J Mol Sci 2024; 25:11597. [PMID: 39519148 PMCID: PMC11547152 DOI: 10.3390/ijms252111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the regenerative capacity of Xenopus laevis, focusing on tail regeneration, as a model to uncover cellular, molecular, and developmental mechanisms underlying tissue repair. X. laevis tadpoles provide unique insights into regenerative biology due to their regeneration-competent and -incompetent stages and ability to regrow complex structures in the tail, including the spinal cord, muscle, and skin, after amputation. The review delves into the roles of key signaling pathways, such as those involving reactive oxygen species (ROS) and signaling molecules like BMPs and FGFs, in orchestrating cellular responses during regeneration. It also examines how mechanotransduction, epigenetic regulation, and metabolic shifts influence tissue restoration. Comparisons of regenerative capacity with other species shed light on the evolutionary loss of regenerative abilities and underscore X. laevis as an invaluable model for understanding the constraints of tissue repair in higher organisms. This comprehensive review synthesizes recent findings, suggesting future directions for exploring regeneration mechanisms, with potential implications for advancing regenerative medicine.
Collapse
Affiliation(s)
- Jessica Lara
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Camilla Mastela
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Magda Abd
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Lenore Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Rosa Ventrella
- Precision Medicine Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
3
|
Nakamura M, Kyoda T, Yoshida H, Takebayashi-Suzuki K, Koike R, Takahashi E, Moriyama Y, Wlizla M, Horb ME, Suzuki A. Injury-induced cooperation of InhibinβA and JunB is essential for cell proliferation in Xenopus tadpole tail regeneration. Sci Rep 2024; 14:3679. [PMID: 38355764 PMCID: PMC10867027 DOI: 10.1038/s41598-024-54280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024] Open
Abstract
In animal species that have the capability of regenerating tissues and limbs, cell proliferation is enhanced after wound healing and is essential for the reconstruction of injured tissue. Although the ability to induce cell proliferation is a common feature of such species, the molecular mechanisms that regulate the transition from wound healing to regenerative cell proliferation remain unclear. Here, we show that upon injury, InhibinβA and JunB cooperatively function for this transition during Xenopus tadpole tail regeneration. We found that the expression of inhibin subunit beta A (inhba) and junB proto-oncogene (junb) is induced by injury-activated TGF-β/Smad and MEK/ERK signaling in regenerating tails. Similarly to junb knockout (KO) tadpoles, inhba KO tadpoles show a delay in tail regeneration, and inhba/junb double KO (DKO) tadpoles exhibit severe impairment of tail regeneration compared with either inhba KO or junb KO tadpoles. Importantly, this impairment is associated with a significant reduction of cell proliferation in regenerating tissue. Moreover, JunB regulates tail regeneration via FGF signaling, while InhibinβA likely acts through different mechanisms. These results demonstrate that the cooperation of injury-induced InhibinβA and JunB is critical for regenerative cell proliferation, which is necessary for re-outgrowth of regenerating Xenopus tadpole tails.
Collapse
Affiliation(s)
- Makoto Nakamura
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Tatsuya Kyoda
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Hitoshi Yoshida
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Kimiko Takebayashi-Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ryota Koike
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Eri Takahashi
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Yuka Moriyama
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Marcin Wlizla
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Embryology, Charles River Laboratories, Wilmington, MA, 01887, USA
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Atsushi Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
4
|
Zheng X, Tang J, Song A, Zhou Y, Miao J, Li Z, Pan L. Study on reproductive endocrine disturbance and DNA damage mechanism of female Ruditapes philippinarum under Benzo[a]pyrene stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122844. [PMID: 37918772 DOI: 10.1016/j.envpol.2023.122844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The reproductive toxicity of polycyclic aromatic hydrocarbons (PAHs) in aquatic organisms has attracted increasing attention from scholars. Currently, research in this field primarily focuses on vertebrates such as zebrafish and other model species. However, there is still a significant knowledge gap in the toxicity of PAHs to invertebrates and its potential mechanisms. Benzo[a]pyrene (B[a]P) is one of the most representative PAHs. In this study, female Ruditapes philippinarum (R. philippinarum) was treated with B[a]P concentrations of 0, 0.8, 4, and 20 μg/L to investigate reproductive indicators in the proliferative, growth, mature, and spawn stages. Transcriptomics was used to investigate the expression of genes associated with the reproductive endocrine system, DNA repair, autophagy, apoptosis, and ovarian development at different reproductive stages. Our results suggested that B[a]P disrupted the endocrine system by interfering with the production of steroid hormones and the transmission of estrogen signals in female R. philippinarum. The structure of the ovarian DNA duplex is severely damaged under the stress of B[a]P, and a series of cellular responses caused by DNA damage are also interfered. Additionally, we observed a reduction in the gonadosomatic index (GSI) and mature oocytes numbers after B[a]P exposed. Tissue section indicated that severe damage to the ovarian structure at mature and spawn stages. In conclusion, this study combined transcriptomic and toxicological to explore the negative effects on ovarian development induced by B[a]P, focusing on reproductive endocrine disturbance and DNA damage.
Collapse
Affiliation(s)
- Xin Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jian Tang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Aimin Song
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
5
|
Masak G, Davidson LA. Constructing the pharyngula: Connecting the primary axial tissues of the head with the posterior axial tissues of the tail. Cells Dev 2023; 176:203866. [PMID: 37394035 PMCID: PMC10756936 DOI: 10.1016/j.cdev.2023.203866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The pharyngula stage of vertebrate development is characterized by stereotypical arrangement of ectoderm, mesoderm, and neural tissues from the anterior spinal cord to the posterior, yet unformed tail. While early embryologists over-emphasized the similarity between vertebrate embryos at the pharyngula stage, there is clearly a common architecture upon which subsequent developmental programs generate diverse cranial structures and epithelial appendages such as fins, limbs, gills, and tails. The pharyngula stage is preceded by two morphogenetic events: gastrulation and neurulation, which establish common shared structures despite the occurrence of cellular processes that are distinct to each of the species. Even along the body axis of a singular organism, structures with seemingly uniform phenotypic characteristics at the pharyngula stage have been established by different processes. We focus our review on the processes underlying integration of posterior axial tissue formation with the primary axial tissues that creates the structures laid out in the pharyngula. Single cell sequencing and novel gene targeting technologies have provided us with new insights into the differences between the processes that form the anterior and posterior axis, but it is still unclear how these processes are integrated to create a seamless body. We suggest that the primary and posterior axial tissues in vertebrates form through distinct mechanisms and that the transition between these mechanisms occur at different locations along the anterior-posterior axis. Filling gaps that remain in our understanding of this transition could resolve ongoing problems in organoid culture and regeneration.
Collapse
Affiliation(s)
- Geneva Masak
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lance A Davidson
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
6
|
Yang L, Chen Y, Liu H, Liu Y, Yuan F, Li Q, Lin G. Evi5 is required for Xenopus limb and tail regeneration. Front Cell Dev Biol 2022; 10:1027666. [PMID: 36605717 PMCID: PMC9809974 DOI: 10.3389/fcell.2022.1027666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Amphibians such as salamanders and the African clawed frog Xenopus are great models for regeneration studies because they can fully regenerate their lost organs. While axolotl can regenerate damaged organs throughout its lifetime, Xenopus has a limited regeneration capacity after metamorphosis. The ecotropic viral integrative factor 5 (Evi5) is of great interest because its expression is highly upregulated in the limb blastema of axolotls, but remains unchanged in the fibroblastema of post-metamorphic frogs. Yet, its role in regeneration-competent contexts in Xenopus has not been fully analyzed. Here we show that Evi5 is upregulated in Xenopus tadpoles after limb and tail amputation, as in axolotls. Down-regulation of Evi5 with morpholino antisense oligos (Mo) impairs limb development and limb blastema formation in Xenopus tadpoles. Mechanistically, we show that Evi5 knockdown significantly reduces proliferation of limb blastema cells and causes apoptosis, blocking the formation of regeneration blastema. RNA-sequencing analysis reveals that in addition to reduced PDGFα and TGFβ signaling pathways that are required for regeneration, evi5 Mo downregulates lysine demethylases Kdm6b and Kdm7a. And knockdown of Kdm6b or Kdm7a causes defective limb regeneration. Evi5 knockdown also impedes tail regeneration in Xenopus tadpoles and axolotl larvae, suggesting a conserved function of Evi5 in appendage regeneration. Thus, our results demonstrate that Evi5 plays a critical role in appendage regeneration in amphibians.
Collapse
|
7
|
Arena KA, Zhu Y, Kucenas S. Transforming growth factor-beta signaling modulates perineurial glial bridging following peripheral spinal motor nerve injury in zebrafish. Glia 2022; 70:1826-1849. [PMID: 35616185 PMCID: PMC9378448 DOI: 10.1002/glia.24220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
Spinal motor nerves are necessary for organismal locomotion and survival. In zebrafish and most vertebrates, these peripheral nervous system structures are composed of bundles of axons that naturally regenerate following injury. However, the cellular and molecular mechanisms that mediate this process are still only partially understood. Perineurial glia, which form a component of the blood-nerve barrier, are necessary for the earliest regenerative steps by establishing a glial bridge across the injury site as well as phagocytosing debris. Without perineurial glial bridging, regeneration is impaired. In addition to perineurial glia, Schwann cells, the cells that ensheath and myelinate axons within the nerve, are essential for debris clearance and axon guidance. In the absence of Schwann cells, perineurial glia exhibit perturbed bridging, demonstrating that these two cell types communicate during the injury response. While the presence and importance of perineurial glial bridging is known, the molecular mechanisms that underlie this process remain a mystery. Understanding the cellular and molecular interactions that drive perineurial glial bridging is crucial to unlocking the mechanisms underlying successful motor nerve regeneration. Using laser axotomy and in vivo imaging in zebrafish, we show that transforming growth factor-beta (TGFβ) signaling modulates perineurial glial bridging. Further, we identify connective tissue growth factor-a (ctgfa) as a downstream effector of TGF-β signaling that works in a positive feedback loop to mediate perineurial glial bridging. Together, these studies present a new signaling pathway involved in the perineurial glial injury response and further characterize the dynamics of the perineurial glial bridge.
Collapse
Affiliation(s)
- Kimberly A. Arena
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Program in Fundamental NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Yunlu Zhu
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Sarah Kucenas
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Program in Fundamental NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
8
|
Liang C, Liang Q, Xu X, Liu X, Gao X, Li M, Yang J, Xing X, Huang H, Tang Q, Liao L, Tian W. Bone morphogenetic protein 7 mediates stem cells migration and angiogenesis: therapeutic potential for endogenous pulp regeneration. Int J Oral Sci 2022; 14:38. [PMID: 35858911 PMCID: PMC9300630 DOI: 10.1038/s41368-022-00188-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 02/05/2023] Open
Abstract
Pulp loss is accompanied by the functional impairment of defense, sensory, and nutrition supply. The approach based on endogenous stem cells is a potential strategy for pulp regeneration. However, endogenous stem cell sources, exogenous regenerative signals, and neovascularization are major difficulties for pulp regeneration based on endogenous stem cells. Therefore, the purpose of our research is to seek an effective cytokines delivery strategy and bioactive materials to reestablish an ideal regenerative microenvironment for pulp regeneration. In in vitro study, we investigated the effects of Wnt3a, transforming growth factor-beta 1, and bone morphogenetic protein 7 (BMP7) on human dental pulp stem cells (h-DPSCs) and human umbilical vein endothelial cells. 2D and 3D culture systems based on collagen gel, matrigel, and gelatin methacryloyl were fabricated to evaluate the morphology and viability of h-DPSCs. In in vivo study, an ectopic nude mouse model and an in situ beagle dog model were established to investigate the possibility of pulp regeneration by implanting collagen gel loading BMP7. We concluded that BMP7 promoted the migration and odontogenic differentiation of h-DPSCs and vessel formation. Collagen gel maintained the cell adhesion, cell spreading, and cell viability of h-DPSCs in 2D or 3D culture. The transplantation of collagen gel loading BMP7 induced vascularized pulp-like tissue regeneration in vivo. The injectable approach based on collagen gel loading BMP7 might exert promising therapeutic application in endogenous pulp regeneration. BMP7 as a regenerative signaling molecule mediates stem cell migration and odontoblastic differentiation (a) and as a pro-angiogenic factor promotes revascularization of endothelial cells (b). Collagen gel supports cell adhesion, spreading, and viability (c). ![]()
Collapse
Affiliation(s)
- Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingqing Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaotao Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haisen Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Doğanyiğit Z, Erbakan K, Akyuz E, Polat AK, Arulsamy A, Shaikh MF. The Role of Neuroinflammatory Mediators in the Pathogenesis of Traumatic Brain Injury: A Narrative Review. ACS Chem Neurosci 2022; 13:1835-1848. [PMID: 35732021 DOI: 10.1021/acschemneuro.2c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) is a debilitating acquired neurological disorder that afflicts nearly 74 million people worldwide annually. TBI has been classified as more than just a single insult because of its associated risk toward various long-term neurological and neurodegenerative disorders. This risk may be triggered by a series of postinjury secondary molecular and cellular pathology, which may be dependent on the severity of the TBI. Among the secondary injury mechanisms, neuroinflammation may be the most crucial as it may exacerbate brain damage and lead to fatal consequences when prolonged. This Review aimed to elucidate the influence of neuroinflammatory mediators on the TBI functional and pathological outcomes, particularly focusing on inflammatory cytokines which were associated with neuronal dysfunctions in the acute and chronic stages of TBI. These cytokines include interleukins (IL) such as IL-1(beta)β, IL-4, IL-6, IL8, IL-10, IL-18, IL-33 and tumor necrosis factor alpha (TNF-α), which have been extensively studied. Apart from these, IL-2, interferon gamma (IFN-γ), and transforming growth factor-beta (TGF-β) may also play a significant role in the pathogenesis of TBI. These neuroinflammatory mediators may trigger a series of pathological events such as cell death, microglial suppression, and increased catecholaminergic activity. Interestingly, in the acute phase of TBI, most of these mediators may also play a neuroprotective role by displaying anti-inflammatory properties, which may convert to a pro-inflammatory action in the chronic stages post TBI. Early identification and treatment of these mediators may help the development of more effective treatment options for TBI.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Kaan Erbakan
- Ordu University, Faculty of Medicine, Ordu 52200, Turkey
| | - Enes Akyuz
- University of Health Sciences, Hamidiye International Faculty of Medicine, Department of Biophysics, Istanbul 34668, Turkey
| | | | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| |
Collapse
|
10
|
Chapman PA, Gilbert CB, Devine TJ, Hudson DT, Ward J, Morgan XC, Beck CW. Manipulating the microbiome alters regenerative outcomes in Xenopus laevis tadpoles via lipopolysaccharide signalling. Wound Repair Regen 2022; 30:636-651. [PMID: 35212086 PMCID: PMC9790228 DOI: 10.1111/wrr.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Xenopus laevis tadpoles can regenerate functional tails, containing the spinal cord, notochord, muscle, fin, blood vessels and nerves, except for a brief refractory period at around 1 week of age. At this stage, amputation of the tadpole's tail may either result in scarless wound healing or the activation of a regeneration programme, which replaces the lost tissues. We recently demonstrated a link between bacterial lipopolysaccharides and successful tail regeneration in refractory stage tadpoles and proposed that this could result from lipopolysaccharides binding to Toll-like receptor 4 (TLR4). Here, we have used 16S rRNA sequencing to show that the tadpole skin microbiome is highly variable between sibships and that the community can be altered by raising embryos in the antibiotic gentamicin. Six Gram-negative genera, including Delftia and Chryseobacterium, were over-represented in tadpoles that underwent tail regeneration. Lipopolysaccharides purified from a commensal Chryseobacterium spp. XDS4, an exogenous Delftia spp. or Escherichia coli, could significantly increase the number of antibiotic-raised tadpoles that attempted regeneration. Conversely, the quality of regeneration was impaired in native-raised tadpoles exposed to the antagonistic lipopolysaccharide of Rhodobacter sphaeroides. Editing TLR4 using CRISPR/Cas9 also reduced regeneration quality, but not quantity, at the level of the cohort. However, we found that the editing level of individual tadpoles was a poor predictor of regenerative outcome. In conclusion, our results suggest that variable regeneration in refractory stage tadpoles depends at least in part on the skin microbiome and lipopolysaccharide signalling, but that signalling via TLR4 cannot account for all of this effect.
Collapse
Affiliation(s)
| | | | - Thomas J. Devine
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Daniel T. Hudson
- Department of ZoologyUniversity of OtagoDunedinNew Zealand,Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Joanna Ward
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| | - Xochitl C. Morgan
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | | |
Collapse
|