1
|
El-Daher F, Enos SJ, Drake LK, Wehner D, Westphal M, Porter NJ, Becker CG, Becker T. Microglia are essential for tissue contraction in wound closure after brain injury in zebrafish larvae. Life Sci Alliance 2025; 8:e202403052. [PMID: 39419547 PMCID: PMC11487088 DOI: 10.26508/lsa.202403052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Wound closure after brain injury is crucial for tissue restoration but remains poorly understood at the tissue level. We investigated this process using in vivo observations of larval zebrafish brain injury. Our findings show that wound closure occurs within the first 24 h through global tissue contraction, as evidenced by live-imaging and drug inhibition studies. Microglia accumulate at the wound site before closure, and computational models suggest that their physical traction could drive this process. Depleting microglia genetically or pharmacologically impairs tissue repair. At the cellular level, live imaging reveals centripetal deformation of astrocytic processes contacted by migrating microglia. Laser severing of these contacts causes rapid retraction of microglial processes and slower retraction of astrocytic processes, indicating tension. Disrupting the lcp1 gene, which encodes the F-actin-stabilising protein L-plastin, in microglia results in failed wound closure. These findings support a mechanical role of microglia in wound contraction and suggest that targeting microglial mechanics could offer new strategies for treating traumatic brain injury.
Collapse
Affiliation(s)
- Francois El-Daher
- https://ror.org/01nrxwf90 Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Stephen J Enos
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Louisa K Drake
- https://ror.org/01nrxwf90 Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
| | - Daniel Wehner
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Markus Westphal
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Nicola J Porter
- https://ror.org/01nrxwf90 Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
| | - Catherina G Becker
- https://ror.org/01nrxwf90 Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Thomas Becker
- https://ror.org/01nrxwf90 Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| |
Collapse
|
2
|
Arunachalam AR, Samuel SS, Mani A, Maynard JP, Stayer KM, Dybbro E, Narayanan S, Biswas A, Pathan S, Soni K, Kamal AHM, Ambati CSR, Putluri N, Desai MS, Thevananther S. P2Y2 purinergic receptor gene deletion protects mice from bacterial endotoxin and sepsis-associated liver injury and mortality. Am J Physiol Gastrointest Liver Physiol 2023; 325:G471-G491. [PMID: 37697947 PMCID: PMC10812707 DOI: 10.1152/ajpgi.00090.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
The liver plays a significant role in regulating a wide range of metabolic, homeostatic, and host-defense functions. However, the impact of liver injury on the host's ability to control bacteremia and morbidity in sepsis is not well understood. Leukocyte recruitment and activation lead to cytokine and chemokine release, which, in turn, trigger hepatocellular injury and elevate nucleotide levels in the extracellular milieu. P2Y2 purinergic receptors, G protein-coupled and activated by extracellular ATP/UTP, are expressed at the cell surface of hepatocytes and nonparenchymal cells. We sought to determine whether P2Y2 purinergic receptor function is necessary for the maladaptive host response to bacterial infection and endotoxin-mediated inflammatory liver injury and mortality in mice. We report that P2Y2 purinergic receptor knockout mice (P2Y2-/-) had attenuated inflammation and liver injury, with improved survival in response to LPS/galactosamine (LPS/GalN; inflammatory liver injury) and cecal ligation and puncture (CLP; polymicrobial sepsis). P2Y2-/- livers had attenuated c-Jun NH2-terminal kinase activation, matrix metallopeptidase-9 expression, and hepatocyte apoptosis in response to LPS/GalN and attenuated inducible nitric oxide synthase and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 protein expression in response to CLP. Implicating liver injury in the disruption of amino acid homeostasis, CLP led to lower serum arginine and higher bacterial load and morbidity in the WT mice, whereas serum arginine levels were comparable to sham-operated controls in P2Y2-/- mice, which had attenuated bacteremia and improved survival. Collectively, our studies highlight the pathophysiological relevance of P2Y2 purinergic receptor function in inflammatory liver injury and dysregulation of systemic amino acid homeostasis with implications for sepsis-associated immune dysfunction and morbidity in mice.NEW & NOTEWORTHY Our studies provide experimental evidence for P2Y2 purinergic receptor-mediated potentiation of inflammatory liver injury, morbidity, and mortality, in two well-established animal models of inflammatory liver injury. Our findings highlight the potential to target P2Y2 purinergic signaling to attenuate the induction of "cytokine storm" and prevent its deleterious consequences on liver function, systemic amino acid homeostasis, host response to bacterial infection, and sepsis-associated morbidity and mortality.
Collapse
Affiliation(s)
- Athis R Arunachalam
- Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Sanju S Samuel
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Arunmani Mani
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Janielle P Maynard
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Kelsey M Stayer
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Eric Dybbro
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Subapradha Narayanan
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Aalekhya Biswas
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Saliha Pathan
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Krishnakant Soni
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Abu Hena Mostafa Kamal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Moreshwar S Desai
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Sundararajah Thevananther
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
3
|
Zhao X, Zhang M, Li F, Ma C, Wang D, Wang Y. The role of neutrophils in corneal nerve regeneration. BMC Ophthalmol 2023; 23:338. [PMID: 37507767 PMCID: PMC10375665 DOI: 10.1186/s12886-023-03088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND To investigate the role of neutrophils in corneal nerve regeneration. METHODS A mouse model simulating corneal nerve injury was established and samples from corneal scraping with and without neutrophil closure were collected. These samples were used for corneal nerve staining, ribonucleic acid sequencing, and bioinformatics. Differential expression analysis was used to perform enrichment analysis to identify any significant differences between these two groups. The differential genes were then intersected with neutrophil-associated genes and a protein-protein interaction network was constructed using the intersected genes. The immune infiltration between the two groups was examined along with the immune cell variation between the high and low gene expression groups. RESULTS Neutrophil removal delays corneal epithelial and nerve regeneration. A total of 546 differential genes and 980 neutrophil-associated genes, with 27 genes common to both sets were obtained. Molecular Complex Detection analysis yielded five key genes, namely integrin subunit beta 2 (ITGB2), matrix metallopeptidase 9 (MMP9), epidermal growth factor (EGF), serpin family E member 1 (SERPINE1), and plasminogen activator urokinase receptor (PLAUR). Among these genes, ITGB2, SERPINE1, and PLAUR exhibited increased expression in the neutrophil-confined group, while MMP9 and EGF showed decreased expression, with MMP9 and EGF displaying a more significant difference. Immune infiltration was also observed between the two groups, revealing significant differences in the infiltration of M0 macrophages, activated mast cells, and neutrophils. Moreover, the neutrophil levels were lower in the groups with low MMP9 and EGF expressions and higher in the high-expression group. CONCLUSION Neutrophil confinement might significantly affect the MMP9 and EGF expression levels. Strategies to inhibit MMP9 could potentially yield therapeutic benefits.
Collapse
Affiliation(s)
- Xiaowen Zhao
- Core Laboratory, The Affiliated Qingdao Central Hospital of Qingdao University, No. 127th, South Siliu Road, Qingdao, Shandong, 266042, China
| | - Minghong Zhang
- Qingdao Aier Eye Hospital, No. 519th, Zhujiang Road, Qingdao, Qingdao, Shandong, 266500, China
| | - Fengjiao Li
- Department of Opthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324th, Jing wu wei qi Road, Jinan, Shandong, 250021, China.
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, No. 54th, Zhengzhou, Road, Qingdao, Shandong, 266042, China
| | - Dianqiang Wang
- Qingdao Aier Eye Hospital, No. 519th, Zhujiang Road, Qingdao, Qingdao, Shandong, 266500, China
| | - Ye Wang
- Core Laboratory, The Affiliated Qingdao Central Hospital of Qingdao University, No. 127th, South Siliu Road, Qingdao, Shandong, 266042, China.
| |
Collapse
|
4
|
Zhao Q, Li H, Li H, Xie F, Zhang J. Research progress of neuroinflammation-related cells in traumatic brain injury: A review. Medicine (Baltimore) 2023; 102:e34009. [PMID: 37352020 PMCID: PMC10289497 DOI: 10.1097/md.0000000000034009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
Neuroinflammation after traumatic brain injury (TBI) is related to chronic neurodegenerative diseases and is one of the causes of acute secondary injury after TBI. Therefore, it is particularly important to clarify the role of cellular mechanisms in the neuroinflammatory response after TBI. The objective of this article is to understand the involvement of cells during the TBI inflammatory response (for instance, astrocytes, microglia, and oligodendrocytes) and shed light on the recent progress in the stimulation and interaction of granulocytes and lymphocytes, to provide a novel approach for clinical research. We searched articles in PubMed published between 1950 and 2023, using the following keywords: TBI, neuroinflammation, inflammatory cells, neuroprotection, clinical. Articles for inclusion in this paper were finalized based on their novelty, representativeness, and relevance to the main arguments of this review. We found that the neuroinflammatory response after TBI includes the activation of glial cells, the release of inflammatory mediators in the brain, and the recruitment of peripheral immune cells. These inflammatory responses not only induce secondary brain damage, but also have a role in repairing the nervous system to some extent. However, not all of the mechanisms of cell-to-cell interactions have been well studied. After TBI, clinical treatment cannot simply suppress the inflammatory response, and the inflammatory phenotype of patients' needs to be defined according to their specific conditions after injury. Clinical trials of personalized inflammation regulation therapy for specific patients should be carried out in order to improve the prognosis of patients.
Collapse
Affiliation(s)
- Qinghui Zhao
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Huige Li
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Hongru Li
- Zhumadian Central Hospital, Zhumadian, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jianhua Zhang
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| |
Collapse
|
5
|
Pinosanu LR, Capitanescu B, Glavan D, Godeanu S, Cadenas IF, Doeppner TR, Hermann DM, Balseanu AT, Bogdan C, Popa-Wagner A. Neuroglia Cells Transcriptomic in Brain Development, Aging and Neurodegenerative Diseases. Aging Dis 2023; 14:63-83. [PMID: 36818562 PMCID: PMC9937697 DOI: 10.14336/ad.2022.0621] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Glia cells are essential for brain functioning during development, aging and disease. However, the role of astroglia plays during brain development is quite different from the role played in the adult lesioned brain. Therefore, a deeper understanding of pathomechanisms underlying astroglia activity in the aging brain and cerebrovascular diseases is essential to guide the development of new therapeutic strategies. To this end, this review provides a comparison between the transcriptomic activity of astroglia cells during development, aging and neurodegenerative diseases, including cerebral ischemia. During fetal brain development, astrocytes and microglia often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis, and synaptic pruning. In the adult brain astrocytes are a critical player in the synapse remodeling by mediating synapse elimination while microglia activity has been associated with changes in synaptic plasticity and remove cell debris by constantly sensing the environment. However, in the lesioned brain astrocytes proliferate and play essential functions with regard to energy supply to the neurons, neurotransmission and buildup of a protective scar isolating the lesion site from the surroundings. Inflammation, neurodegeneration, or loss of brain homeostasis induce changes in microglia gene expression, morphology, and function, generally referred to as "primed" microglia. These changes in gene expression are characterized by an enrichment of phagosome, lysosome, and antigen presentation signaling pathways and is associated with an up-regulation of genes encoding cell surface receptors. In addition, primed microglia are characterized by upregulation of a network of genes in response to interferon gamma. Conclusion. A comparison of astroglia cells transcriptomic activity during brain development, aging and neurodegenerative disorders might provide us with new therapeutic strategies with which to protect the aging brain and improve clinical outcome.
Collapse
Affiliation(s)
- Leonard Radu Pinosanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Bogdan Capitanescu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Daniela Glavan
- Psychiatric clinic, University of Medicine and Pharmacy Craiova, Craiova, Romania.
| | - Sanziana Godeanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Israel Ferna´ndez Cadenas
- Stroke Pharmacogenomics and Genetics group, Sant Pau Hospital Institute of Research, Barcelona, Spain.
| | - Thorsten R. Doeppner
- Department of Neurology, University Hospital Giessen, Giessen, Germany.,University of Göttingen Medical School, Department of Neurology, Göttingen, Germany.
| | - Dirk M. Hermann
- Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.
| | - Adrian-Tudor Balseanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Catalin Bogdan
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.,Correspondence should be addressed to: Dr. Aurel Popa-Wagner () and Dr. Catalin Bogdan (), University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.,Correspondence should be addressed to: Dr. Aurel Popa-Wagner () and Dr. Catalin Bogdan (), University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
6
|
Iban-Arias R, Trageser KJ, Yang EJ, Griggs E, Radu A, Naughton S, Al Rahim M, Tatsunori O, Raval U, Palmieri J, Huang Z, Chen LC, Pasinetti GM. Exposure to World Trade Center Dust Exacerbates Cognitive Impairment and Evokes a Central and Peripheral Pro-Inflammatory Transcriptional Profile in an Animal Model of Alzheimer's Disease. J Alzheimers Dis 2023; 91:779-794. [PMID: 36502334 PMCID: PMC9912736 DOI: 10.3233/jad-221046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The terrorist attacks on September 11, 2001, on the World Trade Center (WTC) led to intense fires and a massive dense cloud of toxic gases and suspended pulverized debris. In the subsequent years, following the attack and cleanup efforts, a cluster of chronic health conditions emerged among First Responders (FR) who were at Ground Zero for prolonged periods and were repeatedly exposed to high levels of WTC particulate matter (WTCPM). Among those are neurological complications which may increase the risk for the development of Alzheimer's disease (AD) later in life. OBJECTIVE We hypothesize that WTCPM dust exposure affects the immune cross-talking between the periphery and central nervous systems that may induce brain permeability ultimately promoting AD-type phenotype. METHODS 5XFAD and wild-type mice were intranasally administered with WTCPM dust collected at Ground Zero within 72 h after the attacks. Y-maze assay and novel object recognition behavioral tests were performed for working memory deficits and learning and recognition memory, respectively. Transcriptomic analysis in the blood and hippocampus was performed and confirmed by RT qPCR. RESULTS Mice exposed to WTCPM dust exhibited a significant impairment in spatial and recognition short and long-term memory. Furthermore, the transcriptomic analysis in the hippocampal formation and blood revealed significant changes in genes related to immune-inflammatory responses, and blood-brain barrier disruption. CONCLUSION These studies suggest a putative peripheral-brain immune inflammatory cross-talking that may potentiate cognitive decline, identifying for the first time key steps which may be therapeutically targetable in future studies in WTC FR.
Collapse
Affiliation(s)
- Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyle J. Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth Griggs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aurelian Radu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean Naughton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Md Al Rahim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oguchi Tatsunori
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urdhva Raval
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Palmieri
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zerlina Huang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, NYU Langone School of Medicine, New York, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Geriatrics Research, Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, USA,Correspondence to: Giulio Maria Pasinetti, MD, PhD, Department of Neurology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1137, New York, NY 10029, USA. Tel.: +1 212 241 7938; Fax: +1 212 876 9042; E-mail:
| |
Collapse
|
7
|
Palomino SM, Levine AA, Wahl J, Liktor-Busa E, Streicher JM, Largent-Milnes TM. Inhibition of HSP90 Preserves Blood-Brain Barrier Integrity after Cortical Spreading Depression. Pharmaceutics 2022; 14:1665. [PMID: 36015292 PMCID: PMC9416719 DOI: 10.3390/pharmaceutics14081665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Cortical spreading depression (CSD) is a pathophysiological mechanism underlying headache disorders, including migraine. Blood-brain barrier (BBB) permeability is increased during CSD. Recent papers have suggested that heat shock proteins (HSP) contribute to the integrity of the blood-brain barrier. In this study, the possible role of HSP90 in CSD-associated blood-brain barrier leak at the endothelial cell was investigated using an in vitro model, for the blood-endothelial barrier (BEB), and an in vivo model with an intact BBB. We measured barrier integrity using trans endothelial electric resistance (TEER) across a monolayer of rodent brain endothelial cells (bEnd.3), a sucrose uptake assay, and in situ brain perfusion using female Sprague Dawley rats. CSD was induced by application of 60 mM KCl for 5 min in in vitro experiments or cortical injection of KCl (1 M, 0.5 µL) through a dural cannula in vivo. HSP90 was selectively blocked by 17-AAG. Our data showed that preincubation with 17-AAG (1 µM) prevented the reduction of TEER values caused by the KCl pulse on the monolayer of bEnd.3 cells. The elevated uptake of 14C-sucrose across the same endothelial monolayer induced by the KCl pulse was significantly reduced after preincubation with HSP90 inhibitor. Pre-exposure to 17-AAG significantly mitigated the transient BBB leak after CSD induced by cortical KCl injection as determined by in situ brain perfusion in female rats. Our results demonstrated that inhibition of HSP90 with the selective agent 17-AAG reduced CSD-associated BEB/BBB paracellular leak. Overall, this novel observation supports HSP90 inhibition mitigates KCl-induced BBB permeability and suggests the development of new therapeutic approaches targeting HSP90 in headache disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Tally M. Largent-Milnes
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85719, USA
| |
Collapse
|