1
|
Takeuchi SY, Dusadeemeelap C, Kawamoto T, Matsubara T, Kokabu S, Addison WN. Epigenetic regulation of myogenesis by vitamin C. J Cell Physiol 2025; 240:e31472. [PMID: 39445529 DOI: 10.1002/jcp.31472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
The micronutrient vitamin C is essential for the maintenance of skeletal muscle health and homeostasis. The pro-myogenic effects of vitamin C have long been attributed to its role as a general antioxidant agent, as well as its role in collagen matrix synthesis and carnitine biosynthesis. Here, we show that vitamin C also functions as an epigenetic compound, facilitating chromatin landscape transitions during myogenesis through its activity as an enzymatic cofactor for histone H3 and DNA demethylation. Utilizing C2C12 myoblast cells to investigate the epigenetic effects of vitamin C on myogenesis, we observe that treatment of cells with vitamin C decreases global H3K9 methylation and increases 5-hmC levels. Furthermore, vitamin C treatment enhances myoblast marker gene expression and myotube formation during differentiation. We identify KDM7A as a histone lysine demethylase markedly upregulated during myogenesis. Accordingly, knockdown of Kdm7a prevents the pro-myogenic effects of vitamin C. Chromatin immunoprecipitation analysis showed that KDM7A occupies the promoter region of the myogenic transcription factor MyoD1 where it facilitates histone demethylation. We also confirm that the methylcytosine dioxygenases TET1 and TET2 are required for myogenic differentiation and that their loss blunts stimulation of myogenesis by vitamin C. In conclusion, our data suggest that an epigenetic mode of action plays a major role in the myogenic effects of vitamin C.
Collapse
Affiliation(s)
- Sachiko Yamashita Takeuchi
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Chirada Dusadeemeelap
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - William N Addison
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
2
|
Sindhu P, Magotra A, Sindhu V, Chaudhary P. Unravelling the impact of epigenetic mechanisms on offspring growth, production, reproduction and disease susceptibility. ZYGOTE 2024; 32:190-206. [PMID: 39291610 DOI: 10.1017/s0967199424000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, histone modifications and non-coding RNA molecules, play a critical role in gene expression and regulation in livestock species, influencing development, reproduction and disease resistance. DNA methylation patterns silence gene expression by blocking transcription factor binding, while histone modifications alter chromatin structure and affect DNA accessibility. Livestock-specific histone modifications contribute to gene expression and genome stability. Non-coding RNAs, including miRNAs, piRNAs, siRNAs, snoRNAs, lncRNAs and circRNAs, regulate gene expression post-transcriptionally. Transgenerational epigenetic inheritance occurs in livestock, with environmental factors impacting epigenetic modifications and phenotypic traits across generations. Epigenetic regulation revealed significant effect on gene expression profiling that can be exploited for various targeted traits like muscle hypertrophy, puberty onset, growth, metabolism, disease resistance and milk production in livestock and poultry breeds. Epigenetic regulation of imprinted genes affects cattle growth and metabolism while epigenetic modifications play a role in disease resistance and mastitis in dairy cattle, as well as milk protein gene regulation during lactation. Nutri-epigenomics research also reveals the influence of maternal nutrition on offspring's epigenetic regulation of metabolic homeostasis in cattle, sheep, goat and poultry. Integrating cyto-genomics approaches enhances understanding of epigenetic mechanisms in livestock breeding, providing insights into chromosomal structure, rearrangements and their impact on gene regulation and phenotypic traits. This review presents potential research areas to enhance production potential and deepen our understanding of epigenetic changes in livestock, offering opportunities for genetic improvement, reproductive management, disease control and milk production in diverse livestock species.
Collapse
Affiliation(s)
- Pushpa Sindhu
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Vikas Sindhu
- Department of Animal Nutrition, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Pradeep Chaudhary
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
3
|
Kim M, Jung HY, Kim B, Jo C. Laminin as a Key Extracellular Matrix for Proliferation, Differentiation, and Maturation of Porcine Muscle Stem Cell Cultivation. Food Sci Anim Resour 2024; 44:710-722. [PMID: 38765289 PMCID: PMC11097016 DOI: 10.5851/kosfa.2024.e27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 05/21/2024] Open
Abstract
Extracellular matrix (ECM) proteins play a crucial role in culturing muscle stem cells (MuSCs). However, there is a lack of extensive research on how each of these proteins influences proliferation and differentiation of MuSCs from livestock animals. Therefore, we investigated the effects of various ECM coatings-collagen, fibronectin, gelatin, and laminin-on the proliferation, differentiation, and maturation of porcine MuSCs. Porcine MuSCs, isolated from 14-day-old Berkshire piglets, were cultured on ECM-coated plates, undergoing three days of proliferation followed by three days of differentiation. MuSCs on laminin showed higher proliferation rate than others (p<0.05). There was no significant difference in the mRNA expression levels of PAX7, MYF5, and MYOD among MuSCs on laminin, collagen, and fibronectin (p>0.05). During the differentiation period, MuSCs cultured on laminin exhibited a significantly higher differentiation rate, resulting in thicker myotubes compared to those on other ECMs (p<0.05). Also, MuSCs on laminin showed higher expression of mRNA related with maturated muscle fiber such as MYH1 and MYH4 corresponding to muscle fiber type IIx and muscle fiber type IIb, respectively, compared with MuSCs on other ECM coatings (p<0.05). In summary, our comparison of ECMs revealed that laminin significantly enhances MuSC proliferation and differentiation, outperforming other ECMs. Specifically, muscle fibers cultured on laminin exhibited a more mature phenotype. These findings underscore laminin's potential to advance in vitro muscle research and cultured meat production, highlighting its role in supporting rapid cell proliferation, higher differentiation rates, and the development of mature muscle fibers.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyun Young Jung
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Beomjun Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
4
|
Xiao L, Qiao J, Huang Y, Tan B, Hong L, Li Z, Cai G, Wu Z, Zheng E, Wang S, Gu T. RASGRP1 targeted by H3K27me3 regulates myoblast proliferation and differentiation in mice and pigs. Acta Biochim Biophys Sin (Shanghai) 2024; 56:452-461. [PMID: 38419500 PMCID: PMC10984873 DOI: 10.3724/abbs.2024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/14/2023] [Indexed: 03/02/2024] Open
Abstract
Skeletal muscle is not only the largest organ in the body that is responsible for locomotion and exercise but also crucial for maintaining the body's energy metabolism and endocrine secretion. The trimethylation of histone H3 lysine 27 (H3K27me3) is one of the most important histone modifications that participates in muscle development regulation by repressing the transcription of genes. Previous studies indicate that the RASGRP1 gene is regulated by H3K27me3 in embryonic muscle development in pigs, but its function and regulatory role in myogenesis are still unclear. In this study, we verify the crucial role of H3K27me3 in RASGRP1 regulation. The gain/loss function of RASGRP1 in myogenesis regulation is performed using mouse myoblast C2C12 cells and primarily isolated porcine skeletal muscle satellite cells (PSCs). The results of qPCR, western blot analysis, EdU staining, CCK-8 assay and immunofluorescence staining show that overexpression of RASGRP1 promotes cell proliferation and differentiation in both skeletal muscle cell models, while knockdown of RASGRP1 leads to the opposite results. These findings indicate that RASGRP1 plays an important regulatory role in myogenesis in both mice and pigs.
Collapse
Affiliation(s)
- Liyao Xiao
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Jiaxin Qiao
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Yiyang Huang
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Baohua Tan
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresourcesGuangzhou510000China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and TechnologyGuangzhou510000China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular BreedingGuangzhou510000China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- Guangdong Wens Breeding Swine Technology Co.Ltd.Yunfu527400China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresourcesGuangzhou510000China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and TechnologyGuangzhou510000China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular BreedingGuangzhou510000China
- Guangdong Wens Breeding Swine Technology Co.Ltd.Yunfu527400China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Shanshan Wang
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- College of Life ScienceHubei UniversityWuhan430000China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| |
Collapse
|
5
|
Myogenesis defects in a patient-derived iPSC model of hereditary GNE myopathy. NPJ Regen Med 2022; 7:48. [PMID: 36085325 PMCID: PMC9463157 DOI: 10.1038/s41536-022-00238-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Hereditary muscle diseases are disabling disorders lacking effective treatments. UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) myopathy (GNEM) is an autosomal recessive distal myopathy with rimmed vacuoles typically manifesting in late adolescence/early adulthood. GNE encodes the rate-limiting enzyme in sialic acid biosynthesis, which is necessary for the proper function of numerous biological processes. Outside of the causative gene, very little is known about the mechanisms contributing to the development of GNE myopathy. In the present study, we aimed to address this knowledge gap by querying the underlying mechanisms of GNE myopathy using a patient-derived induced pluripotent stem-cell (iPSC) model. Control and patient-specific iPSCs were differentiated down a skeletal muscle lineage, whereby patient-derived GNEM iPSC clones were able to recapitulate key characteristics of the human pathology and further demonstrated defects in myogenic progression. Single-cell RNA sequencing time course studies revealed clear differences between control and GNEM iPSC-derived muscle precursor cells (iMPCs), while pathway studies implicated altered stress and autophagy signaling in GNEM iMPCs. Treatment of GNEM patient-derived iMPCs with an autophagy activator improved myogenic differentiation. In summary, we report an in vitro, iPSC-based model of GNE myopathy and implicate defective myogenesis as a contributing mechanism to the etiology of GNE myopathy.
Collapse
|
6
|
Yang Z, Song C, Jiang R, Huang Y, Lan X, Lei C, Qi X, Zhang C, Huang B, Chen H. CircNDST1 Regulates Bovine Myoblasts Proliferation and Differentiation via the miR-411a/ Smad4 Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10044-10057. [PMID: 35916743 DOI: 10.1021/acs.jafc.1c08167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Circular RNA (circRNA) is endogenous noncoding RNA found throughout the eukaryotic genome. It regulates several biological activities at the transcription or post-transcription level. However, the underlying function of circRNA in bovine skeletal muscle development remains unknown. Here, we identified a novel circRNA, circNDST1, and investigated its function and mechanism on the proliferation and differentiation of bovine myoblasts. At the molecular and cellular levels, circNDST1 could promote bovine myoblasts proliferation and inhibit differentiation. Mechanistically, circNDST1 is expressed in the cytoplasmic of myoblast and was enriched by protein Ago2. circNDST1 acts as a competing endogenous RNA that sponges miR-411a and alleviates the inhibitory effect on its target gene, Smad4. miR-411a and Smad4 were also involved in regulating bovine myoblast proliferation and differentiation. These findings suggest that circNDST1 functions as a competing endogenous RNA and regulates bovine myoblast proliferation and differentiation through the miR-411a/Smad4 axis.
Collapse
Affiliation(s)
- Zhaoxin Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, Shaanxi 712100, China
| | - Chengchuang Song
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, Shaanxi 712100, China
- Institute of Cellular and Molecular Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Rui Jiang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, Shaanxi 712100, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, Shaanxi 712100, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, Shaanxi 712100, China
| | - Xinglei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, Henan 463700, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, Yunnan 650212, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, Shaanxi 712100, China
- Institute of Cellular and Molecular Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
7
|
Long K, Li X, Su D, Zeng S, Li H, Zhang Y, Zhang B, Yang W, Li P, Li X, Wang X, Tang Q, Lu L, Jin L, Ma J, Li M. Exploring high-resolution chromatin interaction changes and functional enhancers of myogenic marker genes during myogenic differentiation. J Biol Chem 2022; 298:102149. [PMID: 35787372 PMCID: PMC9352921 DOI: 10.1016/j.jbc.2022.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Skeletal muscle differentiation (myogenesis) is a complex and highly coordinated biological process regulated by a series of myogenic marker genes. Chromatin interactions between gene's promoters and their enhancers have an important role in transcriptional control. However, the high-resolution chromatin interactions of myogenic genes and their functional enhancers during myogenesis remain largely unclear. Here, we used circularized chromosome conformation capture coupled with next generation sequencing (4C-seq) to investigate eight myogenic marker genes in C2C12 myoblasts (C2C12-MBs) and C2C12 myotubes (C2C12-MTs). We revealed dynamic chromatin interactions of these marker genes during differentiation and identified 163 and 314 significant interaction sites (SISs) in C2C12-MBs and C2C12-MTs, respectively. The interacting genes of SISs in C2C12-MTs were mainly involved in muscle development, and histone modifications of the SISs changed during differentiation. Through functional genomic screening, we also identified 25 and 41 putative active enhancers in C2C12-MBs and C2C12-MTs, respectively. Using luciferase reporter assays for putative enhancers of Myog and Myh3, we identified eight activating enhancers. Furthermore, dCas9-KRAB epigenome editing and RNA-Seq revealed a role for Myog enhancers in the regulation of Myog expression and myogenic differentiation in the native genomic context. Taken together, this study lays the groundwork for understanding 3D chromatin interaction changes of myogenic genes during myogenesis and provides insights that contribute to our understanding of the role of enhancers in regulating myogenesis.
Collapse
Affiliation(s)
- Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaokai Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Duo Su
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Sha Zeng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hengkuan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Biwei Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenying Yang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Xi'nan Gynecology Hospital Co, Ltd, Chengdu, Sichuan, China
| | - Xuemin Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lu Lu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
8
|
Xu Z, Xiang J, Luan X, Geng Z, Cao L. Novel compound heterozygous mutations in a GNE myopathy with congenital thrombocytopenia: A case report and literature review. Clin Case Rep 2022; 10:e05659. [PMID: 35414913 PMCID: PMC8978988 DOI: 10.1002/ccr3.5659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
We reported a GNE myopathy with congenital thrombocytopenia on a young male patient. He presented with a 3-year history of lower distal extremity weakness initially affecting his legs. The weakness slowly progressed to lower proximal legs and upper arms last 6 months. Whole-exome sequencing revealed that the patient harbored two heterozygous gene mutations, including a novel insertion mutation c.*1037_*1038CACACACACACACACACACACA and c.C478T in exome 12 and 3 of the GNE gene (NM_001128227), respectively. The levels of serum sialic acid in this patient were considerably decreased. Muscle MRI imaging showed the anterior and medial parts of his quadriceps were heavily affected by this disease. Hematoxylin and eosin staining showed prominent rimmed vacuoles with a lack of inflammatory response in the atrophied muscle. We also undertook a review of the current literature, searching for reports in which the GNE gene mutation caused the thrombocytopenia with or without muscle weakness. This new gene mutation finding broadens the GNE disease genotype spectrum, and further investigation of the relationship between GNE gene mutations and the heterogeneity of its clinical manifestations is needed.
Collapse
Affiliation(s)
- Zhouwei Xu
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jingyan Xiang
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xinghua Luan
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Zhi Geng
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Li Cao
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
9
|
Qiao J, Wang S, Zhou J, Tan B, Li Z, Zheng E, Cai G, Wu Z, Hong L, Gu T. ITGB6 inhibits the proliferation of porcine skeletal muscle satellite cells. Cell Biol Int 2021; 46:96-105. [PMID: 34519117 DOI: 10.1002/cbin.11702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 01/17/2023]
Abstract
The formation of embryonic muscle fibers determines the amount of postnatal muscles and is regulated by a variety of signaling pathways and transcription factors. Previously, by using chromatin immunoprecipitation-sequencing and RNA-Seq techniques, we identified a large number of genes that are regulated by H3K27me3 in porcine embryonic skeletal muscles. Among these genes, we found that ITGB6 is regulated by H3K27me3. However, its function in muscle development is unknown. In this study, we first verified that ITGB6 was differentially regulated by H3K27me3 and that its expression levels were upregulated in porcine skeletal muscles at embryonic Days 33, 65, and 90. Then, we performed gain- or loss-of-function studies on porcine skeletal muscle satellite cells to study the role of ITGB6 in porcine skeletal muscle development. The proliferation of porcine skeletal muscle satellite cells was studied through real-time polymerase chain reaction, Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining, Western blot, and flow cytometry analyses. We found that the ITGB6 gene was regulated by H3K27me3 during muscle development and had an inhibitory effect on the proliferation of porcine skeletal muscle satellite cells.
Collapse
Affiliation(s)
- Jiaxin Qiao
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shanshan Wang
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian Zhou
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baohua Tan
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangzhou, China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Enqin Zheng
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Zhenfang Wu
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangzhou, China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Linjun Hong
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Gu
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Zhang L, Sun J, Li Z, Zhang D. The relationship between serum folate and grip strength in American adults. Arch Osteoporos 2021; 16:97. [PMID: 34148134 DOI: 10.1007/s11657-021-00937-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/10/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED We used data from NHANES to explore the associations between serum folate and grip strength, and found that high levels of serum folate were associated with increased grip strength among females rather than males. It is recommended to maintain a proper level of serum folate, especially in women. PURPOSE Associations and dose-response relationships between serum total folate, 5-methyltetrahydrofolate, and grip strength in general adults were unknown. Thus, we conducted this analysis for further exploration. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) database of 2011-2014 cycle were used. The independent variables including serum total folate, combined total folate (total folate plus Mefox), and 5-methyltetrahydrofolate. The dependent variable was BMI-corrected grip strength. Linear regression and the restricted cubic splines were used in our analyses. RESULTS A total of 9079 adults aged over 20 years were included. In multivariate-adjusted model 2, compared with quartile (Q) 1, grip strength increased in Q3 of combined total folate and total folate, and the weighted β values with 95% confidence intervals (CIs) of grip strength were 0.06 (0.01, 0.12) and 0.06 (0.00, 0.10) for combined total folate and total folate, respectively. In the stratified analysis by gender, positive relationships between combined total folate, total folate, and 5-methyltetrahydrofolate and grip strength were found only in females, with β (95% CIs) of 0.07 (0.02, 0.12), 0.07 (0.03, 0.12), and 0.09 (0.05, 0.13) for combined total folate, total folate, and 5-methyltetrahydrofolate in Q4, respectively. Non-linear positive dose-response relationships between serum folate and grip strength were also found only in females, not in males. CONCLUSION Our study suggested a positive association between serum folate and grip strength, while this positive association was only found in females; besides, the dose-response relationships were in a non-linear trend. Thus, it is recommended to maintain a proper serum folate level to keep better muscle strength, especially for women.
Collapse
Affiliation(s)
- Liming Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266021, China
| | - Jing Sun
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266021, China
| | - Zhaoying Li
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266021, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266021, China.
| |
Collapse
|
11
|
Kotulak-Chrząszcz A, Kmieć Z, Wierzbicki PM. Sonic Hedgehog signaling pathway in gynecological and genitourinary cancer (Review). Int J Mol Med 2021; 47:106. [PMID: 33907821 PMCID: PMC8057295 DOI: 10.3892/ijmm.2021.4939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/10/2021] [Indexed: 01/07/2023] Open
Abstract
Cancers of the urinary tract, as well as those of the female and male reproductive systems, account for a large percentage of malignancies worldwide. Mortality is frequently affected by late diagnosis or therapeutic difficulties. The Sonic Hedgehog (SHH) pathway is an evolutionary conserved molecular cascade, which is mainly associated with the development of the central nervous system in fetal life. The present review aimed to provide an in‑depth summary of the SHH signaling pathway, including the characterization of its major components, the mechanism of its upstream regulation and non‑canonical activation, as well as its interactions with other cellular pathways. In addition, the three possible mechanisms of the cellular SHH cascade in cancer tissue are discussed. The aim of the present review was to summarize significant findings with regards to the expression of the SHH pathway components in kidney, bladder, ovarian, cervical and prostate cancer. Reports associated with common deficits and de‑regulations of the SHH pathway were summarized, despite the differences in molecular and histological patterns among these malignancies. However, currently, neither are SHH pathway elements included in panels of prognostic/therapeutic molecular patterns in any of the discussed cancers, nor have the drugs targeting SMO or GLIs been approved for therapy. The findings of the present review may support future studies on the treatment of and/or molecular targets for gynecological and genitourinary cancers.
Collapse
Affiliation(s)
| | | | - Piotr M. Wierzbicki
- Correspondence to: Dr Piotr M. Wierzbicki, Department of Histology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80211 Gdansk, Poland, E-mail:
| |
Collapse
|
12
|
Kanakis I, Alameddine M, Folkes L, Moxon S, Myrtziou I, Ozanne SE, Peffers MJ, Goljanek-Whysall K, Vasilaki A. Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells 2021; 10:cells10051166. [PMID: 34064819 PMCID: PMC8150574 DOI: 10.3390/cells10051166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Maternal diet during gestation and lactation affects the development of skeletal muscles in offspring and determines muscle health in later life. In this paper, we describe the association between maternal low protein diet-induced changes in offspring skeletal muscle and the differential expression (DE) of small non-coding RNAs (sncRNAs). We used a mouse model of maternal protein restriction, where dams were fed either a normal (N, 20%) or a low protein (L, 8%) diet during gestation and newborns were cross-fostered to N or L lactating dams, resulting in the generation of NN, NL and LN offspring groups. Total body and tibialis anterior (TA) weights were decreased in weanling NL male offspring but were not different in the LN group, as compared to NN. However, histological evaluation of TA muscle revealed reduced muscle fibre size in both groups at weaning. Small RNA-sequencing demonstrated DE of multiple miRs, snoRNAs and snRNAs. Bioinformatic analyses of miRs-15a, -34a, -122 and -199a, in combination with known myomiRs, confirmed their implication in key muscle-specific biological processes. This is the first comprehensive report for the DE of sncRNAs in nutrition-associated programming of skeletal muscle development, highlighting the need for further research to unravel the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
- Correspondence: or
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Leighton Folkes
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Simon Moxon
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Mandy J. Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, Galway H91 TK33, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| |
Collapse
|
13
|
Gupta A, Storey KB. Coordinated expression of Jumonji and AHCY under OCT transcription factor control to regulate gene methylation in wood frogs during anoxia. Gene 2021; 788:145671. [PMID: 33887369 DOI: 10.1016/j.gene.2021.145671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
Wood frogs (Rana sylvatica) can survive extended periods of whole body freezing. Freezing imparts multiple stresses on cells that include anoxia and dehydration, but these can also be experienced as independent stresses. Under anoxia stress, energy metabolism is suppressed, and pro-survival pathways are prioritized to differentially regulate some transcription factors including OCT1 and OCT4. Jumonji C domain proteins (JMJD1A and JMJD2C) are hypoxia responsive demethylases whose expression is accelerated by OCT1 and OCT4 which act to demethylate genes related to the methionine cycle. The responses by these factors to 24 h anoxia exposure and 4 h aerobic recovery was analyzed in liver and skeletal muscle of wood frogs to assess their involvement in metabolic adaptation to oxygen limitation. Immunoblot results showed a decrease in JMJD1A levels under anoxia in liver and muscle, but an increase was observed in JMJD2C demethylase protein in anoxic skeletal muscle. Protein levels of adenosylhomocysteinase (AHCY) and methionine adenosyl transferase (MAT), enzymes of the methionine cycle, also showed an increase in the reoxygenated liver, whereas the levels decreased in muscle. A transcription factor ELISA showed a decrease in DNA binding by OCT1 in the reoxygenated liver and anoxic skeletal muscle, and transcript levels also showed tissue specific gene expression. The present study provides the first analysis of the role of the OCT1 transcription factor, associated proteins, and lysine demethylases in mediating responses to anoxia by wood frog tissues.
Collapse
Affiliation(s)
- Aakriti Gupta
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada.
| |
Collapse
|
14
|
Marchione AD, Thompson Z, Kathrein KL. DNA methylation and histone modifications are essential for regulation of stem cell formation and differentiation in zebrafish development. Brief Funct Genomics 2021:elab022. [PMID: 33782688 DOI: 10.1093/bfgp/elab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023] Open
Abstract
The complex processes necessary for embryogenesis require a gene regulatory network that is complex and systematic. Gene expression regulates development and organogenesis, but this process is altered and fine-tuned by epigenetic regulators that facilitate changes in the chromatin landscape. Epigenetic regulation of embryogenesis adjusts the chromatin structure by modifying both DNA through methylation and nucleosomes through posttranslational modifications of histone tails. The zebrafish is a well-characterized model organism that is a quintessential tool for studying developmental biology. With external fertilization, low cost and high fecundity, the zebrafish are an efficient tool for studying early developmental stages. Genetic manipulation can be performed in vivo resulting in quick identification of gene function. Large-scale genome analyses including RNA sequencing, chromatin immunoprecipitation and chromatin structure all are feasible in the zebrafish. In this review, we highlight the key events in zebrafish development where epigenetic regulation plays a critical role from the early stem cell stages through differentiation and organogenesis.
Collapse
|
15
|
Peng DQ, Smith SB, Lee HG. Vitamin A regulates intramuscular adipose tissue and muscle development: promoting high-quality beef production. J Anim Sci Biotechnol 2021; 12:34. [PMID: 33663602 PMCID: PMC7934359 DOI: 10.1186/s40104-021-00558-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/18/2021] [Indexed: 01/07/2023] Open
Abstract
During growth in cattle, the development of intramuscular adipose tissue and muscle is dependent upon cell hyperplasia (increased number of adipocytes) and hypertrophy (increased size of adipocytes). Based on the results of previous studies, other adipose tissue depots (e.g., perirenal and subcutaneous) develop from the fetal stage primarily as brown adipose tissue. The hyperplastic stage of intramuscular adipose is considered to develop from late pregnancy, but there is no evidence indicating that intramuscular adipose tissue develops initially as brown adipose tissue. Hyperplastic growth of intramuscular adipose continues well into postweaning and is dependent on the timing of the transition to grain-based diets; thereafter, the late-stage development of intramuscular adipose tissue is dominated by hypertrophy. For muscle development, hyperplasia of myoblasts lasts from early (following development of somites in the embryo) to middle pregnancy, after which growth of muscle is the result of hypertrophy of myofibers. Vitamin A is a fat-soluble compound that is required for the normal immunologic function, vision, cellular proliferation, and differentiation. Here we review the roles of vitamin A in intramuscular adipose tissue and muscle development in cattle. Vitamin A regulates both hyperplasia and hypertrophy in in vitro experiments. Vitamin A supplementation at the early stage and restriction at fattening stage generate opposite effects in the beef cattle. Appropriate vitamin A supplementation and restriction strategy increase intramuscular adipose tissue development (i.e., marbling or intramuscular fat) in some in vivo trials. Besides, hyperplasia and hypertrophy of myoblasts/myotubes were affected by vitamin A treatment in in vitro trials. Additionally, some studies reported an interaction between the alcohol dehydrogenase-1C (ADH1C) genotype and vitamin A feed restriction for the development of marbling and/or intramuscular adipose tissue, which was dependent on the timing and level of vitamin A restriction. Therefore, the feed strategy of vitamin A has the visible impact on the marbling and muscle development in the cattle, which will be helpful to promote the quality of the beef.
Collapse
Affiliation(s)
- Dong Qiao Peng
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Stephen B Smith
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Hong Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
16
|
Luo H, Lv W, Tong Q, Jin J, Xu Z, Zuo B. Functional Non-coding RNA During Embryonic Myogenesis and Postnatal Muscle Development and Disease. Front Cell Dev Biol 2021; 9:628339. [PMID: 33585483 PMCID: PMC7876409 DOI: 10.3389/fcell.2021.628339] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle is a highly heterogeneous tissue that plays a crucial role in mammalian metabolism and motion maintenance. Myogenesis is a complex biological process that includes embryonic and postnatal development, which is regulated by specific signaling pathways and transcription factors. Various non-coding RNAs (ncRNAs) account for the majority of total RNA in cells and have an important regulatory role in myogenesis. In this review, we introduced the research progress in miRNAs, circRNAs, and lncRNAs related to embryonic and postnatal muscle development. We mainly focused on ncRNAs that regulate myoblast proliferation, differentiation, and postnatal muscle development through multiple mechanisms. Finally, challenges and future perspectives related to the identification and verification of functional ncRNAs are discussed. The identification and elucidation of ncRNAs related to myogenesis will enrich the myogenic regulatory network, and the effective application of ncRNAs will enhance the function of skeletal muscle.
Collapse
Affiliation(s)
- Hongmei Luo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Lv
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qian Tong
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
17
|
Puri D, Swamy CVB, Dhawan J, Mishra RK. Comparative nuclear matrix proteome analysis of skeletal muscle cells in different cellular states. Cell Biol Int 2021; 45:580-598. [PMID: 33200434 DOI: 10.1002/cbin.11499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/01/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
The nuclear matrix (NuMat) serves as the structural framework for organizing and maintaining nuclear architecture, however, the mechanisms by which this non-chromatin compartment is constructed and regulated are poorly understood. This study presents a proteomic analysis of the NuMat isolated from cultured skeletal muscle cells in three distinct cellular states- proliferating myoblasts (MBs), terminally differentiated myotubes (MTs), and mitotically quiescent (G0) myoblasts. About 40% of the proteins identified were found to be common in the NuMat proteome of these morphologically and functionally distinct cell states. These proteins, termed as the "core NuMat," define the stable, conserved, structural constituent of the nucleus, with functions such as RNA splicing, cytoskeletal organization, and chromatin modification, while the remaining NuMat proteins showed cell-state specificity, consistent with a more dynamic and potentially regulatory function. Specifically, myoblast NuMat was enriched in cell cycle, DNA replication and repair proteins, myotube NuMat in muscle differentiation and muscle function proteins, while G0 NuMat was enriched in metabolic, transcription, and transport proteins. These findings offer a new perspective for a cell-state-specific role of nuclear architecture and spatial organization, integrated with diverse cellular processes, and implicate NuMat proteins in the control of the cell cycle, lineage commitment, and differentiation.
Collapse
Affiliation(s)
- Deepika Puri
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | - Ch V B Swamy
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| |
Collapse
|
18
|
Zhao X, Zhu R, Wang Y, Qi J, Wang J, Bai L, Wang H, Wu Y, Hu H. Differentiation proliferative capacity of skeletal muscle satellite cells from Dapulian and Landrace pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1769511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Xueyan Zhao
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Rongsheng Zhu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanping Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jing Qi
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiying Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liya Bai
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Huaizhong Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ying Wu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongmei Hu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
19
|
Cell geometry and the cytoskeleton impact the nucleo-cytoplasmic localisation of the SMYD3 methyltransferase. Sci Rep 2020; 10:20598. [PMID: 33244033 PMCID: PMC7691988 DOI: 10.1038/s41598-020-75833-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanical cues from the cellular microenvironment are converted into biochemical signals controlling diverse cell behaviours, including growth and differentiation. But it is still unclear how mechanotransduction ultimately affects nuclear readouts, genome function and transcriptional programs. Key signaling pathways and transcription factors can be activated, and can relocalize to the nucleus, upon mechanosensing. Here, we tested the hypothesis that epigenetic regulators, such as methyltransferase enzymes, might also contribute to mechanotransduction. We found that the SMYD3 lysine methyltransferase is spatially redistributed dependent on cell geometry (cell shape and aspect ratio) in murine myoblasts. Specifically, elongated rectangles were less permissive than square shapes to SMYD3 nuclear accumulation, via reduced nuclear import. Notably, SMYD3 has both nuclear and cytoplasmic substrates. The distribution of SMYD3 in response to cell geometry correlated with cytoplasmic and nuclear lysine tri-methylation (Kme3) levels, but not Kme2. Moreover, drugs targeting cytoskeletal acto-myosin induced nuclear accumulation of Smyd3. We also observed that square vs rectangular geometry impacted the nuclear-cytoplasmic relocalisation of several mechano-sensitive proteins, notably YAP/TAZ proteins and the SETDB1 methyltransferase. Thus, mechanical cues from cellular geometric shapes are transduced by a combination of transcription factors and epigenetic regulators shuttling between the cell nucleus and cytoplasm. A mechanosensitive epigenetic machinery could potentially affect differentiation programs and cellular memory.
Collapse
|
20
|
Abstract
Histone variants regulate chromatin accessibility and gene transcription. Given their distinct properties and functions, histone varint substitutions allow for profound alteration of nucleosomal architecture and local chromatin landscape. Skeletal myogenesis driven by the key transcription factor MyoD is characterized by precise temporal regulation of myogenic genes. Timed substitution of variants within the nucleosomes provides a powerful means to ensure sequential expression of myogenic genes. Indeed, growing evidence has shown H3.3, H2A.Z, macroH2A, and H1b to be critical for skeletal myogenesis. However, the relative importance of various histone variants and their associated chaperones in myogenesis is not fully appreciated. In this review, we summarize the role that histone variants play in altering chromatin landscape to ensure proper muscle differentiation. The temporal regulation and cross talk between histones variants and their chaperones in conjunction with other forms of epigenetic regulation could be critical to understanding myogenesis and their involvement in myopathies.
Collapse
Affiliation(s)
- Nandini Karthik
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
21
|
Choi KH, Yoon JW, Kim M, Jeong J, Ryu M, Park S, Jo C, Lee CK. Optimization of Culture Conditions for Maintaining Pig Muscle Stem Cells In Vitro. Food Sci Anim Resour 2020; 40:659-667. [PMID: 32734272 PMCID: PMC7372987 DOI: 10.5851/kosfa.2020.e39] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Muscle stem cells isolated from domestic animals, including cows and pigs, were
recently spotlighted as candidates for the production of alternative protein
resources, so-called cultured meat or lab-grown meat. In the present study, we
aimed to optimize the in vitro culture conditions for the
long-term expansion of pig muscle stem cells via the screening of various
signaling molecules. Pig muscle stem cells were collected from the
biceps femoris muscles of 3-d-old crossbred pigs
(Landrace×Yorkshire×Duroc, LYD) and cultured in minimum essential
medium-based growth media. However, the pig muscle stem cells gradually lost
their proliferation ability and featured morphologies during the long-term
culture over two weeks. To find suitable in vitro culture
conditions for an extended period, skeletal muscle growth medium-2, including
epidermal growth factor (EGF), dexamethasone, and a p38 inhibitor (SB203580),
was used to support the stemness of the pig muscle stem cells. Interestingly,
pig muscle stem cells were stably maintained in a long-term culture without loss
of the expression of myogenic marker genes as determined by PCR analysis.
Immunostaining analysis showed that the stem cells were capable of myogenic
differentiation after multiple passaging. Therefore, we found that basal culture
conditions containing EGF, dexamethasone, and a p38 inhibitor were suitable for
maintaining pig muscle stem cells during expanded culture in
vitro. This culture method may be applied for the production of
cultured meat and further basic research on muscle development in the pig.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji Won Yoon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Minkyung Ryu
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeong Chang 25354, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeong Chang 25354, Korea
| |
Collapse
|
22
|
Ojima C, Noguchi Y, Miyamoto T, Saito Y, Orihashi H, Yoshimatsu Y, Watabe T, Takayama K, Hayashi Y, Itoh F. Peptide-2 from mouse myostatin precursor protein alleviates muscle wasting in cancer-associated cachexia. Cancer Sci 2020; 111:2954-2964. [PMID: 32519375 PMCID: PMC7419029 DOI: 10.1111/cas.14520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia, characterized by continuous muscle wasting, is a key determinant of cancer‐related death; however, there are few medical treatments to combat it. Myostatin (MSTN)/growth differentiation factor 8 (GDF‐8), which is a member of the transforming growth factor‐β family, is secreted in an inactivated form noncovalently bound to the prodomain, negatively regulating the skeletal muscle mass. Therefore, inhibition of MSTN signaling is expected to serve as a therapeutic target for intractable muscle wasting diseases. Here, we evaluated the inhibitory effect of peptide‐2, an inhibitory core of mouse MSTN prodomain, on MSTN signaling. Peptide‐2 selectively suppressed the MSTN signal, although it had no effect on the activin signal. In contrast, peptide‐2 slightly inhibited the GDF‐11 signaling pathway, which is strongly related to the MSTN signaling pathway. Furthermore, we found that the i.m. injection of peptide‐2 to tumor‐implanted C57BL/6 mice alleviated muscle wasting in cancer cachexia. Although peptide‐2 was unable to improve the loss of heart weight and fat mass when cancer cachexia model mice were injected with it, peptide‐2 increased the gastrocnemius muscle weight and muscle cross‐sectional area resulted in the enhanced grip strength in cancer cachexia mice. Consequently, the model mice treated with peptide‐2 could survive longer than those that did not undergo this treatment. Our results suggest that peptide‐2 might be a novel therapeutic candidate to suppress muscle wasting in cancer cachexia.
Collapse
Affiliation(s)
- Chiharu Ojima
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuri Noguchi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tatsuki Miyamoto
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuki Saito
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroki Orihashi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
23
|
EDMD-Causing Emerin Mutant Myogenic Progenitors Exhibit Impaired Differentiation Using Similar Mechanisms. Cells 2020; 9:cells9061463. [PMID: 32549231 PMCID: PMC7349064 DOI: 10.3390/cells9061463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Mutations in the gene encoding emerin (EMD) cause Emery–Dreifuss muscular dystrophy (EDMD1), an inherited disorder characterized by progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. The skeletal muscle defects seen in EDMD are caused by failure of muscle stem cells to differentiate and regenerate the damaged muscle. However, the underlying mechanisms remain poorly understood. Most EDMD1 patients harbor nonsense mutations and have no detectable emerin protein. There are three EDMD-causing emerin mutants (S54F, Q133H, and Δ95–99) that localize correctly to the nuclear envelope and are expressed at wildtype levels. We hypothesized these emerin mutants would share in the disruption of key molecular pathways involved in myogenic differentiation. We generated myogenic progenitors expressing wildtype emerin and each EDMD1-causing emerin mutation (S54F, Q133H, Δ95–99) in an emerin-null (EMD−/y) background. S54F, Q133H, and Δ95–99 failed to rescue EMD−/y myogenic differentiation, while wildtype emerin efficiently rescued differentiation. RNA sequencing was done to identify pathways and networks important for emerin regulation of myogenic differentiation. This analysis significantly reduced the number of pathways implicated in EDMD1 muscle pathogenesis.
Collapse
|
24
|
Tingle CF, Magnuson B, Zhao Y, Heisel CJ, Kish PE, Kahana A. Paradoxical Changes Underscore Epigenetic Reprogramming During Adult Zebrafish Extraocular Muscle Regeneration. Invest Ophthalmol Vis Sci 2020; 60:4991-4999. [PMID: 31794598 PMCID: PMC6890397 DOI: 10.1167/iovs.19-27556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Genomic reprogramming and cellular dedifferentiation are critical to the success of de novo tissue regeneration in lower vertebrates such as zebrafish and axolotl. In tissue regeneration following injury or disease, differentiated cells must retain lineage while assuming a progenitor-like identity in order to repopulate the damaged tissue. Understanding the epigenetic regulation of programmed cellular dedifferentiation provides unique insights into the biology of stem cells and cancer and may lead to novel approaches for treating human degenerative conditions. Methods Using a zebrafish in vivo model of adult muscle regeneration, we utilized chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) to characterize early changes in epigenetic signals, focusing on three well-studied histone modifications-histone H3 trimethylated at lysine 4 (H3K4me3), and histone H3 trimethylated or acetylated at lysine 27 (H3K27me3 and H3K27Ac, respectively). Results We discovered that zebrafish myocytes undergo a global, rapid, and transient program to drive genomic remodeling. The timing of these epigenetic changes suggests that genomic reprogramming itself represents a distinct sequence of events, with predetermined checkpoints, to generate cells capable of de novo regeneration. Importantly, we uncovered subsets of genes that maintain epigenetic marks paradoxical to changes in expression, underscoring the complexity of epigenetic reprogramming. Conclusions Within our model, histone modifications previously associated with gene expression act for the most part as expected, with exceptions suggesting that zebrafish chromatin maintains an easily editable state with a number of genes paradoxically marked for transcriptional activity despite downregulation.
Collapse
Affiliation(s)
- Christina F Tingle
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Brian Magnuson
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States.,Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States
| | - Yi Zhao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Curtis J Heisel
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States.,University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Phillip E Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
25
|
Han Y, Lee H, Li H, Ryu JH. Corylifol A from Psoralea corylifolia L. Enhances Myogenesis and Alleviates Muscle Atrophy. Int J Mol Sci 2020; 21:ijms21051571. [PMID: 32106603 PMCID: PMC7084366 DOI: 10.3390/ijms21051571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammatory conditions caused by cancer, chronic diseases or aging can lead to skeletal muscle atrophy. We identified myogenic compounds from Psoralea corylifolia (PC), a medicinal plant that has been used for the treatment of inflammatory and skin diseases. C2C12 mouse skeletal myoblasts were differentiated in the presence of eight compounds isolated from PC to evaluate their myogenic potential. Among them, corylifol A showed the strongest transactivation of MyoD and increased expression of myogenic markers, such as MyoD, myogenin and myosin heavy chain (MHC). Corylifol A increased the number of multinucleated and MHC-expressing myotubes. We also found that the p38 MAPK signaling pathway is essential for the myogenic action of corylifol A. Atrophic condition was induced by treatment with dexamethasone. Corylifol A protected against dexamethasone-induced myotube loss by increasing the proportion of multinucleated MHC-expressing myotubes compared with dexamethasone-damaged myotubes. Corylifol A reduced the expression of muscle-specific ubiquitin-E3 ligases (MAFbx and MuRF1) and myostatin, while activating Akt. These dual effects of corylifol A, inhibition of catabolic and activation of anabolic pathways, protect myotubes against dexamethasone damage. In summary, corylifol A isolated from P. corylifolia alleviates muscle atrophic condition through activating myoblast differentiation and suppressing muscle degradation in atrophic conditions.
Collapse
|
26
|
Codato R, Perichon M, Divol A, Fung E, Sotiropoulos A, Bigot A, Weitzman JB, Medjkane S. The SMYD3 methyltransferase promotes myogenesis by activating the myogenin regulatory network. Sci Rep 2019; 9:17298. [PMID: 31754141 PMCID: PMC6872730 DOI: 10.1038/s41598-019-53577-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
The coordinated expression of myogenic regulatory factors, including MyoD and myogenin, orchestrates the steps of skeletal muscle development, from myoblast proliferation and cell-cycle exit, to myoblast fusion and myotubes maturation. Yet, it remains unclear how key transcription factors and epigenetic enzymes cooperate to guide myogenic differentiation. Proteins of the SMYD (SET and MYND domain-containing) methyltransferase family participate in cardiac and skeletal myogenesis during development in zebrafish, Drosophila and mice. Here, we show that the mammalian SMYD3 methyltransferase coordinates skeletal muscle differentiation in vitro. Overexpression of SMYD3 in myoblasts promoted muscle differentiation and myoblasts fusion. Conversely, silencing of endogenous SMYD3 or its pharmacological inhibition impaired muscle differentiation. Genome-wide transcriptomic analysis of murine myoblasts, with silenced or overexpressed SMYD3, revealed that SMYD3 impacts skeletal muscle differentiation by targeting the key muscle regulatory factor myogenin. The role of SMYD3 in the regulation of skeletal muscle differentiation and myotube formation, partially via the myogenin transcriptional network, highlights the importance of methyltransferases in mammalian myogenesis.
Collapse
Affiliation(s)
- Roberta Codato
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Martine Perichon
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Arnaud Divol
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
- Atos, Paris, France
| | - Ella Fung
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
- Pfizer, Boston, MA, USA
| | | | - Anne Bigot
- Université de Paris, Institut de Myologie, INSERM, Paris, France
| | | | - Souhila Medjkane
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France.
| |
Collapse
|
27
|
Functions and Regulatory Mechanisms of lncRNAs in Skeletal Myogenesis, Muscle Disease and Meat Production. Cells 2019; 8:cells8091107. [PMID: 31546877 PMCID: PMC6769631 DOI: 10.3390/cells8091107] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Myogenesis is a complex biological process, and understanding the regulatory network of skeletal myogenesis will contribute to the treatment of human muscle related diseases and improvement of agricultural animal meat production. Long noncoding RNAs (lncRNAs) serve as regulators in gene expression networks, and participate in various biological processes. Recent studies have identified functional lncRNAs involved in skeletal muscle development and disease. These lncRNAs regulate the proliferation, differentiation, and fusion of myoblasts through multiple mechanisms, such as chromatin modification, transcription regulation, and microRNA sponge activity. In this review, we presented the latest advances regarding the functions and regulatory activities of lncRNAs involved in muscle development, muscle disease, and meat production. Moreover, challenges and future perspectives related to the identification of functional lncRNAs were also discussed.
Collapse
|
28
|
Masuda H, Sato A, Shizuno T, Yokoyama K, Suzuki Y, Tokunaga M, Asahara T. Batroxobin accelerated tissue repair via neutrophil extracellular trap regulation and defibrinogenation in a murine ischemic hindlimb model. PLoS One 2019; 14:e0220898. [PMID: 31419236 PMCID: PMC6697371 DOI: 10.1371/journal.pone.0220898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/25/2019] [Indexed: 12/27/2022] Open
Abstract
Batroxobin, isolated from Bothrops moojeni, is a defibrinogenating agent used as a thrombin-like serine protease against fibrinogen for improving microcirculation. Here, we investigated whether, and if so, how batroxobin restores ischemic tissue injury in terms of anti-inflammatory effects. In an in vitro flow cytometry assay for human neutrophil extracellular traps (NETs), batroxobin (DF-521; Defibrase) inhibited human NETs induced by tumor necrosis factor-α (TNF-α) in the presence of human fibrinogen. Next, the effect of batroxobin was investigated by immunohistochemistry of the anterior tibial muscle (ATM) in an ischemic hindlimb model using C57BL/6J mice intraperitoneally injected with DF-521 versus the saline control. NETs and fibrinogen deposition in the ischemic ATM decreased in DF-521-treated mice on day 2 after ischemia. Meanwhile, reverse transcription-quantitative PCR assay of the ischemic ATM unveiled continuous downregulation in the expression of the genes; Tnf-α and nitric oxide synthase2 (Nos2) with hypoxia-inducible factor-1α (Hif-1α) and vascular endothelial growth factor-a (Vegf-a) from day 3 to day 7, but the upregulation of arginase-1 (Arg-1) and placental growth factor (Plgf) with myogenin (Myog) on day 7. Daily intraperitoneal DF-521 injection for the initial 7 days into mice with ischemic hindlimbs promoted angiogenesis and arteriogenesis on day 14. Moreover, DF-521 injection accelerated myofiber maturation after day 14. Laser doppler imaging analysis revealed that blood perfusion in DF-521-injected mice significantly improved on day 14 versus the saline control. Thus, DF-521 improves microcirculation by protecting NETs with tissue defibrinogenation, thereby protecting against severe ischemic tissue injury and accelerating vascular and skeletal muscular regeneration. To our knowledge, batroxobin might be the first clinically applicable NET inhibitor against ischemic diseases.
Collapse
Affiliation(s)
- Haruchika Masuda
- Department of Physiology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- * E-mail:
| | - Atsuko Sato
- Department of Physiology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tomoko Shizuno
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Keiko Yokoyama
- Department of Research and Education Support Center, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yusuke Suzuki
- Department of Research and Education Support Center, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masayoshi Tokunaga
- Department of Research and Education Support Center, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takayuki Asahara
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
29
|
Lawlor L, Yang XB. Harnessing the HDAC-histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering. Int J Oral Sci 2019; 11:20. [PMID: 31201303 PMCID: PMC6572769 DOI: 10.1038/s41368-019-0053-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
There are large knowledge gaps regarding how to control stem cells growth and differentiation. The limitations of currently available technologies, such as growth factors and/or gene therapies has led to the search of alternatives. We explore here how a cell's epigenome influences determination of cell type, and potential applications in tissue engineering. A prevalent epigenetic modification is the acetylation of DNA core histone proteins. Acetylation levels heavily influence gene transcription. Histone deacetylase (HDAC) enzymes can remove these acetyl groups, leading to the formation of a condensed and more transcriptionally silenced chromatin. Histone deacetylase inhibitors (HDACis) can inhibit these enzymes, resulting in the increased acetylation of histones, thereby affecting gene expression. There is strong evidence to suggest that HDACis can be utilised in stem cell therapies and tissue engineering, potentially providing novel tools to control stem cell fate. This review introduces the structure/function of HDAC enzymes and their links to different tissue types (specifically bone, cardiac, neural tissues), including the history, current status and future perspectives of using HDACis for stem cell research and tissue engineering, with particular attention paid to how different HDAC isoforms may be integral to this field.
Collapse
Affiliation(s)
- Liam Lawlor
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Xuebin B Yang
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK.
| |
Collapse
|
30
|
Breuls N, Giacomazzi G, Sampaolesi M. (Epi)genetic Modifications in Myogenic Stem Cells: From Novel Insights to Therapeutic Perspectives. Cells 2019; 8:cells8050429. [PMID: 31075875 PMCID: PMC6562881 DOI: 10.3390/cells8050429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
The skeletal muscle is considered to be an ideal target for stem cell therapy as it has an inherent regenerative capacity. Upon injury, the satellite cells, muscle stem cells that reside under the basal lamina of the myofibres, start to differentiate in order to reconstitute the myofibres while maintaining the initial stem cell pool. In recent years, it has become more and more evident that epigenetic mechanisms such as histon modifications, DNA methylations and microRNA modulations play a pivatol role in this differentiation process. By understanding the mechanisms behind myogenesis, researchers are able to use this knowledge to enhance the differentiation and engraftment potential of different muscle stem cells. Besides manipulation on an epigenetic level, recent advances in the field of genome-engineering allow site-specific modifications in the genome of these stem cells. Combining epigenetic control of the stem cell fate with the ability to site-specifically correct mutations or add genes for further cell control, can increase the use of stem cells as treatment of muscular dystrophies drastically. In this review, we will discuss the advances that have been made in genome-engineering and the epigenetic regulation of muscle stem cells and how this knowledge can help to get stem cell therapy to its full potential.
Collapse
Affiliation(s)
- Natacha Breuls
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
| | - Giorgia Giacomazzi
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
| | - Maurilio Sampaolesi
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, and Interuniversity Institute of Myology, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
31
|
The role of acetyltransferases for the temporal-specific accessibility of β-catenin to the myogenic gene locus. Sci Rep 2018; 8:15057. [PMID: 30305648 PMCID: PMC6180044 DOI: 10.1038/s41598-018-32888-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
Molecules involved in WNT/β-catenin signaling show spatiotemporal-specific expression and play vital roles in muscle development. Our previous study showed that WNT/β-catenin signaling promotes myoblast proliferation and differentiation through the regulation of the cyclin A2 (Ccna2)/cell division cycle 25C (Cdc25c) and Fermitin family homolog 2 (Fermt2) genes, respectively. However, it remains unclear how β-catenin targets different genes from stage to stage during myogenesis. Here, we show that the accessibility of β-catenin to the promoter region of its target genes is regulated by developmental stage-specific histone acetyltransferases (HATs), lysine acetyltransferase 2B (KAT2B), and cAMP-response element-binding protein (CREB)-binding protein (CBP). We found that KAT2B was specifically expressed at the myoblast proliferation stage and formed a complex with β-catenin to induce Ccna2/Cdc25c expression. On the other hand, CBP was specifically expressed during myoblast differentiation and formed a complex with β-catenin to induce Fermt2 expression. Our findings indicate that β-catenin efficiently accesses to its target gene’s promoters by forming a complex with developmental stage-specific acetyltransferases during myogenesis.
Collapse
|
32
|
Sun Y, Kuek V, Liu Y, Tickner J, Yuan Y, Chen L, Zeng Z, Shao M, He W, Xu J. MiR-214 is an important regulator of the musculoskeletal metabolism and disease. J Cell Physiol 2018; 234:231-245. [PMID: 30076721 DOI: 10.1002/jcp.26856] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
MiR-214 belongs to a family of microRNA (small, highly conserved noncoding RNA molecules) precursors that play a pivotal role in biological functions, such as cellular function, tissue development, tissue homeostasis, and pathogenesis of diseases. Recently, miR-214 emerged as a critical regulator of musculoskeletal metabolism. Specifically, miR-214 can mediate skeletal muscle myogenesis and vascular smooth muscle cell proliferation, migration, and differentiation. MiR-214 also modulates osteoblast function by targeting specific molecular pathways and the expression of various osteoblast-related genes; promotes osteoclast activity by targeting phosphatase and tensin homolog (Pten); and mediates osteoclast-osteoblast intercellular crosstalk via an exosomal miRNA paracrine mechanism. Importantly, dysregulation in miR-214 expression is associated with pathological bone conditions such as osteoporosis, osteosarcoma, multiple myeloma, and osteolytic bone metastasis of breast cancer. This review discusses the cellular targets of miR-214 in bone, the molecular mechanisms governing the activities of miR-214 in the musculoskeletal system, and the putative role of miR-214 in skeletal diseases. Understanding the biology of miR-214 could potentially lead to the development of miR-214 as a possible biomarker and a therapeutic target for musculoskeletal diseases.
Collapse
Affiliation(s)
- Youqiang Sun
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Vincent Kuek
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yuhao Liu
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jennifer Tickner
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Yuan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong, China
| | - Leilei Chen
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhikui Zeng
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Min Shao
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Orthopedics, Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei He
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiake Xu
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Lai A, Dong G, Song D, Yang T, Zhang X. Responses to dietary levels of methionine in broilers medicated or vaccinated against coccidia under Eimeria tenella-challenged condition. BMC Vet Res 2018; 14:140. [PMID: 29699573 PMCID: PMC5922021 DOI: 10.1186/s12917-018-1470-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Background Coccidiosis is a prevalent problem in chicken production. Dietary addition of coccidiostats and vaccination are two approaches used to suppress coccidia in the practical production. Methionine (Met) is usually the first limiting amino acid that plays important roles in protein metabolism and immune functions in chickens. The present study is aimed to investigate whether increasing dietary Met levels will improve the anticoccidial effects in broilers medicated or vaccinated against coccidia under Eimeria (E.) tenella-challenged condition. Two thousand male Partridge Shank broiler chicks were obtained from a hatchery. After hatch, birds were weighed, color-marked and allocated equally into two anticoccidial treatments, namely medicated and vaccinated groups. Chicks were either fed, from 1 d of age, diets containing coccidiostat (narasin) or diets without the coccidiostat but were inoculated with an anticoccidial vaccine at 3 d of age. At 22 d of age, 1080 chicks among them were randomly allocated evenly into 6 groups under a 2 × 3 treatment with 2 anticoccidial programs and 3 dietary methionine (Met) levels. Chicks medicated or vaccinated against coccidia were fed diets containing 0.45%, 0.56% or 0.68% of Met from 22 to 42 d of age. All chicks were orally introduced with an amount of 5 × 104 sporulated oocysts of E. tenella at 24 d of age. The growth performance, serum anti-oxidative indexes, intestinal morphology, cecal lesion scores, fecal oocyst counts and immune parameters were measured. Results The results showed increasing dietary Met level from 0.45% to 0.56% and 0.68% improved weight gain and feed conversion of broilers medicated against coccidia. In contrast, higher dietary levels of Met did not improve growth performance of the vaccinated chickens. Higher Met levels helped the medicated chickens resist E. tenella infection, as indicated by improved intestinal morphology and immune functions as well as decreased cecal lesion and fecal oocyst counts. Conclusions Anticoccidial vaccination is a better strategy for controlling coccidiosis than feeding narasin, due to not only greater growth performance, but also the lower Met supplementation. Furthermore, higher dietary Met levels improved growth performance of chickens medicated rather than vaccinated against coccidia under E. tenella-challenged condition.
Collapse
Affiliation(s)
- Anqiang Lai
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Guozhong Dong
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, 400716, People's Republic of China.
| | - Daijun Song
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Tan Yang
- Sichuan Giant Star Company's Experimental Station, Leshan, Sichuan, 614800, People's Republic of China
| | - Xiaolong Zhang
- Sichuan Giant Star Company's Experimental Station, Leshan, Sichuan, 614800, People's Republic of China
| |
Collapse
|
34
|
Baribault C, Ehrlich KC, Ponnaluri VKC, Pradhan S, Lacey M, Ehrlich M. Developmentally linked human DNA hypermethylation is associated with down-modulation, repression, and upregulation of transcription. Epigenetics 2018; 13:275-289. [PMID: 29498561 PMCID: PMC5997157 DOI: 10.1080/15592294.2018.1445900] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA methylation can affect tissue-specific gene transcription in ways that are difficult to discern from studies focused on genome-wide analyses of differentially methylated regions (DMRs). To elucidate the variety of associations between differentiation-related DNA hypermethylation and transcription, we used available epigenomic and transcriptomic profiles from 38 human cell/tissue types to focus on such relationships in 94 genes linked to hypermethylated DMRs in myoblasts (Mb). For 19 of the genes, promoter-region hypermethylation in Mb (and often a few heterologous cell types) was associated with gene repression but, importantly, DNA hypermethylation was absent in many other repressed samples. In another 24 genes, DNA hypermethylation overlapped cryptic enhancers or super-enhancers and correlated with down-modulated, but not silenced, gene expression. However, such methylation was absent, surprisingly, in both non-expressing samples and highly expressing samples. This suggests that some genes need DMR hypermethylation to help repress cryptic enhancer chromatin only when they are actively transcribed. For another 11 genes, we found an association between intergenic hypermethylated DMRs and positive expression of the gene in Mb. DNA hypermethylation/transcription correlations similar to those of Mb were evident sometimes in diverse tissues, such as aorta and brain. Our findings have implications for the possible involvement of methylated DNA in Duchenne's muscular dystrophy, congenital heart malformations, and cancer. This epigenomic analysis suggests that DNA methylation is not simply the inevitable consequence of changes in gene expression but, instead, is often an active agent for fine-tuning transcription in association with development.
Collapse
Affiliation(s)
- Carl Baribault
- a Tulane Cancer Center , Tulane University Health Sciences Center , New Orleans , LA 70112 , USA.,b Department of Mathematics , Tulane University , New Orleans , LA 70118 , USA
| | - Kenneth C Ehrlich
- c Center for Bioinformatics and Genomics , Tulane University Health Sciences Center , New Orleans , LA 70112 , USA
| | | | | | - Michelle Lacey
- b Department of Mathematics , Tulane University , New Orleans , LA 70118 , USA
| | - Melanie Ehrlich
- a Tulane Cancer Center , Tulane University Health Sciences Center , New Orleans , LA 70112 , USA.,c Center for Bioinformatics and Genomics , Tulane University Health Sciences Center , New Orleans , LA 70112 , USA.,e Hayward Genetics Center Tulane University Health Sciences Center , New Orleans , LA 70112 , USA
| |
Collapse
|
35
|
Raj U, Aier I, Semwal R, Varadwaj PK. Identification of novel dysregulated key genes in Breast cancer through high throughput ChIP-Seq data analysis. Sci Rep 2017; 7:3229. [PMID: 28607444 PMCID: PMC5468232 DOI: 10.1038/s41598-017-03534-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the most common cancer in women both in the developed and less developed countries, and it imposes a considerable threat to human health. Therefore, in order to develop effective targeted therapies against Breast cancer, a deep understanding of its underlying molecular mechanisms is required. The application of deep transcriptional sequencing has been found to be reported to provide an efficient genomic assay to delve into the insights of the diseases and may prove to be useful in the study of Breast cancer. In this study, ChIP-Seq data for normal samples and Breast cancer were compared, and differential peaks identified, based upon fold enrichment (with P-values obtained via t-tests). The Protein-protein interaction (PPI) network analysis was carried out, following which the highly connected genes were screened and studied, and the most promising ones were selected. Biological pathway involved in the process were then identified. Our findings regarding potential Breast cancer-related genes enhances the understanding of the disease and provides prognostic information in addition to standard tumor prognostic factors for future research.
Collapse
Affiliation(s)
- Utkarsh Raj
- Department of Bioinformatics & Applied Sciences, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Imlimaong Aier
- Department of Bioinformatics & Applied Sciences, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Rahul Semwal
- Department of Bioinformatics & Applied Sciences, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Pritish Kumar Varadwaj
- Department of Bioinformatics & Applied Sciences, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
36
|
Zhang Y, Yu B, He J, Chen D. From Nutrient to MicroRNA: a Novel Insight into Cell Signaling Involved in Skeletal Muscle Development and Disease. Int J Biol Sci 2016; 12:1247-1261. [PMID: 27766039 PMCID: PMC5069446 DOI: 10.7150/ijbs.16463] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/19/2016] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is a remarkably complicated organ comprising many different cell types, and it plays an important role in lifelong metabolic health. Nutrients, as an external regulator, potently regulate skeletal muscle development through various internal regulatory factors, such as mammalian target of rapamycin (mTOR) and microRNAs (miRNAs). As a nutrient sensor, mTOR, integrates nutrient availability to regulate myogenesis and directly or indirectly influences microRNA expression. MiRNAs, a class of small non-coding RNAs mediating gene silencing, are implicated in myogenesis and muscle-related diseases. Meanwhile, growing evidence has emerged supporting the notion that the expression of myogenic miRNAs could be regulated by nutrients in an epigenetic mechanism. Therefore, this review presents a novel insight into the cell signaling network underlying nutrient-mTOR-miRNA pathway regulation of skeletal myogenesis and summarizes the epigenetic modifications in myogenic differentiation, which will provide valuable information for potential therapeutic intervention.
Collapse
Affiliation(s)
- Yong Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan 625014, P. R. China.; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan 625014, P. R. China.; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan 625014, P. R. China.; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan 625014, P. R. China.; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China
| |
Collapse
|