1
|
Kim S, Nowicki KW, Kohyama K, Mittal A, Ye S, Wang K, Fujii T, Rajesh S, Cao C, Mantena R, Barbuto M, Jung Y, Gross BA, Friedlander RM, Wagner WR. Development of an Injectable, ECM-Derivative Embolic for the Treatment of Cerebral Saccular Aneurysms. Biomacromolecules 2024; 25:4879-4890. [PMID: 39001820 PMCID: PMC11323012 DOI: 10.1021/acs.biomac.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Cerebral aneurysms are a source of neurological morbidity and mortality, most often as a result of rupture. The most common approach for treating aneurysms involves endovascular embolization using nonbiodegradable medical devices, such as platinum coils. However, the need for retreatment due to the recanalization of coil-treated aneurysms highlights the importance of exploring alternative solutions. In this study, we propose an injectable extracellular matrix-derived embolic formed in situ by Michael addition of gelatin-thiol (Gel-SH) and hyaluronic acid vinyl sulfone (HA-VS) that may be delivered with a therapeutic agent (here, RADA-SP) to fill and remodel aneurysmal tissue without leaving behind permanent foreign bodies. The injectable embolic material demonstrated rapid gelation under physiological conditions, forming a highly porous structure and allowing for cellular infiltration. The injectable embolic exhibited thrombogenic behavior in vitro that was comparable to that of alginate injectables. Furthermore, in vivo studies in a murine carotid aneurysm model demonstrated the successful embolization of a saccular aneurysm and extensive cellular infiltration both with and without RADA-SP at 3 weeks, with some evidence of increased vascular or fibrosis markers with RADA-SP incorporation. The results indicate that the developed embolic has inherent potential for acutely filling cerebrovascular aneurysms and encouraging the cellular infiltration that would be necessary for stable, chronic remodeling.
Collapse
Affiliation(s)
- Seungil Kim
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kamil W. Nowicki
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Neurosurgery, School of Medicine, Yale, New
Haven, Connecticut 06520, United States
| | - Keishi Kohyama
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Aditya Mittal
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sangho Ye
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kai Wang
- Discovery
Center for Musculoskeletal Recovery, Schoen
Adams Research Institute at Spaulding, Charlestown, Massachusetts 02115, United States
- Department
of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Taro Fujii
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shivbaskar Rajesh
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Catherine Cao
- Division
of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Rohit Mantena
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Marianna Barbuto
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Ri.MED
Foundation, Cardiac Tissue Engineering Laboratory, Ri.MED Foundation, Palermo 90133, Italy
- Department
of Biological, Chemical and Pharmaceutical
Sciences and Technologies (STEBICEF), University of Palermo, Palermo 90133, Italy
| | - Youngmee Jung
- Center
for Biomaterials, Biomedical Research Institute, Korea Institute of
Science and Technology (KIST), Seoul 130-650, Republic
of Korea
- School of
Electrical and Electronic Engineering, YU-KIST
Institute, Yonsei University, Seoul 130-650 Republic of Korea
| | - Bradley A. Gross
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Robert M. Friedlander
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - William R. Wagner
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
2
|
Caproni A, Nordi C, Fontana R, Facchini M, Melija S, Pappadà M, Buratto M, Marconi P. Herpes Simplex Virus ICP27 Protein Inhibits AIM 2-Dependent Inflammasome Influencing Pro-Inflammatory Cytokines Release in Human Pigment Epithelial Cells (hTert-RPE 1). Int J Mol Sci 2024; 25:4608. [PMID: 38731826 PMCID: PMC11083950 DOI: 10.3390/ijms25094608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Although Herpes simplex virus type 1 (HSV-1) has been deeply studied, significant gaps remain in the fundamental understanding of HSV-host interactions: our work focused on studying the Infected Cell Protein 27 (ICP27) as an inhibitor of the Absent-in-melanoma-2 (AIM 2) inflammasome pathway, leading to reduced pro-inflammatory cytokines that influence the activation of a protective innate immune response to infection. To assess the inhibition of the inflammasome by the ICP27, hTert-immortalized Retinal Pigment Epithelial cells (hTert-RPE 1) infected with HSV-1 wild type were compared to HSV-1 lacking functional ICP27 (HSV-1∆ICP27) infected cells. The activation of the inflammasome by HSV-1∆ICP27 was demonstrated by quantifying the gene and protein expression of the inflammasome constituents using real-time PCR and Western blot. The detection of the cleavage of the pro-caspase-1 into the active form was performed by using a bioluminescent assay, while the quantification of interleukins 1β (IL-1β) and 18 (IL-18)released in the supernatant was quantified using an ELISA assay. The data showed that the presence of the ICP27 expressed by HSV-1 induces, in contrast to HSV-1∆ICP27 vector, a significant downregulation of AIM 2 inflammasome constituent proteins and, consequently, the release of pro-inflammatory interleukins into the extracellular environment reducing an effective response in counteracting infection.
Collapse
Affiliation(s)
- Anna Caproni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Chiara Nordi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Riccardo Fontana
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Martina Facchini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Sara Melija
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Mariangela Pappadà
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Mattia Buratto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
- LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Barros Ferreira L, Ashander LM, Appukuttan B, Ma Y, Williams KA, Smith JR. Expression of Long Non-Coding RNAs in Activated Human Retinal Vascular Endothelial Cells. Ocul Immunol Inflamm 2023; 31:1813-1818. [PMID: 36194865 DOI: 10.1080/09273948.2022.2122512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/03/2022] [Indexed: 10/10/2022]
Abstract
PURPOSE Retinal endothelial cell activation is a central event in non-infectious posterior uveitis. There is recent interest in long non-coding (lnc)RNA-targeted therapeutics for retinal diseases. We aimed to identify human retinal endothelial cell lncRNAs that might be involved in activation. METHODS Eleven candidate lncRNAs were identified: GAS5, KCNQ1OT1, LINC00294, MALAT1, MEG3, MIR155HG, NEAT1, NORAD, OIP5-AS1, SENCR, TUG1. Expression was assessed by RT-PCR in human retinal endothelial cells, at baseline and following activation with interleukin (IL)-1β and tumor necrosis factor (TNF)-α. RESULTS IL-1β significantly upregulated MEG3 and SENCR at 4 and 24 hours; LINC00294, NORAD, OIP5-AS1 and TUG1 at 24 hours; and MIR155HG at 4, 24 and 48 hours; but downregulated GAS5 at 24 and 48 hours. TNF-α significantly upregulated KCNQ1OT1, LINC00294, MEG3, NORAD and SENCR at 4 hours; SENCR and TUG1 at 24 hours; and MIR155HG at all time points. CONCLUSIONS Future studies involving manipulation of MIR155HG may be warranted to explore potential therapeutic applications for non-infectious posterior uveitis.
Collapse
Affiliation(s)
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Binoy Appukuttan
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Yuefang Ma
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Keryn A Williams
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
4
|
Kwon W, Yoo C, Kim JH, Kim T, Kim A, Hwang M, Choi H. Role of human dural fibroblasts in the angiogenic responses of human endothelial cells: An in vitro dural model and the application of lab-on-a-chip for EDAS. Bioeng Transl Med 2023; 8:e10589. [PMID: 38023706 PMCID: PMC10658529 DOI: 10.1002/btm2.10589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 12/01/2023] Open
Abstract
Encephaloduroarteriosynangiosis (EDAS), an indirect anastomosis procedure, is widely accepted as a primary treatment for moyamoya disease (MMD) to improve collateral blood flow. During surgical intervention, dural fibroblasts (DuF) are thought to produce various proteins that create an angiogenic microenvironment. However, the biophysiological evidence supporting the angiogenic properties of this surgical technique has not been thoroughly elucidated. The purpose of these studies was to determine whether DuF releases pro-angiogenic factors and chemokines and promotes angiogenic properties in human endothelial cells (ECs) under IL-1β-mediated wound conditions, which are expected to occur during the process of neo-vascularization within the dura mater. Furthermore, a microfluidic chemotaxis platform was implemented to investigate the angiogenic activity of ECs in response to a reconstituted dura model. Transcriptome sequencing revealed that IL-1β stimulation on DuF induced a significant upregulation of various pro-angiogenic genes, including IL-6, IL-8, CCL-2, CCL-5, SMOC-1, and SCG-2 (p < 0.05). Moreover, compared to ECs cultured in naïve media or naïve DuF media, those exposed to IL-1β-DuF conditioned media expressed higher mRNA and protein levels of these pro-angiogenic factors (p < 0.001). ECs co-cultured with IL-1β-DuF also exhibited considerable migration on the microfluidic chemotaxis platform. Furthermore, the chemotactic effects on the ECs were reduced upon neutralization of IL-8 or inhibition of NF-κB signaling. Our findings demonstrate that IL-1β-DuFs release factors that activate and enhance the angiogenic properties of ECs. These results suggest a potential interaction between DuF and ECs following EDAS for MMD, and these components could be targeted for the development of therapeutic biomarkers.
Collapse
Affiliation(s)
- Woo‐Keun Kwon
- Department of Neurosurgery, Korea University Guro HospitalKorea University College of MedicineSeoulSouth Korea
| | - Chang‐Min Yoo
- Department of Medical Sciences, Graduate School of MedicineKorea UniversitySeoulSouth Korea
| | - Jang Hun Kim
- Department of Neurosurgery, Korea University Anam HospitalKorea University College of MedicineSeoulSouth Korea
| | - Tae‐Won Kim
- Department of Medical Sciences, Graduate School of MedicineKorea UniversitySeoulSouth Korea
| | - An‐Gi Kim
- Department of Medical Sciences, Graduate School of MedicineKorea UniversitySeoulSouth Korea
| | - Min‐Ho Hwang
- Department of Medical Sciences, Graduate School of MedicineKorea UniversitySeoulSouth Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of MedicineKorea UniversitySeoulSouth Korea
| |
Collapse
|
5
|
Abubakar M, Rasool HF, Javed I, Raza S, Abang L, Hashim MMA, Saleem Z, Abdullah RM, Faraz MA, Hassan KM, Bhat RR. Comparative Roles of IL-1, IL-6, IL-10, IL-17, IL-18, 1L-22, IL-33, and IL-37 in Various Cardiovascular Diseases With Potential Insights for Targeted Immunotherapy. Cureus 2023; 15:e42494. [PMID: 37637634 PMCID: PMC10455045 DOI: 10.7759/cureus.42494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
In recent years, the study of interleukins (ILs), crucial cytokines involved in immune response and inflammation, has garnered significant attention within the sphere of cardiovascular diseases (CVDs). The research has provided insights into the involvement of ILs in diverse CVDs, including arrhythmias, myocardial infarction, atherosclerosis, and heart failure (HF). ILs have emerged as promising therapeutic targets for drug interventions through their involvement in disease development and progression. This comprehensive review provides a detailed overview of ILs, elucidating their functions within the immune system and offering insights into their specific contributions to various CVDs. Moreover, the article delves into the examination of current and potential drug therapies that selectively target ILs in the management of CVDs, presenting a comprehensive analysis of the advantages and disadvantages associated with these therapeutic approaches. A comprehensive literature review was conducted to investigate the involvement of ILs in CVDs. The relevant articles were searched on PubMed, PubMed Central, Medline, Cochrane, Google Scholar, and ScienceDirect databases. The search encompassed articles published from these databases' inception until July 12, 2023. We first examine generalized aspects of ILs, particularly CVDs. Then, we shift focus towards examining the direct impact of ILs on cardiac cells and tissue; on the immune system and inflammation; endothelial cells and vascular function; and finally, their interactions with other signaling pathways and molecules. Then, we discuss the molecular mechanisms of various ILs. Sequentially, we delve into a comprehensive analysis of the individualized role of each distinct IL in diverse CVDs, examining their specific contributions. Finally, we explore the potential for targeted drug therapy to modulate IL activity, aiming to enhance outcomes for patients burdened with CVD. The objective is the identification of gaps in current knowledge and highlight areas that require further investigation within the context of cardiovascular medicine. Through deepening our comprehension of the intricate involvement of ILs in CVDs and harnessing their potential for targeted drug therapy, novel treatment strategies can be devised, leading to improved patient outcomes in cardiovascular medicine.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, PAK
- Department of Internal Medicine, Siddique Sadiq Memorial Trust Hospital, Gujranwala, PAK
| | - Hafiz Fahad Rasool
- Department of Public Health, Nanjing Medical University School of Public Health, Nanjing, CHN
| | - Izzah Javed
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, PAK
| | - Saud Raza
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, PAK
| | - Lucy Abang
- Department of Biochemistry, All Saints University School of Medicine, Roseau, DMA
| | | | - Zartasha Saleem
- Department of Emergency Medicine, The University of Lahore Teaching Hospital, Lahore, PAK
| | | | - Muhammad Ahmad Faraz
- Department of Forensic Medicine, Post Graduate Medical Institute, Lahore General Hospital, Lahore, PAK
| | - Khawaja Mushammar Hassan
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, PAK
| | - Rakshita Ramesh Bhat
- Department of Medical Oncology, Mangalore Institute of Oncology, Mangalore, IND
- Department of Internal Medicine, Bangalore Medical College and Research Institute, Bangalore, IND
| |
Collapse
|
6
|
Huang HC, Chen YT, Lin HH, Li ZQ, Yang JM, Tzou SC. Inhibition of IRAK1 Is an Effective Therapy for Autoimmune Hypophysitis in Mice. Int J Mol Sci 2022; 23:ijms232314958. [PMID: 36499283 PMCID: PMC9738236 DOI: 10.3390/ijms232314958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Autoimmune hypophysitis (AH) is an autoimmune disease of the pituitary for which the pathogenesis is incompletely known. AH is often treated with corticosteroids; however, steroids may lead to considerable side effects. Using a mouse model of AH (experimental autoimmune hypophysitis, EAH), we show that interleukin-1 receptor-associated kinase 1 (IRAK1) is upregulated in the pituitaries of mice that developed EAH. We identified rosoxacin as a specific inhibitor for IRAK1 and found it could treat EAH. Rosoxacin treatment at an early stage (day 0-13) slightly reduced disease severity, whereas treatment at a later stage (day 14-27) significantly suppressed EAH. Further investigation indicated rosoxacin reduced production of autoantigen-specific antibodies. Rosoxacin downregulated production of cytokines and chemokines that may dampen T cell differentiation or recruitment to the pituitary. Finally, rosoxacin downregulated class II major histocompatibility complex expression on antigen-presenting cells that may lead to impaired activation of autoantigen-specific T cells. These data suggest that IRAK1 may play a pathogenic role in AH and that rosoxacin may be an effective drug for AH and other inflammatory diseases involving IRAK1 dysregulation.
Collapse
Affiliation(s)
- Hsiao-Chen Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yun-Ti Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Han-Huei Lin
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Zhi-Qin Li
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jinn-Moon Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: (J.-M.Y.); (S.-C.T.)
| | - Shey-Cherng Tzou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: (J.-M.Y.); (S.-C.T.)
| |
Collapse
|
7
|
Immunosenescence in Aging-Related Vascular Dysfunction. Int J Mol Sci 2022; 23:ijms232113269. [PMID: 36362055 PMCID: PMC9654630 DOI: 10.3390/ijms232113269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The immunosenescence-related disproportion in T lymphocytes may have important consequences for endothelial dysfunction, which is a key event in vascular aging. The study was designed to assess the prognostic values of the inflammatory-immune profile to better predict and prevent vascular diseases associated with old age. Eighty individuals aged 70.9 ± 5.3 years were allocated to a low- (LGI) or high-grade inflammation (HGI) group based on CRP (<3 or ≥3 mg/L) as a conventional risk marker of cardiovascular diseases. Significant changes in inflammatory and endothelium-specific variables IL-1β, IL-6, TNFα, oxLDL, H2O2, NO, 3-nitrotyrosine, and endothelial progenitor cells (OR 7.61, 95% CI 2.56−29.05, p < 0.0001), confirmed their interplay in vascular inflammation. The flow-cytometry analysis demonstrated a high disproportion in T lymphocytes CD4+ and CD8+ between LGI and HGI groups. CRP was <3 mg/mL for the CD4/CD8 ratio within the reference values ≥ 1 or ≤2.5, unlike for the CD4/CD8 ratio < 1 and >2.5. The odds ratios for the distribution of CD4+ (OR 5.98, 95% CI 0.001−0.008, p < 0.001), CD8+ (OR 0.23, 95% CI 0.08−0.59, p < 0.01), and CD8CD45RO+ T naïve cells (OR 0.27, 95% CI 0.097−0.695, p < 0.01) and CD4/CD8 (OR 5.69, 95% CI 2.07−17.32, p < 0.001) indicated a potential diagnostic value of T lymphocytes for clinical prognosis in aging-related vascular dysfunction.
Collapse
|
8
|
Bischoff-Kont I, Primke T, Niebergall LS, Zech T, Fürst R. Ginger Constituent 6-Shogaol Inhibits Inflammation- and Angiogenesis-Related Cell Functions in Primary Human Endothelial Cells. Front Pharmacol 2022; 13:844767. [PMID: 35281937 PMCID: PMC8914105 DOI: 10.3389/fphar.2022.844767] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Rhizomes from Zingiber officinale Roscoe are traditionally used for the treatment of a plethora of pathophysiological conditions such as diarrhea, nausea, or rheumatoid arthritis. While 6-gingerol is the pungent principle in fresh ginger, in dried rhizomes, 6-gingerol is dehydrated to 6-shogaol. 6-Shogaol has been demonstrated to exhibit anticancer, antioxidative, and anti-inflammatory actions more effectively than 6-gingerol due to the presence of an electrophilic Michael acceptor moiety. In vitro, 6-shogaol exhibits anti-inflammatory actions in a variety of cell types, including leukocytes. Our study focused on the effects of 6-shogaol on activated endothelial cells. We found that 6-shogaol significantly reduced the adhesion of leukocytes onto lipopolysaccharide (LPS)-activated human umbilical vein endothelial cells (HUVECs), resulting in a significantly reduced transmigration of THP-1 cells through an endothelial cell monolayer. Analyzing the mediators of endothelial cell–leukocyte interactions, we found that 30 µM of 6-shogaol blocked the LPS-triggered mRNA and protein expression of cell adhesion molecules. In concert with this, our study demonstrates that the LPS-induced nuclear factor κB (NFκB) promoter activity was significantly reduced upon treatment with 6-shogaol. Interestingly, the nuclear translocation of p65 was slightly decreased, and protein levels of the LPS receptor Toll-like receptor 4 remained unimpaired. Analyzing the impact of 6-shogaol on angiogenesis-related cell functions in vitro, we found that 6-shogaol attenuated the proliferation as well as the directed and undirected migration of HUVECs. Of note, 6-shogaol also strongly reduced the chemotactic migration of endothelial cells in the direction of a serum gradient. Moreover, 30 µM of 6-shogaol blocked the formation of vascular endothelial growth factor (VEGF)-induced endothelial sprouts from HUVEC spheroids and from murine aortic rings. Importantly, this study shows for the first time that 6-shogaol exhibits a vascular-disruptive impact on angiogenic sprouts from murine aortae. Our study demonstrates that the main bioactive ingredient in dried ginger, 6-shogaol, exhibits beneficial characteristics as an inhibitor of inflammation- and angiogenesis-related processes in vascular endothelial cells.
Collapse
Affiliation(s)
- Iris Bischoff-Kont
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Tobias Primke
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Lea S. Niebergall
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Zech
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- *Correspondence: Robert Fürst,
| |
Collapse
|