1
|
Canli Tasar O, Tasar GE. Coproduction of inulinase and invertase by Galactomyces geotrichum in whey-based medium and evaluation of additional nutrients. Prep Biochem Biotechnol 2024; 54:974-981. [PMID: 38346212 DOI: 10.1080/10826068.2024.2313630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The purpose of this research was to evaluate the suitability of whey as an effective medium for the coproduction of inulinase and invertase by an oleaginous yeast Galactomyces geotrichum and to investigate the effects of some additional carbon and nitrogen sources. The nutritional factors and composition of the medium have a great impact on the production pathways of microbial enzymes. To deepen the research, a Taguchi design was employed to quickly scan the best conditions. First, the cheese whey was partly deproteinized and investigated as the sole medium for the yeast. The next step was performed to study the effects of inulin, sucrose and lactose as carbon sources and ammonium sulfate, yeast extract and casein as nitrogen sources. All analyses (Taguchi and ANOVA) were performed using Minitab software. Whey-based medium without any additional carbon and nitrogen sources gave inulinase and invertase activities as 54.6 U/mL and 47.4 U/mL, respectively. Maximum inulinase activity was obtained as 77.9 U/mL using inulin as the carbon source without any nitrogen source. The highest I/S ratio was found as 2.08. On the other hand, the highest invertase activity was carried out as 50.85 U/mL in whey-based medium using lactose as carbon source without any additional nitrogen source. This is the first report about partly deproteinized whey-based medium utilization for simultaneous inulinase and invertase production by G. geotrichum TS-61. Moreover, the effects of carbon and nitrogen sources were investigated in detail.
Collapse
Affiliation(s)
- Ozden Canli Tasar
- High Technology Application and Research Centre (YUTAM), Erzurum Technical University, Erzurum, Türkiye
| | | |
Collapse
|
2
|
Canatar M, Tufan HNG, Ünsal SBE, Koc CY, Ozcan A, Kucuk G, Basmak S, Yatmaz E, Germec M, Yavuz I, Turhan I. Inulinase and fructooligosaccharide production from carob using Aspergillus niger A42 (ATCC 204447) under solid-state fermentation conditions. Int J Biol Macromol 2023:125520. [PMID: 37353118 DOI: 10.1016/j.ijbiomac.2023.125520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
This study aimed to the production of inulinase and fructooligosaccharides (FOSs) from carob under the solid-state fermentation (SSF) conditions by using Plackett-Burman Design (PBD). Based on the results the maximum inulinase and specific inulinase activities were 249.98 U/mL and 318.29 U/mg protein, respectively. When the fructooligosaccharide (FOS) results were evaluated, the maximum values of 1,1,1-Kestopentaose, 1,1-Kestotetraose, and 1-Kestose were 182.01, 506.16, 132.16 ppm while the lowest and highest total FOS values were 179.35 and 516.66 ppm, respectively. On the other hand, it was observed that the maximum inulinase activity was found at the center points of the design. Therefore, validation fermentations were carried out at center point conditions. Subsequently, the yielded bulk enzyme extracts were partially purified using Spin-X UF membranes with 10, 30, and 50 kDa cut-off values. After purification, the maximum inulinase activity was 247.30 U/mg using a 50 kDa cut-off value. Followed by this process, the purified enzyme was used to produce FOSs and the results indicated that the maximum total FOS amount was 28,712.70 ppm. Consequently, this study successfully demonstrates that Aspergillus niger A42 inulinase produced from carob under the SSF conditions can be used in FOSs production.
Collapse
Affiliation(s)
- Muge Canatar
- Manavgat Vocational School, Akdeniz University, Manavgat, Antalya 07600, Turkey
| | | | | | - Cansu Yılmazer Koc
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ali Ozcan
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Gokce Kucuk
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Selin Basmak
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ercan Yatmaz
- Göynük Culinary Arts Vocational School, Akdeniz University, Kemer, Antalya 07994, Turkey
| | - Mustafa Germec
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ibrahim Yavuz
- Technical Sciences Vocational School, Department Of Plant And Animal Production, Organic Agriculture Pr, Akdeniz University, Antalya 07058, Turkey
| | - Irfan Turhan
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey.
| |
Collapse
|
3
|
Rhizopus oryzae Inulinase Production and Characterization with Application in Chicory Root Saccharification. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
The objective of this study was to create a fermentation process for the production of inulinase, an important enzyme with numerous applications in the food and pharmaceutical industries, using low-cost agricultural waste as substrates for Rhizopus oryzae NRRL 3563. High titer inulinase production in chicory roots by Rhizopus oryzae in a submerged culture was accomplished using a statistical experimental design. A two-level Plackett–Burman design followed by a three-level Box–Behnken design producing a high inulinase titer of 1085.11 U/mL, 2.83-fold the maximum level, was obtained in the screening experiment. The optimal levels were as follows: chicory root, 10 g/L; NaNO3, 5 g/L; and KCl, 0.2 g/L. The produced inulinase enzyme was purified using 70% ammonium sulfate precipitation and ultra-filtration causing 3.63-fold purification with 60% activity recovery. The enzyme had a molecular weight of approximately 130 KDa. The purified enzyme showed optimum activity at 50 °C and pH 6.0. The pH stability range was three to six and the temperature stability was up 70 °C. The purified inulinase could hydrolyze inulin and sucrose, but not cellobiose or soluble starch. Km and Vmax for inulin were determined to be 0.8 mg/mL and 50,000 U/mg, respectively. The two-level Plackett–Burman design was applied followed by a Box–Behnken model for optimization of fermentation conditions. Accordingly, the optimal combination of fermentation was a reaction time of seven hours, a temperature of 60 °C, and an enzyme concentration of 40,000 U/mL, which resulted in a 58.07% saccharification yield. The characteristics of the enzyme and its kinetic parameters suggested that it was highly effective in the fermentation of inulin and inulin-containing substrates. Additionally, it raises the potential of using inulinase enzymes in pharmaceutical and food industries.
Collapse
|
4
|
Germec M, Turhan I. Kinetic modeling and sensitivity analysis of inulinase production in large-scale stirred tank bioreactor with sugar beet molasses-based medium. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Solid-state fermentation enhances inulinase and invertase production by Aspergillus brasiliensis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Ahmadizadeh M, Babaeian-Jelodar N, Mohammadi-Nejad G, Bagheri N, Singh RK. High-density linkage mapping for agronomic and physiological traits of rice (Oryza sativa L.) under reproductive-stage salt stress. J Genet 2021. [DOI: 10.1007/s12041-021-01301-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Cheng M, Wu H, Zhang W, Mu W. Difructose anhydride III: a 50-year perspective on its production and physiological functions. Crit Rev Food Sci Nutr 2021; 62:6714-6725. [PMID: 33775189 DOI: 10.1080/10408398.2021.1904823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Production and applications of difructose anhydride III (DFA-III) have attracted considerable attention because of its versatile physiological functions. Recently, large-scale production of DFA-III has been continuously explored, which opens a horizon for applications in the food and pharmaceutical industries. This review updates recent advances involving DFA-III, including: biosynthetic strategies, purification, and large-scale production of DFA-III; physiological functions of DFA-III and related mechanisms; DFA-III safety evaluations; present applications in food systems, existing problems, and further research prospects. Currently, enzymatic synthesis of DFA-III has been conducted both industrially and in academic research. Two biosynthetic strategies for DFA-III production are summarized: single- and double enzyme-mediated. DFA-III purification is achieved via yeast fermentation. Enzyme membrane bioreactors have been applied to meet the large-scale production demands for DFA-III. In addition, the primary physiological functions of DFA-III and their underlying mechanisms have been proposed. However, current applications of DFA-III are limited. Further research regarding DFA-III should focus on commercial production and purification, comprehensive study of physiological properties, extensive investigation of large-scale human experiments, and expansion of industrial applications. It is worthy to dig deep into potential application and commercial value of DFA-III.
Collapse
Affiliation(s)
- Mei Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Corrado I, Cascelli N, Ntasi G, Birolo L, Sannia G, Pezzella C. Optimization of Inulin Hydrolysis by Penicillium lanosocoeruleum Inulinases and Efficient Conversion Into Polyhydroxyalkanoates. Front Bioeng Biotechnol 2021; 9:616908. [PMID: 33732688 PMCID: PMC7959777 DOI: 10.3389/fbioe.2021.616908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Inulin, a polydisperse fructan found as a common storage polysaccharide in the roots of several plants, represents a renewable non-food biomass resource for the synthesis of bio-based products. Exploitation of inulin-containing feedstocks requires the integration of different processes, including inulinase production, saccharification of inulin, and microbial fermentation for the conversion of released sugars into added-value products. In this work paper, a new microbial source of inulinase, Penicillium lanosocoeruleum, was identified through the screening of a fungal library. Inulinase production using inulin as C-source was optimized, reaching up to 28 U mL-1 at the 4th day of growth. The fungal inulinase mixture (PlaI) was characterized for pH and temperature stability and activity profile, and its isoenzymes composition was investigated by proteomic strategies. Statistical optimization of inulin hydrolysis was performed using a central composite rotatable design (CCRD), by analyzing the effect of four factors. In the optimized conditions (T, 45.5°C; pH, 5.1; substrate concentration, 60 g L-1; enzyme loading, 50 U gsubstrate -1), up to 96% inulin is converted in fructose within 20 h. The integration of PlaI in a process for polyhydroxyalkanoate (PHA) production by Cupriavidus necator from inulin was tested in both separated hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). A maximum of 3.2 g L-1 of PHB accumulation, corresponding to 82% polymer content, was achieved in the SSF. The proved efficiency in inulin hydrolysis and its effective integration into a SSF process pave the way to a profitable exploitation of the PlaI enzymatic mixture in inulin-based biorefineries.
Collapse
Affiliation(s)
- Iolanda Corrado
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Nicoletta Cascelli
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Georgia Ntasi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Leila Birolo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Giovanni Sannia
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Cinzia Pezzella
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Yazici SO, Sahin S, Biyik HH, Geroglu Y, Ozmen I. Optimization of fermentation parameters for high-activity inulinase production and purification from Rhizopus oryzae by Plackett-Burman and Box-Behnken. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:739-751. [PMID: 33568868 PMCID: PMC7847928 DOI: 10.1007/s13197-020-04591-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 06/12/2023]
Abstract
The aim of study was to optimize fermentation parameters for inulinase production from Rhizopus oryzae by a statistical approach and to carry out purification of inulinase. Five isolated fungal strains were screen out inulin degradation by using Lugol's iodine solution. R. oryzae exhibited maximum zone of clearance around the colony and was used as an inulinase producer. The effect of carbon sources (inulin, glucose, maltose, sucrose, lactose, onion peel, stevia root, wheat bran) as medium component and fermentation parameters (temperature (25-45 °C), initial pH (4-7), time (3-7 days)) on inulinase production was investigated by Plackett-Burman Design. Wheat Bran (WB), temperature, pH, and incubation time were found to be significant for the production of inulinase (P < 0.05). Furthermore, Box-Behnken Design was employed to optimize fermentation conditions. The maximum experimental results for inulinase activity and specific activity were 348.36 EU/mL and 3621.78 EU/mg, respectively. The results were obtained at 5 days of incubation time, 35 °C of incubation temperature, initial pH of 5.5, and 2% (w/v) WB. Also, inulinase was purified by using ammonium sulfate precipitation, gel filtration chromatography with 2.19-fold and its molecular weight was found as 89.12 kDa. The optimal pH and temperature of the purified enzyme were 4.0 and 60 °C, respectively. Furthermore, the purified enzyme showed excellent stability at 60 °C. In conclusion, the present study offers cost-effective method to produce inulinase from Rhizopus oryzae. Also, it can be suggested that the purified inulinase has strong potential for usage in production of fructose syrup and other industrial areas.
Collapse
Affiliation(s)
- Sercan Ozbek Yazici
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Burdur Mehmet Akif Ersoy University, Istiklal Yerleskesi, Burdur 15100 Turkey
| | - Selmihan Sahin
- Faculty of Arts and Sciences , Department of Chemistry, Suleyman Demirel University, Cunur, Isparta 32260 Turkey
| | - Haci Halil Biyik
- Faculty of Arts and Sciences, Department of Biology, Aydın Adnan Menderes University, Efeler, Aydın 09010 Turkey
| | - Yusuf Geroglu
- Graduate School of Natural and Applied Sciences, Department of Biology, Aydın Adnan Menderes University, Efeler, Aydın 09010 Turkey
| | - Ismail Ozmen
- Faculty of Arts and Sciences , Department of Chemistry, Suleyman Demirel University, Cunur, Isparta 32260 Turkey
| |
Collapse
|
10
|
Ojwach J, Kumar A, Mutanda T, Mukaratirwa S. Fructosyltransferase and inulinase production by indigenous coprophilous fungi for the biocatalytic conversion of sucrose and inulin into oligosaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Optimization of inulinase production by a newly isolated Penicillium amphipolaria strain using solid-state fermentation of hardy sugarcane stems. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Singh RS, Chauhan K, Kaur N, Kumar N. Inulinase immobilization onto glutaraldehyde activated duolite XAD for the production of fructose from inulin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Singh RS, Chauhan K, Kaur K, Pandey A. Statistical optimization of solid-state fermentation for the production of fungal inulinase from apple pomace. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2019.100364] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Singh RS, Chauhan K, Kennedy JF. Immobilization of fungal inulinase on hetero-functionalized carbon nanofibers for the production of fructose from inulin. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Das D, Selvaraj R, Ramananda Bhat M. Optimization of inulinase production by a newly isolated strain Aspergillus flavus var. flavus by solid state fermentation of Saccharum arundinaceum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Ilgın M, Germec M, Turhan I. Inulinase production and mathematical modeling from carob extract by using
Aspergillus niger. Biotechnol Prog 2019; 36:e2919. [DOI: 10.1002/btpr.2919] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Merve Ilgın
- Akdeniz UniversityDepartment of Food Engineering Antalya Turkey
| | - Mustafa Germec
- Akdeniz UniversityDepartment of Food Engineering Antalya Turkey
| | - Irfan Turhan
- Akdeniz UniversityDepartment of Food Engineering Antalya Turkey
| |
Collapse
|
17
|
Shukla P. Synthetic Biology Perspectives of Microbial Enzymes and Their Innovative Applications. Indian J Microbiol 2019; 59:401-409. [PMID: 31762501 DOI: 10.1007/s12088-019-00819-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022] Open
Abstract
Microbial enzymes are high in demand and there is focus on their efficient, cost effective and eco-friendly production. The relevant microbial enzymes for respective industries needs to be identified but the conventional technologies don't have much edge over it. So, there is more attention towards high throughput methods for production of efficient enzymes. The enzymes produced by microbes need to be modified to bear the extreme conditions of the industries in order to get prolific outcomes and here the synthetic biology tools may be augmented to modify such microbes and enzymes. These tools are applied to synthesize novel and efficient enzymes. Use of computational tools for enzyme modification has provided new avenues for faster and specific modification of enzymes in a shorter time period. This review focuses on few important enzymes and their modification through synthetic biology tools including genetic modification, nanotechnology, post translational modification.
Collapse
Affiliation(s)
- Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
18
|
Singh RS, Chauhan K. Immobilization of Inulinase on Aminated Multiwalled Carbon Nanotubes by Glutaraldehyde Cross-Linking for the Production of Fructose. Catal Letters 2019. [DOI: 10.1007/s10562-019-02743-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Singh RS, Singh T, Larroche C. Biotechnological applications of inulin-rich feedstocks. BIORESOURCE TECHNOLOGY 2019; 273:641-653. [PMID: 30503580 DOI: 10.1016/j.biortech.2018.11.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Inulin is a naturally occurring second largest storage polysaccharide with a wide range of applications in pharmaceutical and food industries. It is a robust polysaccharide which consists of a linear chain of β-2, 1-linked-d-fructofuranose molecules terminated with α-d-glucose moiety at the reducing end. It is present in tubers, bulbs and tuberous roots of more than 36,000 plants belonging to both monocotyledonous and dicotyledonous families. Jerusalem artichoke, chicory, dahlia, asparagus, etc. are important inulin-rich plants. Inulin is a potent substrate and inducer for the production of inulinases. Inulin/inulin-rich feedstocks can be used for the production of fructooligosaccharides and high-fructose syrup. Additionally, inulin-rich feedstocks can also be exploited for the production of other industrially important products like acetone, butanol, bioethanol, single cell proteins, single cell oils, 2, 3-butanediol, sorbitol, mannitol, etc. Current review highlights the biotechnological potential of inulin-rich feedstocks for the production of various industrially important products.
Collapse
Affiliation(s)
- R S Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Taranjeet Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Christian Larroche
- Université Clermont Auvergne, Institut Pascal, UMR, CNRS 6602, and Labex, IMobS3, 4 Avenue Blaise Pascal, TSA 60026, CS 60026, F-63178 Aubiere Cedex, France
| |
Collapse
|
20
|
Singh RS, Chauhan K, Kennedy JF. Fructose production from inulin using fungal inulinase immobilized on 3-aminopropyl-triethoxysilane functionalized multiwalled carbon nanotubes. Int J Biol Macromol 2018; 125:41-52. [PMID: 30529206 DOI: 10.1016/j.ijbiomac.2018.11.281] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 01/22/2023]
Abstract
The main objective of the present work was to modify multiwalled carbon nanotubes (MWCNTs) using 3-aminopropyl-triethoxysilane (APTES) to generate amino-terminated surfaces for inulinase immobilization, which can be further used for fructose production. CCRD of response surface methodology was used for optimization of inulinase immobilization on MWCNTs. At optimized parameters (APTES concentration 4%; sonication time 4 h; enzyme coupling time 1.5 h and enzyme load 15 IU), maximal inulinase activity and immobilization yield was 60.7% and 74.4%, respectively. Immobilized inulinase showed same pH optima of free enzyme, while an elevation in temperature optima to 60 °C was observed after its immobilization. Immobilized inulinase also shown enhancement in pH stability and thermostability. Overall, 4.54-fold rise in half-life of inulinase was detected after immobilization at 60 °C. Km and Vmax of inulinase decreased after immobilization. Immobilized inulinase preserved 28% of its residual activity after 10 consecutive batch cycles of inulin hydrolysis for the production of fructose.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Kanika Chauhan
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 The Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcestershire B60 4JE, UK
| |
Collapse
|
21
|
Purification and characterization of two isoforms of exoinulinase from Penicillium oxalicum BGPUP-4 for the preparation of high fructose syrup from inulin. Int J Biol Macromol 2018; 118:1974-1983. [DOI: 10.1016/j.ijbiomac.2018.07.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/04/2018] [Accepted: 07/11/2018] [Indexed: 01/26/2023]
|
22
|
Singh RS, Chauhan K, Jindal A. Response surface optimization of solid state fermentation for inulinase production from Penicillium oxalicum using corn bran. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:2533-2540. [PMID: 30042569 PMCID: PMC6033819 DOI: 10.1007/s13197-018-3173-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/03/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Response surface methodology has been implemented for the utilization of corn bran for inulinase production by Penicillium oxalicum. CCRD of RSM with 15 runs was practiced to optimize three independent variables: moisture (70-90%), incubation time (4-8 days) and pH (5-8). However, other media constituents viz. inulin (1%), NaNO3 (0.2%), NH4H2PO4 (0.2%), KH2PO4 (0.2%), MgSO4·7H2O (0.05%) and FeSO4·7H2O (0.001%) were kept constant during solid state fermentations. Solid state fermentations were carried out at 30 °C at flask-level. A substantial inulinase production (77.95 IU/gds) was obtained under the optimized conditions i.e., moisture (80%), incubation time (6.0 days) and pH (6.5). Multiple correlation coefficient 'R2' for inulinase production was 1.00, which justifies good agreement between experimental and predicted values. Besides, 'R2' value close to one, also authenticates the validity of the model. The experimentation carried out at laboratory scale shown corn bran a good substrate for inulinase production by P. oxalicum.
Collapse
Affiliation(s)
- Ram S. Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| | - Kanika Chauhan
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| | - Arju Jindal
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| |
Collapse
|
23
|
Singh RS, Chauhan K, Pandey A, Larroche C. Biocatalytic strategies for the production of high fructose syrup from inulin. BIORESOURCE TECHNOLOGY 2018; 260:395-403. [PMID: 29636277 DOI: 10.1016/j.biortech.2018.03.127] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The consumption of natural and low calorie sugars has increased enormously from the past few decades. To fulfil the demands, the production of healthy sweeteners as an alternative to sucrose has recently received considerable interest. Fructose is the most health beneficial and safest sugar amongst them. It is generally recognised as safe (GRAS) and has become an important food ingredient due its sweetening and various health promising functional properties. Commercially, high fructose syrup is prepared from starch by multienzymatic process. Single-step enzymatic hydrolysis of inulin using inulinase has emerged as an alternate to the conventional approach to reduce complexity, time and cost. The present review, outlines the enzymatic strategies used for the preparation of high fructose syrup from inulin/inulin-rich plant materials in batch and continuous systems, and its conclusions.
Collapse
Affiliation(s)
- R S Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Kanika Chauhan
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, 31 Marg, 226 001 Lucknow, India
| | - Christian Larroche
- Université Clermont Auvergne, Institut Pascal, UMR, CNRS 6602, and Labex, IMobS3, 4 Avenue Blaise Pascal, TSA 60026, CS 60026, F-63178 Aubiere Cedex, France
| |
Collapse
|
24
|
Singh RS, Chauhan K. Sequential statistical optimization of lactose-based medium and process variables for inulinase production from Penicillium oxalicum BGPUP-4. 3 Biotech 2018; 8:38. [PMID: 29291151 PMCID: PMC5745202 DOI: 10.1007/s13205-017-1060-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022] Open
Abstract
A statistical tool of response surface methodology was used sequentially to optimise lactose-based medium and process variables for inulinase production from Penicillium oxalicum BGPUP-4. Two-level CCRD with four variables, for each design, was used for the optimization study. The independent variables: lactose 1-3%, NH4H2PO4 0.2-0.5%, NaNO3 0.2-0.5%, pH 5.0-7.0 (design-1); temperature 25-35 °C, incubation time 4.0-6.0 days, inoculum size 1.0-3.0 mycelial agar discs and agitation 100-200 rpm (design-2) were selected for the present investigation. The optimised medium variables (lactose 3.70%, NH4H2PO4 0.35%, NaNO3 0.35% and pH 6.0) produced 44.44 (IU/ml) and 0.38 (g dry wt./50 ml) of inulinase and biomass yield, respectively. Thereafter, the optimization of process conditions (temperature 25 °C, incubation time 5 days, inoculum size 2 mycelial agar discs and agitation 150 rpm), increased the inulinase production 50.45 (IU/ml) and biomass yield 0.26 (g dry wt./50 ml). The good agreement between experimental and predicted values in both the designs, the coefficient of determination (R2 ) greater than 0.90 and very close to 1.0 shows an appropriate fitness of the polynomial quadratic models.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147 002 Punjab India
| | - Kanika Chauhan
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147 002 Punjab India
| |
Collapse
|
25
|
Bedade D, Berezina O, Singhal R, Deska J, Shamekh S. Extracellular xylanase production from a new xylanase producer Tuber maculatum mycelium under submerged fermentation and its characterization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
GOLUNSKI SIMONE, SILVA MARCELIF, MARQUES CAMILAT, ROSSETO VANUSA, KAIZER ROSILENER, MOSSI ALTEMIRJ, RIGO DIANE, DALLAGO ROGÉRIOM, DI LUCCIO MARCO, TREICHEL HELEN. Purification of inulinases by changing the ionic strength of the medium and precipitation with alcohols. AN ACAD BRAS CIENC 2017; 89:57-63. [DOI: 10.1590/0001-3765201720160367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/01/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- SIMONE GOLUNSKI
- Universidade Regional Integrada do Alto Uruguai e das Missões, Brazil; Universidade Federal da Fronteira Sul, Brazil
| | - MARCELI F. SILVA
- Universidade Regional Integrada do Alto Uruguai e das Missões, Brazil
| | | | | | | | | | - DIANE RIGO
- Universidade Regional Integrada do Alto Uruguai e das Missões, Brazil
| | | | | | | |
Collapse
|