1
|
Santos Gomes MMOD, Nicodemos IS, Costa Silva MD, Santos DMRCD, Santos Costa F, Franco M, Pereira HJV. Optimization of enzymatic saccharification of industrial wastes using a thermostable and halotolerant endoglucanase through Box-Behnken experimental design. Prep Biochem Biotechnol 2024; 54:1-11. [PMID: 37071540 DOI: 10.1080/10826068.2023.2201936] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
This study describes the production, characterization and application of an endoglucanase from Penicillium roqueforti using lignocellulosic agro-industrial wastes as the substrate during solid-state fermentation. The endoglucanase was generated after culturing with different agro-industrial wastes for 96 h without any pretreatment. The highest activity was obtained at 50 °C and pH 4.0. Additionally, the enzyme showed stability in the temperature and pH ranges of 40-80 °C and 4.0-5.0, respectively. The addition of Ca2+, Zn2+, Mg2+, and Cu2+ increased enzymatic activity. Halotolerance as a characteristic of the enzyme was confirmed when its activity increased by 35% on addition of 2 M NaCl. The endoglucanase saccharified sugarcane bagasse, coconut shell, wheat bran, cocoa fruit shell, and cocoa seed husk. The Box-Behnken design was employed to optimize fermentable sugar production by evaluating the following parameters: time, substrate, and enzyme concentration. Under ideal conditions, 253.19 mg/g of fermentable sugars were obtained following the saccharification of wheat bran, which is 41.5 times higher than that obtained without optimizing. This study presents a thermostable, halotolerant endoglucanase that is resistant to metal ions and organic solvents with the potential to be applied in producing fermentable sugars for manufacturing biofuels from agro-industrial wastes.
Collapse
Affiliation(s)
| | | | - Monizy da Costa Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | | | | | - Marcelo Franco
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Brazil
| | | |
Collapse
|
2
|
Tong KTX, Tan IS, Foo HCY, Lam MK, Lim S, Lee KT. Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-37. [PMID: 35316983 PMCID: PMC8929714 DOI: 10.1007/s13399-022-02561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The extensive growth of energy and plastic demand has raised concerns over the depletion of fossil fuels. Moreover, the environmental conundrums worldwide integrated with global warming and improper plastic waste management have led to the development of sustainable and environmentally friendly biofuel (bioethanol) and biopolymer (lactic acid, LA) derived from biomass for fossil fuels replacement and biodegradable plastic production, respectively. However, the high production cost of bioethanol and LA had limited its industrial-scale production. This paper has comprehensively reviewed the potential and development of third-generation feedstock for bioethanol and LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock is also deliberated in detail. Lastly, the sustainability aspect and perspective of macroalgae biomass are evaluated economically and environmentally using a developed cascading system associated with techno-economic analysis and life cycle assessment, which represent the highlights of this review paper. Furthermore, this review provides a conceivable picture of macroalgae-based bioethanol and lactic acid biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players. Graphical abstract
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
3
|
Ma Y, Li T, Xu X, Ji Y, Jiang X, Shi X, Wang B. Investigation of Volatile Compounds, Microbial Succession, and Their Relation During Spontaneous Fermentation of Petit Manseng. Front Microbiol 2021; 12:717387. [PMID: 34475866 PMCID: PMC8406806 DOI: 10.3389/fmicb.2021.717387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
Petit Manseng is widely used for fermenting sweet wine and is popular among younger consumers because of its sweet taste and attractive flavor. To understand the mechanisms underlying spontaneous fermentation of Petit Manseng sweet wine in Xinjiang, the dynamic changes in the microbial population and volatile compounds were investigated through high-throughput sequencing (HTS) and headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) technology, respectively. Moreover, the relationship between the microbial population and volatile compounds was deduced via multivariate data analysis. Candida and Mortierella were dominant genera in Petit Manseng wine during spontaneous fermentation. Many fermentative aroma compounds, including ethyl octanoate, isoamyl acetate, ethyl butyrate, ethyl decanoate, isoamyl alcohol, ethyl laurate, isopropyl acetate, hexanoic acid, and octanoic acid, were noted and found to be responsible for the strong fruity and fatty aroma of Petit Manseng sweet wine. Multivariate data analysis indicated that the predominant microorganisms contributed to the formation of these fermentative aroma compounds. Hannaella and Neomicrosphaeropsis displayed a significantly positive correlation with the 6-methylhept-5-en-2-one produced. The current results provide a reference for producing Petit Manseng sweet wine with desirable characteristics.
Collapse
Affiliation(s)
- Yanqin Ma
- Food College, Shihezi University, Shihezi, China
| | - Tian Li
- Food College, Shihezi University, Shihezi, China
| | - Xiaoyu Xu
- Food College, Shihezi University, Shihezi, China
| | - Yanyu Ji
- Food College, Shihezi University, Shihezi, China
| | - Xia Jiang
- Food College, Shihezi University, Shihezi, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi, China
| |
Collapse
|
4
|
Ejaz U, Sohail M, Ghanemi A. Cellulases: From Bioactivity to a Variety of Industrial Applications. Biomimetics (Basel) 2021; 6:44. [PMID: 34287227 PMCID: PMC8293267 DOI: 10.3390/biomimetics6030044] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
Utilization of microbial enzymes has been widely reported for centuries, but the commercial use of enzymes has been recently adopted. Particularly, cellulases have been utilized in various commercial sectors including agriculture, brewing, laundry, pulp and paper and textile industry. Cellulases of microbial origin have shown their potential application in various commercial sectors including textile, pulp and paper, laundry, brewing, agriculture and biofuel. Cellulases have diversified applications in the food industry, food service, food supply and its preservation. Indeed, cellulases can tenderize fruits, clarify the fruit juices, reduce roughage in dough, hydrolyze the roasted coffee, extract tea polyphenols and essential oils from olives and can increase aroma and taste in food items. However, their role in food industries has by and large remained neglected. The use of immobilized cellulases has further expanded their application in fruit and vegetable processing as it potentiates the catalytic power and reduces the cost of process. Technological and scientific developments will further expand their potential usage in the food industry.
Collapse
Affiliation(s)
- Uroosa Ejaz
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Purification and characterization of novel, thermostable and non-processive GH5 family endoglucanase from Fomitopsis meliae CFA 2. Int J Biol Macromol 2021; 182:1161-1169. [PMID: 33892036 DOI: 10.1016/j.ijbiomac.2021.04.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 04/18/2021] [Indexed: 11/23/2022]
Abstract
Endoglucanases from glycoside hydrolase family 5 (GH5) are the key enzymes in degradation of diverse plant polysaccharides. Present study reports purification, characterization and partial sequencing of novel thermostable GH5 family endoglucanase from a newly isolated brown rot fungi Fomitopsis meliae CFA 2. Endoglucanase was purified 34.18 fold with a specific activity of 302.90 U/mg. The molecular weight of the endoglucanase was 37.87 kDa as determined by SDS PAGE. LC MS/MS analysis identified the protein to be a member of GH5_5 family. The temperature and pH optima for endoglucanase activity were 70 °C and 4.8, respectively. The enzyme catalyzed the hydrolysis of carboxymethyl-cellulose with a Km of 12.0 mg/ml, Vmax of 556.58 μmol/min/mg and Kcat of 129.41/sec. The enzyme was stimulated by Zn+2 and K+ metal ions and DTT. Half-life (t1/2) for endoglucanase was found to be 11.36 h with decimal reduction time (D) of 37.75 h at 70 °C. The activation energy for endoglucanase was found to be 30.76 kJ/mol (50 °C-70 °C). Looking at the results, the endoglucanase from Fomitopsis meliae CFA 2 seems to be a promising thermostable enzyme which may be applicable in applications like biomass hydrolysis.
Collapse
|
6
|
Mandeep, Liu H, Shukla P. Synthetic Biology and Biocomputational Approaches for Improving Microbial Endoglucanases toward Their Innovative Applications. ACS OMEGA 2021; 6:6055-6063. [PMID: 33718696 PMCID: PMC7948214 DOI: 10.1021/acsomega.0c05744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2023]
Abstract
Microbial endoglucanases belonging to the β-1-4 glycosyl hydrolase family are useful enzymes due to their vast industrial applications in pulp and paper industries and biorefinery. They convert lignocellulosic substrates to soluble sugars and help in the biodegradation process. Various biocomputational tools can be utilized to understand the catalytic activity, reaction kinetics, complexity of active sites, and chemical behavior of enzyme complexes in reactions. This might be helpful in increasing productivity and cost reduction in industries. The present review gives an overview of some interesting aspects of enzyme design, including computational techniques such as molecular dynamics simulation, homology modeling, mutational analysis, etc., toward enhancing the quality of these enzymes. Moreover, the review also covers the aspects of synthetic biology, which could be helpful in faster and reliable development of useful enzymes with desired characteristics and applications. Finally, the review also deciphers the utilization of endoglucanases in biodegradation and emphasizes the use of diversified protein engineering tools and the modification of metabolic pathways for enzyme engineering.
Collapse
Affiliation(s)
- Mandeep
- Enzyme
Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Hao Liu
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pratyoosh Shukla
- Enzyme
Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
- School
of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
7
|
Miao T, Basit A, Wen J, Liu J, Zheng F, Cao Y, Jiang W. High efficient degradation of glucan/glucomannan to cello-/mannan-oligosaccharide by endoglucanase via tetrasaccharide as intermediate. Food Chem 2021; 350:129175. [PMID: 33610847 DOI: 10.1016/j.foodchem.2021.129175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
Here, we report an efficient endoglucanase from Aureobasidium pullulans (termed ApCel5A) was expressed in Pichia pastoris. ApCel5A shows two different enzyme activities of endoglucanase (1270 U/mg) and mannanase (31.2 U/mg). Through engineering the signal peptide and fed-batch fermentation, the enzyme activity of endoglucanase was improved to 6.63-folds, totally. Its efficient synergism with Celluclast 1.5 L, excellent tolerance to low pH (2.5), cholate and protease suggests potential application in bioresources, food and feed industries. Site-directed mutagenesis experiments present that ApCel5A residues Glu245 and Glu358 are key catalytic sites, while Asp118, Asp122, Asp198 and Asp314 play an auxiliary role. More importantly, ApCel5A display high degradation efficiency of glucan and glucomannan substrates by using tetrasaccharide contained reducing end of glucose residue as an intermediate. This study elucidated the effective methods to improve an endoglucanase expression and detailed catalytic mechanism for degradation of various substrates, which provides a new insight for endoglucanase application.
Collapse
Affiliation(s)
- Ting Miao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Abdul Basit
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara, Punjab 56300, Pakistan
| | - Jiaqi Wen
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junquan Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fengzhen Zheng
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, China Agricultural, University, Beijing, China.
| | - Wei Jiang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Ghosh S, Godoy L, Anchang KY, Achilonu CC, Gryzenhout M. Fungal Cellulases: Current Research and Future Challenges. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Acid soaking followed by steam flash-explosion pretreatment to enhance saccharification of rice husk for poly(3-hydroxybutyrate) production. Int J Biol Macromol 2020; 160:446-455. [DOI: 10.1016/j.ijbiomac.2020.05.218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 01/22/2023]
|
10
|
Silva TP, de Albuquerque FS, Dos Santos CWV, Franco M, Caetano LC, Pereira HJV. Production, purification, characterization and application of a new halotolerant and thermostable endoglucanase of Botrytis ricini URM 5627. BIORESOURCE TECHNOLOGY 2018; 270:263-269. [PMID: 30223157 DOI: 10.1016/j.biortech.2018.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
A halotolerant endoglucanase with a molecular mass of 39 kDa was obtained from the solid fermentation of sugarcane bagasse by the fungus Botrytis ricini URM 5627 and isolated using only two purification processes: fractionation with ammonium sulphate and size-exclusion chromatography resulting in an activity of 1289.83 U/mL. After the isolation, biochemical characterizations were performed, giving a temperature of 50 °C and optimum pH of 5. The enzyme was stable at 39-60 °C for 60 min and at a pH of 4-6. The enzymatic activity increased in the presence of Na+, Mn2+, Mg2+ and Zn2+ and decreased in the presence of Ca2+, Cu2+, and Fe2+. The endoglucanase revealed a halotolerant profile since its activity increased proportionally to an increase in NaCl concentration. The maximum activity was reached at 2 M NaCl with a 75% increase in activity. The enzyme had a Km of 0.1299 ± 0.0096 mg/mL and a Vmax of 0.097 ± 0.00121 mol/min/mL. During application in saccharification tests, the enzyme was able to hydrolyse sugarcane bagasse, rice husk, and wheat bran, with the highest production of reducers/fermentable sugars within 24 h of saccharification for wheat bran (137.21 mg/g). Therefore, these properties combined make this isolated enzyme a potential candidate for biotechnological and industrial applications.
Collapse
Affiliation(s)
- Tatielle P Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Fabiana S de Albuquerque
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Cláudio Willian V Dos Santos
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Marcelo Franco
- Department of Exact Sciences and Technology, State University of Santa Cruz (UESC), 45654-370 Ilhéus, Bahia, Brazil
| | - Luiz Carlos Caetano
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Hugo Juarez Vieira Pereira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900 Maceió, Alagoas, Brazil.
| |
Collapse
|