1
|
Bravo-Alfaro DA, Ochoa-Rodríguez LR, Prokhorov Y, Pérez-Robles JF, Sampieri-Moran JM, García-Casillas PE, Paul S, García HS, Luna-Bárcenas G. Nanoemulsions of betulinic acid stabilized with modified phosphatidylcholine increase the stability of the nanosystems and the drug's bioavailability. Colloids Surf B Biointerfaces 2024; 245:114291. [PMID: 39368424 DOI: 10.1016/j.colsurfb.2024.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Betulinic acid (BA) is a natural compound with significant potential for treating various diseases, including cancer and AIDS, and possesses additional anti-inflammatory and antibacterial properties. However, its clinical application is limited because of its low solubility in water, which impairs its distribution within the body. To overcome this challenge, nanoemulsions have been developed to improve the bioavailability of such poorly soluble drugs. This study investigated modified phosphatidylcholine (PC), where some fatty acids were replaced with conjugated linoleic acid (CLA) to stabilize BA nanoemulsions. The modified PC was used to prepare nanoemulsions with droplet sizes of up to 45 nanometers. These nanoemulsions maintained stability for 60 days at room temperature (25°C±2°C) and under refrigeration (5°C±1°C), with no signs of instability. Nanoemulsions stabilized with CLA-modified PC achieved a higher drug encapsulation rate (93.5±4.3 %) than those using natural PC (82.8±4.2 %). In an in vivo model, both nanoemulsion formulations significantly increased BA absorption, with CLA-modified PC enhancing absorption by 21.3±1.3 times and natural PC by 20±2.3 times compared to the free drug. This suggests that nanoemulsions with modified PC could improve the stability and efficacy of BA in clinical applications.
Collapse
Affiliation(s)
- Diego A Bravo-Alfaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc., Qro., San Pablo, Querétaro 76130, Mexico
| | - Laura R Ochoa-Rodríguez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Santiago de Querétaro, Qro, 76230, Mexico
| | - Yevgen Prokhorov
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Santiago de Querétaro, Qro, 76230, Mexico
| | - Juan Francisco Pérez-Robles
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Santiago de Querétaro, Qro, 76230, Mexico
| | - Jessica M Sampieri-Moran
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, M.A. de Quevedo 2779, col. Formando Hogar, Veracruz, Ver, 91897, Mexico
| | - Perla Elvia García-Casillas
- Centro de Investigación en Química Aplicada, Enrique Reyna H. 140, San José de los Cerritos, Coahuila 25294, Mexico
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc., San Pablo, Querétaro CP 76130, Mexico
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, M.A. de Quevedo 2779, col. Formando Hogar, Veracruz, Ver, 91897, Mexico.
| | - Gabriel Luna-Bárcenas
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc., Qro., San Pablo, Querétaro 76130, Mexico.
| |
Collapse
|
2
|
Li M, Li W, Dong Y, Zhan C, Tao T, Kang M, Zhang C, Liu Z. Advances in metabolism pathways of theaflavins: digestion, absorption, distribution and degradation. Crit Rev Food Sci Nutr 2024:1-9. [PMID: 39096025 DOI: 10.1080/10408398.2024.2384647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Theaflavins, a major kind of component in black tea, have been reported to show a variety of biological activities and health effects. However, the unstable chemical properties, low bioavailability and unclear metabolism pathways of theaflavins have left much to be desired in terms of its specific efficacy and applications. This paper provides a comprehensive knowledge on the digestion, absorption, metabolism, distribution and excretion of theaflavins. We find that pH-dependent stability, efflux transport proteins are closely related to the low absorption rate and low bioavailability of theaflavins. When pass through the gastrointestinal tract, TFDG, TF2A and TF2B are gradually degraded to TF1, and release gallic acid. Then, the theaflavins skeleton are degraded into small molecular phenolic substances under the action of enzymes and microorganisms. In addition, theaflavins are widely distributed in the human body including brain, lung, heart, kidney, liver, blood tissue in a low content and can be excreted through feces. However, the influence of digestive enzymes barrier and gut microbial barrier on theaflavins are still unclear. Importantly, most findings are reported by in vitro methods and animal experiments, the metabolites and metabolic pathways of theaflavins in human body are not fully understood and need to be further investigated. We hope to lay a theoretical basis for exploring methods to improve the bioavailability of theaflavins and expanding the application of theaflavins in health foods as well as pharmaceuticals.
Collapse
Affiliation(s)
- Maiquan Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Wenlan Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yunxia Dong
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Cai Zhan
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Tiantian Tao
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Manjun Kang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Can Zhang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
3
|
Velasco-Rodríguez LDC, García HS, Rascón-Díaz MP. Curcumin and omega-3 polyunsaturated fatty acids as bioactive food components with synergistic effects on Alzheimer's disease. Psychogeriatrics 2024; 24:701-718. [PMID: 38528391 DOI: 10.1111/psyg.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/20/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Curcumin and omega-3 polyunsaturated fatty acids (ω-3 PUFA) are multifunctional compounds which play an important role in Alzheimer's disease (AD) and little has been addressed about the role of these two compounds together in the progression of the disease. There is evidence of the beneficial effect of combined administration of ω-3 PUFA and other dietary supplements such as vitamins and polyphenols in the prevention of AD, although much remains to be understood about their possible complementary or synergistic activity. Therefore, the objective of this work is to review the research focused on studying the effect and mechanisms of action of curcumin, ω-3 PUFA, and the combination of these nutraceutical compounds, particularly on AD, and to integrate the possible ways in which these compounds can potentiate their effect. The most important pathophysiologies that manifest in AD will be addressed, in order to have a better understanding of the mechanisms of action through which these bioactive compounds exert a neuroprotective effect.
Collapse
Affiliation(s)
| | - Hugo S García
- UNIDA, Tecnológico Nacional de México/IT de Veracruz, Veracruz, Mexico
| | - Martha P Rascón-Díaz
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
4
|
Mohammadi F, Dikpati A, Bertrand N, Rudkowska I. Encapsulation of conjugated linoleic acid and ruminant trans fatty acids to study the prevention of metabolic syndrome-a review. Nutr Rev 2024; 82:262-276. [PMID: 37221703 DOI: 10.1093/nutrit/nuad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Studies have reported the potential benefits of consuming conjugated linoleic acid (CLA) and ruminant trans fatty acids (R-TFAs) in reducing the risk factors of metabolic syndrome (MetS). In addition, encapsulation of CLA and R-TFAs may improve their oral delivery and further decrease the risk factors of MetS. The objectives of this review were (1) to discuss the advantages of encapsulation; (2) to compare the materials and techniques used for encapsulating CLA and R-TFAs; and (3) to review the effects of encapsulated vs non-encapsulated CLA and R-TFAs on MetS risk factors. Examination of papers citing micro- and nano-encapsulation methods used in food sciences, as well as the effects of encapsulated vs non-encapsulated CLA and R-TFAs, was conducted using the PubMed database. A total of 84 papers were examined; of these, 18 studies were selected that contained information on the effects of encapsulated CLA and R-TFAs. The 18 studies that described encapsulation of CLA or R-TFAs indicated that micro- or nano-encapsulation processes stabilized CLA and prevented oxidation. CLA was mainly encapsulated using carbohydrates or proteins. So far, oil-in-water emulsification followed by spray-drying were the frequently used techniques for encapsulation of CLA. Further, 4 studies investigated the effects of encapsulated CLA on MetS risk factors compared with non-encapsulated CLA. A limited number of studies investigated the encapsulation of R-TFAs. The effects of encapsulated CLA or R-TFAs on the risk factors for MetS remain understudied; thus, additional studies comparing the effects of encapsulated and non-encapsulated CLA or R-TFAs are needed.
Collapse
Affiliation(s)
- Farzad Mohammadi
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec City, Québec, Canada
| | - Amrita Dikpati
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec City, Québec, Canada
- Faculty of Pharmacy, Pavillon Ferdinand-Vandry, Université Laval, Québec City, Québec, Canada
| | - Nicolas Bertrand
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec City, Québec, Canada
- Faculty of Pharmacy, Pavillon Ferdinand-Vandry, Université Laval, Québec City, Québec, Canada
| | - Iwona Rudkowska
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec City, Québec, Canada
| |
Collapse
|
5
|
Bashir M, Majid F, Bibi I, Jamil Z, Ali A, Al-Hoshani N, Mohamed RAEH, Iqbal M, Nazir A. Spectroscopic investigation of phase transformation of calcium oxalate dehydrates (renal calculi) using acidic Bryophyllum pinnatom powder. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123192. [PMID: 37542869 DOI: 10.1016/j.saa.2023.123192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
Urolithiasis is one of most common renal disorders, characterized by the formation of kidney stones (renal calculi) through the crystallization process within the urinary system. The frequently observed renal calculi are calcium oxalate renal calculi and treatment is done by shock wave method or lithotripsy which is harmful for other cells of the internal system. The objective of this work was to evaluate in vitro diagnosis of calcium oxalate kidney stones in the aqueous solution of Bryophyllum pinnatum. The B. pinnatum powder was mixed in apple cider vinegar and lemon juice separately to make solution 1 and 2 respectively. Apple cider vinegar and lemon juice were used as solvents due to their acidic and body compatible nature. Two surgically removed stones was dipped in solution 1 and 2. After two weeks, kidney stone of weight 2.7 g is completely dissolved in solution 2 while a considerable weight reduction of other kidney stone has been observed in solution 1. Fourier transform infrared (FTIR) spectroscopy results show the presence of two strong absorption peaks at 610 and 912 (cm-1) in both solutions after dissolution of urinary stones are related to calcium oxalate dehydrate (COD). Raman spectra further confirm the dissolution of COD in solution having Raman shifts at 504 and 910 (cm-1). Cluster formation and aggregation of particles has been observed in scanning electron microscopy images. This in vitro study proves that a mixture of Bryophyllum pinnatum powder and lemon juice is a best remedy to remove kidney stones.
Collapse
Affiliation(s)
- Mahwish Bashir
- Department of Physics, Govt. College Women University, Sialkot, Pakistan
| | - Farzana Majid
- Department of Physics, University of the Punjab, Lahore, Pakistan.
| | - Ismat Bibi
- Department of Chemistry, The Islamia University of Bahawalpur, Pakistan.
| | - Zunaira Jamil
- Department of Physics, Govt. College Women University, Sialkot, Pakistan
| | - Adnan Ali
- Department of Physics, Govt. College University, Faisalabad, Pakistan
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rania Ali El Hadi Mohamed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Arif Nazir
- Deparment of Chemistry, The University of Lahore, Lahore, Pakistan.
| |
Collapse
|
6
|
Sani MA, Tavassoli M, Azizi-Lalabadi M, Mohammadi K, McClements DJ. Nano-enabled plant-based colloidal delivery systems for bioactive agents in foods: Design, formulation, and application. Adv Colloid Interface Sci 2022; 305:102709. [PMID: 35640316 DOI: 10.1016/j.cis.2022.102709] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/21/2022]
Abstract
Consumers are becoming increasingly aware of the impact of their dietary choices on the environment, animal welfare, and health, which is causing many of them to adopt more plant-based diets. For this reason, many sectors of the food industry are reformulating their products to contain more plant-based ingredients. This article describes recent research on the formation and application of nano-enabled colloidal delivery systems formulated from plant-based ingredients, such as polysaccharides, proteins, lipids, and phospholipids. These delivery systems include nanoemulsions, solid lipid nanoparticles, nanoliposomes, nanophytosomes, and biopolymer nanoparticles. The composition, size, structure, and charge of the particles in these delivery systems can be manipulated to create novel or improved functionalities, such as improved robustness, higher optical clarity, controlled release, and increased bioavailability. There have been major advances in the design, assembly, and application of plant-based edible nanoparticles within the food industry over the past decade or so. As a result, there are now a wide range of different options available for creating delivery systems for specific applications. In the future, it will be important to establish whether these formulations can be produced using economically viable methods and provide the desired functionality in real-life applications.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student's Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Cuomo F, Iacovino S, Sacco P, De Leonardis A, Ceglie A, Lopez F. Progress in Colloid Delivery Systems for Protection and Delivery of Phenolic Bioactive Compounds: Two Study Cases-Hydroxytyrosol and Curcumin. Molecules 2022; 27:921. [PMID: 35164186 PMCID: PMC8839332 DOI: 10.3390/molecules27030921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Insufficient intake of beneficial food components into the human body is a major issue for many people. Among the strategies proposed to overcome this complication, colloid systems have been proven to offer successful solutions in many cases. The scientific community agrees that the production of colloid delivery systems is a good way to adequately protect and deliver nutritional components. In this review, we present the recent advances on bioactive phenolic compounds delivery mediated by colloid systems. As we are aware that this field is constantly evolving, we have focused our attention on the progress made in recent years in this specific field. To achieve this goal, structural and dynamic aspects of different colloid delivery systems, and the various interactions with two bioactive constituents, are presented and discussed. The choice of the appropriate delivery system for a given molecule depends on whether the drug is incorporated in an aqueous or hydrophobic environment. With this in mind, the aim of this evaluation was focused on two case studies, one representative of hydrophobic phenolic compounds and the other of hydrophilic ones. In particular, hydroxytyrosol was selected as a bioactive phenol with a hydrophilic character, while curcumin was selected as typical representative hydrophobic molecules.
Collapse
Affiliation(s)
- Francesca Cuomo
- Department of Agricultural, Environmental and Food Sciences (DiAAA) and Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.C.); (S.I.); (A.D.L.)
| | - Silvio Iacovino
- Department of Agricultural, Environmental and Food Sciences (DiAAA) and Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.C.); (S.I.); (A.D.L.)
| | - Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy;
| | - Antonella De Leonardis
- Department of Agricultural, Environmental and Food Sciences (DiAAA) and Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.C.); (S.I.); (A.D.L.)
| | - Andrea Ceglie
- Department of Chemistry “Ugo Schiff”, Center for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| | - Francesco Lopez
- Department of Agricultural, Environmental and Food Sciences (DiAAA) and Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.C.); (S.I.); (A.D.L.)
| |
Collapse
|
8
|
Sohn SI, Priya A, Balasubramaniam B, Muthuramalingam P, Sivasankar C, Selvaraj A, Valliammai A, Jothi R, Pandian S. Biomedical Applications and Bioavailability of Curcumin-An Updated Overview. Pharmaceutics 2021; 13:2102. [PMID: 34959384 PMCID: PMC8703330 DOI: 10.3390/pharmaceutics13122102] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin, a yellow-colored molecule derived from the rhizome of Curcuma longa, has been identified as the bioactive compound responsible for numerous pharmacological activities of turmeric, including anticancer, antimicrobial, anti-inflammatory, antioxidant, antidiabetic, etc. Nevertheless, the clinical application of curcumin is inadequate due to its low solubility, poor absorption, rapid metabolism and elimination. Advancements in recent research have shown several components and techniques to increase the bioavailability of curcumin. Combining with adjuvants, encapsulating in carriers and formulating in nanoforms, in combination with other bioactive agents, synthetic derivatives and structural analogs of curcumin, have shown increased efficiency and bioavailability, thereby augmenting the range of applications of curcumin. The scope for incorporating biotechnology and nanotechnology in amending the current drawbacks would help in expanding the biomedical applications and clinical efficacy of curcumin. Therefore, in this review, we provide a comprehensive overview of the plethora of therapeutic potentials of curcumin, their drawbacks in efficient clinical applications and the recent advancements in improving curcumin's bioavailability for effective use in various biomedical applications.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Arumugam Priya
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India; (A.P.); (P.M.); (R.J.)
| | | | - Pandiyan Muthuramalingam
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India; (A.P.); (P.M.); (R.J.)
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India
| | - Chandran Sivasankar
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India;
| | - Anthonymuthu Selvaraj
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA;
| | - Alaguvel Valliammai
- Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Beersheba 84990, Israel;
| | - Ravi Jothi
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India; (A.P.); (P.M.); (R.J.)
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
9
|
Enhanced oral bioavailability of rutin by a self-emulsifying drug delivery system of an extract of calyces from Physalis peruviana. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Xue F, Li X, Qin L, Liu X, Li C, Adhikari B. Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Adv Drug Deliv Rev 2021; 176:113886. [PMID: 34314783 DOI: 10.1016/j.addr.2021.113886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/13/2021] [Accepted: 07/18/2021] [Indexed: 12/22/2022]
Abstract
Aging is spontaneous and inevitable process in all living beings. It is a complex natural phenomenon that manifests as a gradual decline of physiological functions and homeostasis. Aging inevitably leads to age-associated injuries, diseases, and eventually death. The research on aging-associated diseases aimed at delaying, preventing or even reversing the aging process are of great significance for healthy aging and also for scientific progress. Numerous plant-derived compounds have anti-aging effects, but their therapeutic potential is limited due to their short shelf-life and low bioavailability. As the novel delivery system, nanoemulsion can effectively improve this defect. Nanoemulsions enhance the delivery of drugs to the target site, maintain the plasma concentration for a longer period, and minimize adverse reaction and side effects. This review describes the importance of nanoemulsions for the delivery of phyto-derived compounds and highlights the importance of nanoemulsions in the treatment of aging-related diseases. It also covers the methods of preparation, fate and safety of nanoemulsions, which will provide valuable information for the development of new strategies in treatment of aging-related diseases.
Collapse
|
11
|
Velasco‐Rodríguez LDC, Rascón MP, Calvo MV, Montalvo RM, Fontecha J, García HS. Krill Lecithin as Surfactant for Preparation of Oil/Water Nanoemulsions as Curcumin Carriers. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Luz del C. Velasco‐Rodríguez
- UNIDA Tecnológico Nacional de México/IT de Veracruz M.A. de Quevedo 2779, Col. Formando Hogar Veracruz Ver. 91897 Mexico
| | - Martha P. Rascón
- Facultad de Ciencias Químicas Universidad Veracruzana Prolongación Oriente 6 Orizaba Ver. 94340 Mexico
| | - Maria V. Calvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC‐UAM) Universidad Autónoma de Madrid Calle Nicolás Cabrera 9 Madrid 28049 Spain
| | - Rita M. Montalvo
- UNIDA Tecnológico Nacional de México/IT de Veracruz M.A. de Quevedo 2779, Col. Formando Hogar Veracruz Ver. 91897 Mexico
| | - Javier Fontecha
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC‐UAM) Universidad Autónoma de Madrid Calle Nicolás Cabrera 9 Madrid 28049 Spain
| | - Hugo S. García
- UNIDA Tecnológico Nacional de México/IT de Veracruz M.A. de Quevedo 2779, Col. Formando Hogar Veracruz Ver. 91897 Mexico
| |
Collapse
|
12
|
McClements DJ. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Prog Lipid Res 2020; 81:101081. [PMID: 33373615 DOI: 10.1016/j.plipres.2020.101081] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The design, fabrication, and application of edible nanoemulsions for the encapsulation and delivery of bioactive agents has been a highly active research field over the past decade or so. In particular, they have been widely used for the encapsulation and delivery of hydrophobic bioactive substances, such as hydrophobic drugs, lipids, vitamins, and phytochemicals. A great deal of progress has been made in creating stable edible nanoemulsions that can increase the stability and efficacy of these bioactive agents. This article highlights some of the most important recent advances within this area, including increasing the water-dispersibility of bioactives, protecting bioactives from chemical degradation during storage, increasing the bioavailability of bioactives after ingestion, and targeting the release of bioactives within the gastrointestinal tract. Moreover, it highlights progress that is being made in creating plant-based edible nanoemulsions. Finally, the potential toxicity of edible nanoemulsions is considered.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|