1
|
Alsudays IM, Alshammary FH, Alabdallah NM, Alatawi A, Alotaibi MM, Alwutayd KM, Alharbi MM, Alghanem SMS, Alzuaibr FM, Gharib HS, Awad-Allah MMA. Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC PLANT BIOLOGY 2024; 24:191. [PMID: 38486134 PMCID: PMC10941484 DOI: 10.1186/s12870-024-04863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Enriching the soil with organic matter such as humic and fulvic acid to increase its content available nutrients, improves the chemical properties of the soil and increases plant growth as well as grain yield. In this study, we conducted a field experiment using humic acid (HA), fulvic acid (FA) and recommended dose (RDP) of phosphorus fertilizer to treat Hordeum vulgare seedling, in which four concentrations from HA, FA and RDP (0.0 %, 50 %, 75 % and 100%) under saline soil conditions . Moreover, some agronomic traits (e.g. grain yield, straw yield, spikes weight, plant height, spike length and spike weight) in barley seedling after treated with different concentrations from HA, FA and RDP were determined. As such the beneficial effects of these combinations to improve plant growth, N, P, and K uptake, grain yield, and its components under salinity stress were assessed. RESULTS The findings showed that the treatments HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6), improved number of spikes/plant, 1000-grain weight, grain yield/ha, harvest index, the amount of uptake of nitrogen (N), phosphorous (P) and potassium (K) in straw and grain. The increase for grain yield over the control was 64.69, 56.77, 49.83, 49.17, and 44.22% in the first season, and 64.08, 56.63, 49.19, 48.87, and 43.69% in the second season,. Meanwhile, the increase for grain yield when compared to the recommended dose was 22.30, 16.42, 11.27, 10.78, and 7.11% in the first season, and 22.17, 16.63, 11.08, 10.84, and 6.99% in the second season. Therefore, under salinity conditions the best results were obtained when, in addition to phosphate fertilizer, the soil was treated with humic acid or foliar application the plants with fulvic acid under one of the following treatments: HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6). CONCLUSIONS The result of the use of organic amendments was an increase in the tolerance of barley plant to salinity stress, which was evident from the improvement in the different traits that occurred after the treatment using treatments that included organic amendments (humic acid or fulvic acid).
Collapse
Affiliation(s)
| | - Fowzia Hamdan Alshammary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Aishah Alatawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Mashael M Alotaibi
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Maha Mohammed Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Suliman M S Alghanem
- Department of Biology, College of Science, Qassim University, Buraidah, Saudi Arabia
| | | | - Hany S Gharib
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafrelsheikh, 33516, Egypt
| | | |
Collapse
|
2
|
Zhang W, Li J, Li H, Zhang D, Zhu B, Yuan H, Gao T. Transcriptomic analysis of humic acid in relieving the inhibitory effect of high nitrogen on soybean nodulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1196939. [PMID: 37564385 PMCID: PMC10410467 DOI: 10.3389/fpls.2023.1196939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023]
Abstract
Introduction Nitrogen fertilizer intake promotes soybean growth before the formation of nodules, but excess nitrogen has an inhibitory effect on soybean nodulation. It is important to balance nitrogen levels to meet both growth and nodulation needs. Methods the nitrogen level suitable for soybean growth and nodulation was studied, the role of humic acid (HA) in alleviating the inhibition of high nitrogen on soybean nodulation was analyzed, and transcriptomic analysis was performed to understand its mechanism. Results The results showed that a lower level of nitrogen with 36.4 mg urea per pot could increase the number of nodules of soybean, and a higher level of nitrogen with 145.9 mg urea per pot (U4 group) had the best growth indicators but inhibited nodulation significantly. HA relieved the inhibitory effect at high nitrogen level, and the number of nodules increased by 122.1% when 1.29 g HA was added (H2 group) compared with the U4 group. The transcriptome analysis was subsequently performed on the H2 and U4 groups, showing that there were 2995 differentially expressed genes (DEGs) on the 25th day, accounting for 6.678% of the total annotated genes (44,848) under the test conditions. These DEGs were enriched in mitogen-activated protein kinase signaling pathway-plant, flavonoid biosynthesis, and plant hormone signal transduction based on the -log10 (P adjusted) value in the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG). Discussion HA balanced the nitrogen level through the above pathways in soybean planting to control the number of nodules.
Collapse
Affiliation(s)
- Wenhua Zhang
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jia Li
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Hongya Li
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Dongdong Zhang
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Baocheng Zhu
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tongguo Gao
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
3
|
El-Beltagi HS, Al-Otaibi HH, Parmar A, Ramadan KMA, Lobato AKDS, El-Mogy MM. Application of Potassium Humate and Salicylic Acid to Mitigate Salinity Stress of Common Bean. Life (Basel) 2023; 13:life13020448. [PMID: 36836805 PMCID: PMC9965533 DOI: 10.3390/life13020448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
In the current study, we investigated the effect of potassium humate (Kh) and salicylic acid (SA) in mitigating the salinity stress of common bean plants. Common bean seedlings were treated with 0.2 g/L SA as a foliar application and 0.3 g/L Kh as a soil application individually or in combination. After 7 days of germination, plants were treated with 50 mM NaCl and normal water as a control. Our results indicate that salt treatment reduced the plant growth (fresh and dry shoots and roots), leaf pigments (total chlorophyll and carotenoids), ascorbic acid (AA), glutathione (GSH), and potassium (K) contents. On the contrary, proline content; sodium (Na); hydrogen peroxide (H2O2); superoxide anion (O2•-); and antioxidant enzymes, including catalase (CAT), peroxidase (POX), and superoxide dismutase (SOD), were increased by saline stress. However, applying either individual Kh and SA or their combination stimulated seedling growth under salinity stress by increasing growth parameters, leaf pigment contents, AA, GSH, proline content, K content, and antioxidant enzymes compared with the control. Additionally, Na content, H2O2, and O2•- were reduced by all applications. The application of the Kh (0.3 g/L) + SA (0.2 g/L) combination was more effective than using the individual compounds. In conclusion, applications of Kh + SA can mitigate salt stress and improve the seedling growth of common bean.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Gamma Street, Giza 12613, Egypt
- Correspondence: (H.S.E.-B.); (M.M.E.-M.)
| | - Hala Hazam Al-Otaibi
- Food and Nutrition Science Department, Agricultural Science and Food, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Aditya Parmar
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Allan Klynger da Silva Lobato
- Nucleo de Pesquisa Vegetal Basica e Aplicada, Universidade Federal Rural da Amazonia, Paragominas 68627-450, Para, Brazil
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (H.S.E.-B.); (M.M.E.-M.)
| |
Collapse
|
4
|
Zhang W, Hou H, Zhang D, Zhu B, Yuan H, Gao T. Transcriptomic and Metabolomic Analysis of Soybean Nodule Number Improvements with the Use of Water-Soluble Humic Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:197-210. [PMID: 36573896 DOI: 10.1021/acs.jafc.2c06200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Water-soluble humic materials (WSHMs) can enhance the nodule numbers of soybean plants. In this study, targeted metabolomics and transcriptomics were used to understand this mechanism. Results showed that 500 mg/L WSHM increased the adsorption and colonization of rhizobia in soybean roots. High-performance liquid chromatography and targeted metabolomics showed that WSHMs could regulate the content and distribution of endogenous hormones of soybean plants at the initial stage of soybean nodulation. Transcriptomic analysis showed a total of 2406 differentially expressed genes (DEGs) by the 25th day, accounting for 4.89% of total annotation genes (49159). These DEGs were found to contribute primarily to the MAPK signaling pathway, glycolysis/gluconeogenesis, and plant hormone signal transduction according to the -log 10 (Padjust) value in the KEGG pathway. Subsequently, DEGs related to these hormones were selected for verification using quantity-PCR. The WSHM increased the number of nodules by regulating the expression of endogenous hormones in soybean plants.
Collapse
Affiliation(s)
- Wenhua Zhang
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Huiyun Hou
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Dongdong Zhang
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Baocheng Zhu
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tongguo Gao
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
5
|
da Silva MSRDA, de Carvalho LAL, Braos LB, de Sousa Antunes LF, da Silva CSRDA, da Silva CGN, Pinheiro DG, Correia MEF, Araújo EDS, Colnago LA, Desoignies N, Zonta E, Rigobelo EC. Effect of the application of vermicompost and millicompost humic acids about the soybean microbiome under water restriction conditions. Front Microbiol 2022; 13:1000222. [DOI: 10.3389/fmicb.2022.1000222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Humic substances (HSs) are constituent fractions of organic matter and are highly complex and biologically active. These substances include humic acids (HA), fulvic acids (FA), and humin. HS are known to stimulate the root system and plant growth and to mitigate stress damage, including hydric stress. Humic acids have already been reported to increase microbial growth, affecting their beneficial effect on plants. However, there is scarce information on whether HA from vermicompost and millicompost, along with Bradyrhizobium, improves the tolerance of soybean to water restriction. This study aimed to evaluate the responses of soybean plants to the application of vermicompost HA (HA-V) and millicompost (HA-M) along with Bradyrhizobium sp. under water restriction. The experiment was carried out in a greenhouse, and the treatments received Bradyrhizobium sp. inoculation with or without the application of HA from vermicompost and millicompost with or without water restriction. The results showed that HA provided greater soybean growth and nodulation than the control. The application of HA-M stimulated an increase in the richness of bacterial species in roots compared to the other treatments. After the application of water stress, the difference between the treatments disappeared. Microbial taxa were differentially abundant in plants, with the fungal fraction most affected by HA application in stressed roots. HA-V appears to be more prominent in inducing taxa under stress conditions. Although the results showed slight differences between HA from vermicompost and millicompost regarding plant growth, both humic acids promoted an increase in plant development compared to the control.
Collapse
|
6
|
da Silva MSRDA, Dos Santos BDMS, da Silva CSRDA, da Silva CSRDA, Antunes LFDS, Dos Santos RM, Santos CHB, Rigobelo EC. Humic Substances in Combination With Plant Growth-Promoting Bacteria as an Alternative for Sustainable Agriculture. Front Microbiol 2021; 12:719653. [PMID: 34777275 PMCID: PMC8589081 DOI: 10.3389/fmicb.2021.719653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) and humic substances (HSs) are promising options for reducing the use of pesticides and mineral fertilizers. Although many studies have shown the effects of PGPB and HSs separately, little information is available on plant responses to the combined application of these biostimulants despite the great potential for the simultaneous action of these biological inputs. Thus, the objective of this review is to present an overview of scientific studies that addressed the application of PGPB and HSs to different crops. First, we discuss the effect of these biostimulants on biological nitrogen fixation, the various effects of the inoculation of beneficial bacteria combined with the application of HSs on promoting the growth of nonleguminous plants and how this combination can increase bacterial colonization of plant hosts. We also address the effect of PGPB and HSs on plant responses to abiotic stresses, in addition to discussing the role of HSs in protecting plants against pathogens. There is a lack of studies that address the role of PGPB + HSs in biocontrol. Understanding the factors involved in the promotion of plant growth through the application of PGPB and HSs can assist in the development of efficient biostimulants for agricultural management. This approach has the potential to accelerate the transition from conventional cultivation to sustainable agrosystems.
Collapse
Affiliation(s)
| | | | - Camilla Santos Reis de Andrade da Silva
- Department of Soil, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.,National Agrobiology Research Center, Embrapa Agrobiologia, Seropédica, Brazil
| | | | | | | | | | - Everlon Cid Rigobelo
- Department of Agricultural Production Sciences, Universidade Estadual Paulista, Jaboticabal, Brazil
| |
Collapse
|