1
|
Karim ZA, Reese RA, Smith AN, Blackadar ME, Arora V, Moore NM, Johnson EA. Positive impact of nutrition in the prevention of peripheral vascular disease and severe acute respiratory syndrome coronavirus 2: review. Front Nutr 2024; 11:1418028. [PMID: 39364158 PMCID: PMC11448360 DOI: 10.3389/fnut.2024.1418028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Recent research has shown that there is a link between the trend of cardiovascular disease (CVD), chronic symptoms of SARS-CoV-2 (COVID-19), and medical nutrition therapy. Making positive changes to an individual's lifestyle can help to reduce the symptoms that follow exposure to CVD and COVID-19. Sustainable nutrition and lifestyle changes can positively impact an individual's health. Studies have considered the risk factors associated with the disease, medical history, the link between nutrition and peripheral vascular disease (PVD), symptom management, and the interrelationship between nutrition, COVID-19, and PVD. One study has demonstrated that Western Dietary intake can boost the innate immune system while suppressing humoral response, causing chronic inflammation and poor host defense against viruses. However, further investigation is needed to confirm. Patients with PVD and COVID-19 have experienced a reduction in side effects when prescribed a regimen of medical nutrition therapy, heart-healthy diets, and adequate physical activity before and after symptoms of both diseases appear. This approach has proven to be a protective factor during the combination of both illnesses. Our findings indicate that balanced diet and lifestyle are essential in supporting an optimal immune system that can reduce the risk of virus load in individuals at risk of infection and symptoms from COVID-19 and PVD.
Collapse
Affiliation(s)
- Zubair A Karim
- Department of Nutrition and Dietetics, College of Allied Health Sciences, Augusta University, Augusta, GA, United States
| | - Rebecca A Reese
- Department of Nutrition and Dietetics, College of Allied Health Sciences, Augusta University, Augusta, GA, United States
| | - Adrianne N Smith
- Department of Nutrition and Dietetics, College of Allied Health Sciences, Augusta University, Augusta, GA, United States
| | - Madeline E Blackadar
- Department of Nutrition and Dietetics, College of Allied Health Sciences, Augusta University, Augusta, GA, United States
| | - Vishal Arora
- Department of Medicine: Cardiology, Wellstar MCG Health, Augusta University, Augusta, GA, United States
| | - Nicole M Moore
- Department of Nutrition and Dietetics, College of Allied Health Sciences, Augusta University, Augusta, GA, United States
| | - Emily A Johnson
- Department of Nutrition and Dietetics, College of Allied Health Sciences, Augusta University, Augusta, GA, United States
| |
Collapse
|
2
|
Francisco AP, Sganzerla WG, Nochi Castro LE, Cruz Tabosa Barroso TL, da Silva APG, da Rosa CG, Nunes MR, Forster-Carneiro T, Rostagno MA. Pressurized liquid extraction of bioactive compounds from grape peel and application in pH-sensing carboxymethyl cellulose films: A promising material to monitor the freshness of pork and milk. Food Res Int 2024; 179:114017. [PMID: 38342539 DOI: 10.1016/j.foodres.2024.114017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
This study produced pH-sensing carboxymethyl cellulose (CMC) films functionalized with bioactive compounds obtained by pressurized liquid extraction (PLE) of grape peel to monitor the freshness of pork and milk. A semi-continuous PLE was conducted using hydroethanolic solution (70:30, v/v) at a flow rate of 5 mL/min, 15 MPa, and 60 °C. The films were produced by the casting technique using CMC (2.5 %, w/v), glycerol (1 %, v/v), and functionalized with 10, 30, and 50 % (v/v) grape peel extract. From the results obtained, LC-MS/MS revealed that PLE extracted twenty-seven phenolic compounds. The main phenolic compounds were kaempferol-3-glucoside (367.23 ± 25.88 µg/mL), prunin (270.23 ± 3.62 µg/mL), p-coumaric acid (236.43 ± 26.02 µg/mL), and procyanidin B1 (117.17 ± 7.29 µg/mL). The CMC films presented suitable color and mechanical properties for food packaging applications. The addition of grape peel extract promoted the pH-sensing property, showing the sensitivity of anthocyanins to pH changes. The films functionalized with grape peel extract presented good release control of bioactive compounds, making them suitable for food packaging applications. When applied to monitor the freshness of pork and milk, the films exhibited remarkable color changes associated with the pH of the food during storage. In conclusion, PLE is a sustainable approach to obtaining bioactive compounds from the grape peel, which can be applied in the formulation of pH-sensing films as a promising sustainable material to monitor food freshness during storage.
Collapse
Affiliation(s)
- Ana Paula Francisco
- University of Campinas (UNICAMP), School of Food Engineering (FEA), Monteiro Lobato St., 80, Campinas, SP, Brazil; School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - William Gustavo Sganzerla
- School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Luiz Eduardo Nochi Castro
- University of Campinas (UNICAMP), School of Food Engineering (FEA), Monteiro Lobato St., 80, Campinas, SP, Brazil
| | | | | | - Cleonice Gonçalves da Rosa
- University of Planalto Catarinense (UNIPLAC), Graduate Program in Environment and Health, Av. Mal. Castelo Branco, 170 Lages, SC, Brazil
| | - Michael Ramos Nunes
- Federal Institute of Education, Science and Technology of Santa Catarina (IFSC), Campus Lages, Rua Heitor Villa Lobos, 222, Lages, SC, Brazil
| | - Tânia Forster-Carneiro
- University of Campinas (UNICAMP), School of Food Engineering (FEA), Monteiro Lobato St., 80, Campinas, SP, Brazil
| | - Mauricio A Rostagno
- School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil.
| |
Collapse
|
3
|
Zhang L, Ye Q, Gan S, Liu H, Zhang Q, Wang S, Cheng C. Gallic Acid Alleviates Psoriasis Keratinization and Inflammation by Regulating BRD4 Expression. Folia Biol (Praha) 2024; 70:53-61. [PMID: 38830123 DOI: 10.14712/fb2024070010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Psoriasis is a chronic non-contagious autoimmune disease. Gallic acid is a natural compound with potential health benefits, including antioxidant, anticancer, antiviral and antibacterial properties. Nevertheless, the influence of gallic acid on psoriasis has not been fully determined. This investigation aimed to discover the effect of gallic acid on psoriasis. Thirty-one pairs of psoriatic skin tissues and healthy adult human skin tissues were collected. Human keratinocytes (HaCaT cells) were transfected with interleukin 17A (IL-17A) to create the psoriatic keratinocyte model. The content of bromodomain-containing protein 4 (BRD4) microRNA was assessed using qRT-PCR testing. The content of BRD4 was detected by Western blotting. Cell migration was evaluated by conducting a wound healing assay. Cell proliferation was determined using an EdU assay. Apoptosis was detected by the TUNEL assay. The contents of interferon gamma (IFN-γ), IL-6, IL-8 and IL-17 were detected by ELISA. BRD4 was up-regulated in psoriatic skin tissues and in the IL-17A group compared to the healthy adult human skin tissues and the control group. Silencing BRD4 inhibited cell migration, proliferation and inflammatory response but induced apoptosis in IL-17A-treated HaCaT cells. Conversely, BRD4 over-expression promoted cell migration, proliferation and inflammatory response but suppressed apoptosis in IL-17A-treated HaCaT cells. Gallic acid repressed cell migration, proliferation and inflammatory response but indu-ced apoptosis in HaCaT cells transfected with IL-17A by down-regulating BRD4. Gallic acid represses cell migration, proliferation and inflammatory response but induces apoptosis in IL-17A-transfected HaCaT cells by down-regulating BRD4.
Collapse
Affiliation(s)
- Li Zhang
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | - Qiaoyuan Ye
- Department of Dermatology and Venereology, Second Clinical Medical College of Guangdong Medical University, China
| | - Saiyang Gan
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | - Huan Liu
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | - Qing Zhang
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | - Shuangshuang Wang
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | | |
Collapse
|
4
|
Dinda B, Dinda S, Dinda M. Therapeutic potential of green tea catechin, (-)-epigallocatechin-3- O-gallate (EGCG) in SARS-CoV-2 infection: Major interactions with host/virus proteases. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 3:100402. [PMID: 36597465 PMCID: PMC9800022 DOI: 10.1016/j.phyplu.2022.100402] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The current COVID-19 pandemic from the human pathogenic virus SARS-CoV-2 has resulted in a major health hazard globally. The morbidity and transmission modality of this disease are severe and uncontrollable. As no effective clinical drugs are available for treatment of COVID-19 infection till to date and only vaccination is used as prophylaxis and its efficacy is restricted due to emergent of new variants of SARS-CoV-2, there is an urgent need for effective drugs for its treatment. PURPOSE The aim of this review was to provide a detailed analysis of anti-SARS-CoV-2 efficacy of (-)-epigallocatechin-3-O-gallate (EGCG), a major catechin constituent of green tea (Camellia sinensis (L.) Kuntze) beverage to highlight the scope of EGCG in clinical medicine as both prophylaxis and treatment of present COVID-19 infection. In addition, the factors related to poor oral bioavailabilty of EGCG was also analysed for a suggestion for future research in this direction. STUDY DESIGN We collected the published articles related to anti-SARS-CoV-2 activity of EGCG against the original strain (Wuhan type) and its newly emerged variants of SARS-CoV-2 virus. METHODS A systematic search on the published literature was conducted in various databases including Google Scholar, PubMed, Science Direct and Scopus to collect the relevant literature. RESULTS The findings of this search demonstrate that EGCG shows potent antiviral activity against SARS-CoV-2 virus by preventing viral entry and replication in host cells in vitro models. The studies on the molecular mechanisms of EGCG in inhibition of SARS-CoV-2 infection in host cells reveal that EGCG blocks the entry of the virus particles by interaction with the receptor binding domain (RBD) of viral spike (S) protein to host cell surface receptor protease angiotensin-converting enzyme 2 (ACE2) as well as suppression of the expressions of host proteases, ACE2, TMPRSS2 and GRP78, required for viral entry, by Nrf2 activation in host cells. Moreover, EGCG inhibits the activities of SARS-CoV-2 main protease (Mpro), papain-like protease (PLpro), endoribonuclease Nsp15 in vitro models and of RNA-dependent RNA polymerase (RdRp) in molecular docking model for suppression of viral replication. In addition, EGCG significantly inhibits viral inflammatory cytokine production by stimulating Nrf2- dependent host immune response in virus-infected cells. EGCG significantly reduces the elevated levels of HMGB1, a biomarker of sepsis, lung fibrosis and thrombotic complications in viral infections. EGCG potentially inhibits the infection of original (Wuhan type) strain of SARS-CoV-2 and other newly emerged variants as well as the infections of SARS-CoV-2 virus spike-protein of WT and its mutants-mediated pseudotyped viruses . EGCG shows maximum inhibitory effect against SARS-CoV-2 infection when the host cells are pre-incubated with the drug prior to viral infection. A sorbitol/lecithin-based throat spray containing concentrated green tea extract rich in EGCG content significantly reduces SARS-CoV-2 infectivity in oral mucosa. Several factors including degradation in gastrointestinal environment, low absorption in small intestine and extensive metabolism of EGCG are responsible for its poor bioavailability in humans. Pharmacokinetic and metabolism studies of EGCG in humans reveal poor bioavailability of EGCG in human plasma and EGCG-4"-sulfate is its major metabolite. The concentration of EGCG-4"-sulfate in human plasma is almost equivalent to that of free EGCG (Cmax 177.9 vs 233.5 nmol/L). These findings suggest that inhibition of sulfation of EGCG is a crucial factor for improvement of its bioavailability. In vitro study on the mechanism of EGCG sulfonation indicates that sulfotransferases, SULT1A1 and SULT1A3 are responsible for sulfonation in human liver and small intestine, respectively. Some attempts including structural modifications, and nanoformulations of EGCG and addition of nutrients with EGCG have been made to improve the bioavailability of EGCG. CONCLUSIONS The findings of this study suggest that EGCG has strong antiviral activity against SARS-CoV-2 infection independent of viral strains (Wuhan type (WT), other variants) by inhibition of viral entry and replication in host cells in vitro models. EGCG may be useful in reduction of this viral load in salivary glands of COVID-19 patients, if it is applied in mouth and throat wash formulations in optimal concentrations. EGCG could be a promising candidate in the development of effective vaccine for prevention of the infections of newly emergent strains of SARS-CoV-2 virus. EGCG might be useful also as a clinical medicine for treatment of COVID-19 patients if its bioavailability in human plasma is enhanced.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, 799 022, India
| | - Subhajit Dinda
- Department of Chemistry, Kamalpur Govt Degree College, Dhalai,Tripura, 799 285, India
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, 1300 Jefferson Park Ave, VA, 22908, United States of America
| |
Collapse
|
5
|
Hu D, Jin Y, Hou X, Zhu Y, Chen D, Tai J, Chen Q, Shi C, Ye J, Wu M, Zhang H, Lu Y. Application of Marine Natural Products against Alzheimer's Disease: Past, Present and Future. Mar Drugs 2023; 21:md21010043. [PMID: 36662216 PMCID: PMC9867307 DOI: 10.3390/md21010043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disease, is one of the most intractable illnesses which affects the elderly. Clinically manifested as various impairments in memory, language, cognition, visuospatial skills, executive function, etc., the symptoms gradually aggravated over time. The drugs currently used clinically can slow down the deterioration of AD and relieve symptoms but cannot completely cure them. The drugs are mainly acetylcholinesterase inhibitors (AChEI) and non-competitive N-methyl-D-aspartate receptor (NDMAR) antagonists. The pathogenesis of AD is inconclusive, but it is often associated with the expression of beta-amyloid. Abnormal deposition of amyloid and hyperphosphorylation of tau protein in the brain have been key targets for past, current, and future drug development for the disease. At present, researchers are paying more and more attention to excavate natural compounds which can be effective against Alzheimer's disease and other neurodegenerative pathologies. Marine natural products have been demonstrated to be the most prospective candidates of these compounds, and some have presented significant neuroprotection functions. Consequently, we intend to describe the potential effect of bioactive compounds derived from marine organisms, including polysaccharides, carotenoids, polyphenols, sterols and alkaloids as drug candidates, to further discover novel and efficacious drug compounds which are effective against AD.
Collapse
Affiliation(s)
- Di Hu
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yating Jin
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiangqi Hou
- Hangzhou WeChampion Biotech. Inc., Hangzhou 310030, China
| | - Yinlong Zhu
- Zhejiang Chiral Medicine Chemicals Co., Ltd., Hangzhou 311227, China
| | - Danting Chen
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jingjing Tai
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qianqian Chen
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Cui Shi
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Ye
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Mengxu Wu
- Hangzhou WeChampion Biotech. Inc., Hangzhou 310030, China
| | - Hong Zhang
- Hangzhou WeChampion Biotech. Inc., Hangzhou 310030, China
| | - Yanbin Lu
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- Correspondence: ; Tel.: +86-571-87103135
| |
Collapse
|
6
|
Antiviral Properties of Pennisetum purpureum Extract against Coronaviruses and Enteroviruses. Pathogens 2022; 11:pathogens11111371. [PMID: 36422622 PMCID: PMC9696772 DOI: 10.3390/pathogens11111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Many severe epidemics are caused by enteroviruses (EVs) and coronaviruses (CoVs), including feline coronavirus (FCoV) in cats, epidemic diarrhea disease virus (PEDV) in pigs, infectious bronchitis virus (IBV) in chickens, and EV71 in human. Vaccines and antiviral drugs are used to prevent and treat the infection of EVs and CoVs, but the effectiveness is affected due to rapidly changing RNA viruses. Many plant extracts have been proven to have antiviral properties despite the continuous mutations of viruses. Napier grass (Pennisetum purpureum) has high phenolic content and has been used as healthy food materials, livestock feed, biofuels, and more. This study tested the antiviral properties of P. purpureum extract against FCoV, PEDV, IBV, and EV71 by in vitro cytotoxicity assay, TCID50 virus infection assay, and chicken embryo infection assay. The findings showed that P. purpureum extract has the potential of being disinfectant to limit the spread of CoVs and EVs because the extract can inhibit the infection of EV71, FCoV, and PEDV in cells, and significantly reduce the severity of symptoms caused by IBV in chicken embryos.
Collapse
|
7
|
da Silva APG, Sganzerla WG, Jacomino AP, da Silva EP, Xiao J, Simal-Gandara J. Chemical composition, bioactive compounds, and perspectives for the industrial formulation of health products from uvaia (Eugenia pyriformis Cambess – Myrtaceae): A comprehensive review. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Kreiser T, Zaguri D, Sachdeva S, Zamostiano R, Mograbi J, Segal D, Bacharach E, Gazit E. Inhibition of Respiratory RNA Viruses by a Composition of Ionophoric Polyphenols with Metal Ions. Pharmaceuticals (Basel) 2022; 15:ph15030377. [PMID: 35337174 PMCID: PMC8955458 DOI: 10.3390/ph15030377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/23/2022] Open
Abstract
Controlling the infectivity of respiratory RNA viruses is critical, especially during the current SARS-CoV-2 pandemic. There is an unmet need for therapeutic agents that can reduce viral replication, preferably independent of the accumulation of viral mutations. Zinc ions have an apparent activity as modulators of intracellular viral RNA replication and thus, appear attractive in reducing viral RNA load and infectivity. However, the intracellular concentration of zinc is usually too low for achieving an optimal inhibitory effect. Various herbal polyphenols serve as excellent zinc ionophores with known antiviral properties. Here, we combined zinc picolinate with a collection of flavonoids, representing commonly used polyphenols. Copper was added to avoid ionic imbalance during treatment and to improve efficacy. Each component separately, as well as their combinations, did not interfere with the viability of cultured A549, H1299, or Vero cells in vitro as determined by MTT assay. The safe combinations were further evaluated to determine antiviral activity. Fluorescence-activated cell sorting and quantitative polymerase chain reaction were used to evaluate antiviral activity of the combinations. They revealed a remarkable (50–95%) decrease, in genome replication levels of a diverse group of respiratory RNA viruses, including the human coronavirus OC43 (HCoV-OC43; a betacoronavirus that causes the common cold), influenza A virus (IAV, strain A/Puerto Rico/8/34 H1N1), and human metapneumovirus (hMPV). Collectively, our results offer an orally bioavailable therapeutic approach that is non-toxic, naturally sourced, applicable to numerous RNA viruses, and potentially insensitive to new mutations and variants.
Collapse
Affiliation(s)
- Topaz Kreiser
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
| | - Dor Zaguri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
| | - Shreya Sachdeva
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
| | - Rachel Zamostiano
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
| | | | - Daniel Segal
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
- Sagol Interdisciplinary School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Bacharach
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
- Correspondence: (E.B.); (E.G.)
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (E.B.); (E.G.)
| |
Collapse
|
9
|
Abstract
COVID-19, the infectious disease caused by the beta-corona virus SARS-CoV2, has posed a global health threat causing more than five million of deaths in the last two years in the world. Although the disease often presents with mild cold-like symptoms, it may have lethal consequences following thromboembolisms, hyperinflammation and cytokine storm eventually leading to pulmonary fibrosis and multiple organ failure. Despite the progress made in the understanding of the SARS-CoV2 pathology and the clinical management of COVID-19, the viral illness is still a health concern since outbreaks continue to resurge due to the emergence of mutant variants of the virus that resist the vaccines. Therefore, there is an urgent need for therapeutics that can block SARS-CoV2 viral transmission and the progression from infection to severe symptomatic illness. Natural products could be a valuable source of drugs for the management of COVID-19 disease, particularly because they can act on multitargets and through different mechanisms including inhibition of biochemical pathways, epigenetic regulation of gene expression, modulation of immune response, regulation of pathophysiological stress response. Here we present an overview of the natural products that possess SARS-CoV2 antiviral activity and the potential to benefit the management of COVID-19.
Collapse
Affiliation(s)
- Ciro Isidoro
- Corresponding author. Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
10
|
Promising Effects of 3-Month Period of Quercetin Phytosome ® Supplementation in the Prevention of Symptomatic COVID-19 Disease in Healthcare Workers: A Pilot Study. Life (Basel) 2022; 12:life12010066. [PMID: 35054459 PMCID: PMC8780248 DOI: 10.3390/life12010066] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022] Open
Abstract
Quercetin, for its crucial properties, fulfills the need for a multifactor action that is useful for the potential counterbalance of a COVID-19 infection. Given this background, the aim of the study was to evaluate the potential effect of 3 months’ supplementation with Quercetin Phytosome® (250 mg twice a day) as prevention against symptomatic COVID-19. In total, 120 subjects were enrolled (males, 63; females, 57; age 49 ± 12), with 60 in the supplementation group and 60 in the placebo group. No significant differences were detected between groups in terms of gender, smoking, and chronic disease. Subjects underwent rapid COVID-19 diagnostic tests every 3 weeks. During our study, 5 subjects had COVID-19, 1 out of 60 subjects in the quercetin group and 4 out of 60 in the control group. Complete clinical remission was recorded at 7 and 15 days in the quercetin and placebo groups, respectively. Analysis showed that, at 5 months, the COVID free survival function (risk of infection) was 99.8% in subjects under quercetin supplementation and 96.5% in control group. As shown by the value of EXP(B), those who had taken the supplement had a protection factor of 14% more to not contract the COVID-19 infection than that of those who had taken a placebo. Obtained results are encouraging, but further studies are required to add quercetin as regular prophylaxis.
Collapse
|
11
|
Singla RK, He X, Chopra H, Tsagkaris C, Shen L, Kamal MA, Shen B. Natural Products for the Prevention and Control of the COVID-19 Pandemic: Sustainable Bioresources. Front Pharmacol 2021; 12:758159. [PMID: 34925017 PMCID: PMC8671886 DOI: 10.3389/fphar.2021.758159] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: The world has been unprecedentedly hit by a global pandemic which broke the record of deadly pandemics that faced humanity ever since its existence. Even kids are well-versed in the terminologies and basics of the SARS-CoV-2 virus and COVID-19 now. The vaccination program has been successfully launched in various countries, given that the huge global population of concern is still far behind to be vaccinated. Furthermore, the scarcity of any potential drug against the COVID-19-causing virus forces scientists and clinicians to search for alternative and complementary medicines on a war-footing basis. Aims and Objectives: The present review aims to cover and analyze the etiology and epidemiology of COVID-19, the role of intestinal microbiota and pro-inflammatory markers, and most importantly, the natural products to combat this deadly SARS-CoV-2 virus. Methods: A primary literature search was conducted through PubMed and Google Scholar using relevant keywords. Natural products were searched from January 2020 to November 2020. No timeline limit has been imposed on the search for the biological sources of those phytochemicals. Interactive mapping has been done to analyze the multi-modal and multi-target sources. Results and Discussion: The intestinal microbiota and the pro-inflammatory markers that can serve the prognosis, diagnosis, and treatment of COVID-19 were discussed. The literature search resulted in yielding 70 phytochemicals and ten polyherbal formulations which were scientifically analyzed against the SARS-CoV-2 virus and its targets and found significant. Retrospective analyses led to provide information about 165 biological sources that can also be screened if not done earlier. Conclusion: The interactive analysis mapping of biological sources with phytochemicals and targets as well as that of phytochemical class with phytochemicals and COVID-19 targets yielded insights into the multitarget and multimodal evidence-based complementary medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | | | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Aguiar JPL, da Silva EP, da Silva APG, Sganzerla WG, Xiao J, Souza FDCDA. Influence of freeze-drying treatment on the chemical composition of peppers (Capsicum L.) from the Brazilian Amazonia region. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|