1
|
Ansari E, Alvandi H, Kianirad S, Hatamian-Zarmi A, Mokhtari-Hosseini ZB. Research progress on production and biomedical applications of Schizophyllan as a tailor-made polysaccharide: A review. Carbohydr Polym 2025; 348:122770. [PMID: 39562055 DOI: 10.1016/j.carbpol.2024.122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 11/21/2024]
Abstract
Schizophyllan (SPG) is a polysaccharide of Schizophyllum commune with a β-(1 → 3)-glucan backbone structure, which has been discussed in recent years for its extensive biomedical applications. Among the biological properties of this polysaccharide are anti-cancer, antioxidant, anti-inflammatory and strengthening of the immune system. Its unique triple helix structure offers various advantages as a carrier for genes or other biomolecules. The side chains of SPG can be effectively modified to change its neutral state and produce aldehyde or carboxylate groups. This review provides a detailed evaluation of the methods of production, extraction, structure and applications of schizophyllan. First, the methods of production in solid and submerged culture of this polysaccharide and its extraction with different solvents will be investigated. Then the structure of this polysaccharide, its unique structural features, including triple helix conformation, complex formation gelation behavior will be investigated. Various modifications of this polysaccharide will be described and finally, the biomedical applications of this polysaccharide will be discussed as a therapeutic agent, the use of which can be a new path in treatment and a solution to existing challenges.
Collapse
Affiliation(s)
- Elham Ansari
- School of Bioengineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Hale Alvandi
- School of Bioengineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Soheil Kianirad
- School of Bioengineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- School of Bioengineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
| | | |
Collapse
|
2
|
Tian J, Zhang Z, Shang Y, Yang T, Zhou R. Isolation, structures, bioactivities, and applications of the polysaccharides from Boletus spp.: A review. Int J Biol Macromol 2025; 285:137622. [PMID: 39551313 DOI: 10.1016/j.ijbiomac.2024.137622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Boletus spp., the edible mushrooms distributed in Europe, Asia, and North America, have been widely used as food and medicinal ingredients worldwide. Bioactive polysaccharides are highly abundant in Boletus spp., as demonstrated by modern phytochemical studies. The isolation, chemical properties, and bioactivities of polysaccharides from Boletus spp. have long been attracted by academics worldwide. However, there is still a lack of systematic tracking of research progress on Boletus polysaccharides (BPs), which is essential for researchers to understand their potential and gain a deeper insight into their functional mechanisms. In this review, we summarized the recent development of BPs, including the extraction and purification methods, physiochemical and structural features, bioactivities and functional mechanisms, the structure-activity relationship, and the potential applications. This review aims to provide researchers with a comprehensive understanding of the current progress and potential of BPs to assist their further investigations.
Collapse
Affiliation(s)
- Jinfeng Tian
- College of Basic Medicine, Panzhihua University, Panzhihua 617000, PR China
| | - Zhe Zhang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Yuanhong Shang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China.
| | - Tao Yang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Ruifeng Zhou
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| |
Collapse
|
3
|
Sharma E, Bairwa R, Lal P, Pattanayak S, Chakrapani K, Poorvasandhya R, Kumar A, Altaf MA, Tiwari RK, Lal MK, Kumar R. Edible mushrooms trending in food: Nutrigenomics, bibliometric, from bench to valuable applications. Heliyon 2024; 10:e36963. [PMID: 39281488 PMCID: PMC11399639 DOI: 10.1016/j.heliyon.2024.e36963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
The worldwide consumption, health-promoting and nutritional properties of mushrooms have been extensively researched over a decade. Although, wide range of edible mushrooms is still unexplored, which can be a valuable source of bioactive compounds in dietary supplements and biopharma industry. Mushrooms represent as dynamic source of nutrients lacking in food from plant or animal origin thus, considered as vital functional food utilized for prevention of numerous diseases. The unique bioactive compounds in mushroom and their anti-inflammatory, anti-tumour and other health attributes have been discussed. The preventive action of mushroom on maintaining the gut health and their property to act as pro, pre or symbiotic is also elucidated. The direct prebiotic activity of mushroom affects gut haemostasis and enhances the gut microbiota. Recent reports on role in improving the brain health and neurological impact by mushroom are mentioned. The role of bioactive components in mushroom with relation to nutrigenomics have been explored. The nutrigenomics has become a crucial tool to assess individuals' diet according its genetic make-up and thus, cure of several diseases. Undeniably, mushroom in present time is regarded as next-generation wonder food, playing crucial role in sustaining health, thus, an active ingredient of food and nutraceutical industries.
Collapse
Affiliation(s)
- Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rakesh Bairwa
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Priyanka Lal
- Department of Agricultural Economics and Extension, School of Agriculture, Lovely Professional University, Jalandhar GT Road (NH1), Phagwara, India
| | | | - Kota Chakrapani
- Department of Plant Pathology, College of Agriculture, Central Agricultural University, Imphal, India
| | - Rajendra Poorvasandhya
- Department of Plant Pathology, Bidhan Chandra Krishi Vishwavidyalaya, Mohanpur, Nadia District, West Bengal, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, India
- Division of Crop Protection, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226002, India
| | - Milan Kumar Lal
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
- ICAR-Central Potato Research Institute, Shimla, 171001, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, 171001, India
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
4
|
Wang M, Pan J, Xiang W, You Z, Zhang Y, Wang J, Zhang A. β-glucan: a potent adjuvant in immunotherapy for digestive tract tumors. Front Immunol 2024; 15:1424261. [PMID: 39100668 PMCID: PMC11294916 DOI: 10.3389/fimmu.2024.1424261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
The immunotherapy for gastrointestinal tumors, as a significant research direction in the field of oncology treatment in recent years, has garnered extensive attention due to its potential therapeutic efficacy and promising clinical application prospects. Recent advances in immunotherapy notwithstanding, challenges persist, such as side effects, the complexity of the tumor immune microenvironment, variable patient responses, and drug resistance. Consequently, there is a pressing need to explore novel adjunctive therapeutic modalities. β-glucan, an immunomodulatory agent, has exhibited promising anti-tumor efficacy in preclinical studies involving colorectal cancer, pancreatic cancer, and gastric cancer, while also mitigating the adverse reactions associated with chemotherapy and enhancing patients' quality of life. However, further clinical and fundamental research is warranted to comprehensively evaluate its therapeutic potential and underlying biological mechanisms. In the future, β-glucan holds promise as an adjunctive treatment for gastrointestinal tumors, potentially bringing significant benefits to patients.
Collapse
Affiliation(s)
- Meiyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jinhua Pan
- Department of Ophthalmology, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Wu Xiang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zilong You
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yue Zhang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Srivastava M, Kumari M, Karn SK, Bhambri A, Mahale VG, Mahale S. Submerged cultivation and phytochemical analysis of medicinal mushrooms ( Trametes sp.). FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1414349. [PMID: 38919599 PMCID: PMC11196847 DOI: 10.3389/ffunb.2024.1414349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Mushrooms are widely available around the world and have various nutritional as well as therapeutic values. Many Asian cultures believe that medicinal mushrooms can prolong life and improve vitality. This study aims to characterize the phytochemical and polysaccharide content, mainly β-glucan content, of mycelial biomass and fruiting bodies collected from the Himalayan region, particularly Uttarakhand. Through molecular analysis of the LSU F/R-rDNA fragment sequence and phylogenetic analysis, the strain was identified as Trametes sp. We performed screening of phytochemicals and polysaccharides in mushroom and biomass extracts using high-performance liquid chromatography (HPLC) and a PC-based UV-Vis spectrophotometer. The macrofungal biomass was found to be high in saponin, anthraquinone, total phenolic, flavonoid, and β-glucan content. In biomass extract, we observed a high level of saponin (70.6µg/mL), anthraquinone (14.5µg/mL), total phenolic (12.45 µg/mL), and flavonoid (9.500 µg/mL) content. Furthermore, we examined the contents of alkaloids, tannins, terpenoids, and sterols in the biomass and mushroom extracts; the concentration of these compounds in the ethanol extract tested was minimal. We also looked for antioxidant activity, which is determined in terms of the IC50 value. Trametes sp. mushroom extract exhibits higher DPPH radical scavenging activity (62.9% at 0.5 mg/mL) than biomass extract (59.19% at 0.5 mg/mL). We also analyzed β-glucan in Trametes sp. from both mushroom and biomass extracts. The biomass extract showed a higher β-glucan content of 1.713 mg/mL than the mushroom extract, which is 1.671 mg/mL. Furthermore, β-glucan analysis was confirmed by the Megazyme β-glucan assay kit from both biomass and mushroom extract of Trametes sp. β-glucans have a promising future in cancer treatment as adjuncts to conventional medicines. Producing pure β-glucans for the market is challenging because 90-95% of β glucan sold nowadays is thought to be manipulated or counterfeit. The present study supports the recommendation of Trametes sp. as rich in β-glucan, protein, phytochemicals, and antioxidant activities that help individuals with cancer, diabetes, obesity, etc.
Collapse
Affiliation(s)
| | - Moni Kumari
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| | - Santosh Kumar Karn
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| | - Anne Bhambri
- Department of Biotechnology, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | | | | |
Collapse
|
6
|
Barcan AS, Barcan RA, Vamanu E. Therapeutic Potential of Fungal Polysaccharides in Gut Microbiota Regulation: Implications for Diabetes, Neurodegeneration, and Oncology. J Fungi (Basel) 2024; 10:394. [PMID: 38921380 PMCID: PMC11204944 DOI: 10.3390/jof10060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
This review evaluates the therapeutic effects of polysaccharides derived from mushroom species that have medicinal and edible properties. The fungal polysaccharides were recently studied, focusing on their modulation of the gut microbiota and their impact on various diseases. The study covers both clinical and preclinical studies, detailing the results and highlighting the significant influence of these polysaccharides on gut microbiota modulation. It discusses the potential health benefits derived from incorporating these polysaccharides into the diet for managing chronic diseases such as diabetes, neurodegenerative disorders, and cancer. Furthermore, the review emphasizes the interaction between fungal polysaccharides and the gut microbiota, underscoring their role in modulating the gut microbial community. It presents a systematic analysis of the findings, demonstrating the substantial impact of fungal polysaccharides on gut microbiota composition and function, which may contribute to their therapeutic effects in various chronic conditions. We conclude that the modulation of the gut microbiota by these polysaccharides may play a crucial role in mediating their therapeutic effects, offering a promising avenue for further research and potential applications in disease prevention and treatment.
Collapse
Affiliation(s)
- Alexandru Stefan Barcan
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | | | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| |
Collapse
|
7
|
Zavadinack M, Cantu-Jungles TM, Abreu H, Ozturk OK, Cordeiro LMC, de Freitas RA, Hamaker BR, Iacomini M. (1 → 3),(1 → 6) and (1 → 3)-β-D-glucan physico-chemical features drive their fermentation profile by the human gut microbiota. Carbohydr Polym 2024; 327:121678. [PMID: 38171663 DOI: 10.1016/j.carbpol.2023.121678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Mushroom polysaccharides consist of a unique set of polymers that arrive intact in the human large intestine becoming available for fermentation by resident gut bacteria with potential benefits to the host. Here we have obtained four glucans from two mushrooms (Pholiota nameko and Pleurotus pulmonarius) under different extraction conditions and their fermentation profile by human gut bacteria in vitro was evaluated. These glucans were isolated and characterized as (1 → 3),(1 → 6)-β-D-glucans varying in branching pattern and water-solubility. An aliquot of each (1 → 3),(1 → 6)-β-D-glucan was subjected to controlled smith degradation process in order to obtain a linear (1 → 3)-β-D-glucan from each fraction. The four β-D-glucans demonstrated different water solubilities and molar mass ranging from 2.2 × 105 g.mol-1 to 1.9 × 106 g.mol-1. In vitro fermentation of the glucans by human gut microbiota showed they induced different short chain fatty acid production (52.0-97.0 mM/50 mg carbohydrates), but an overall consistent high propionate amount (28.5-30.3 % of total short chain fatty acids produced). All glucans promoted Bacteroides uniformis, whereas Anaerostipes sp. and Bacteroides ovatus promotion was strongly driven by the β-D-glucans solubility and/or branching pattern, highlighting the importance of β-D-glucan discrete structures to their fermentation by the human gut microbiota.
Collapse
Affiliation(s)
- Matheus Zavadinack
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil
| | - Thaisa M Cantu-Jungles
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Hellen Abreu
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil
| | - Oguz K Ozturk
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil
| | - Rilton A de Freitas
- Department of Pharmacy Federal University of Paraná, Curitiba, PR CEP 80210-170, Brazil
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil.
| |
Collapse
|
8
|
Xu C, Wang F, Guan S, Wang L. β-Glucans obtained from fungus for wound healing: A review. Carbohydr Polym 2024; 327:121662. [PMID: 38171680 DOI: 10.1016/j.carbpol.2023.121662] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The cell surface of fungus contains a large number of β-glucans, which exhibit various biological activities such as immunomodulatory, anti-inflammatory, and antioxidation. Fungal β-glucans with highly branched structure show great potential as wound healing reagents, because they can stimulate the expression of many immune- and inflammatory-related factors beneficial to wound healing. Recently, the wound healing ability of many fungal β-glucans have been investigated in animals and clinical trials. Studies have proved that fungal β-glucans can promote fibroblasts proliferation, collagen deposition, angiogenesis, and macrophage infiltration during the wound healing process. However, the development of fungal β-glucans as wound healing reagents is not systematically reviewed till now. This review discusses the wound healing studies of β-glucans obtained from different fungal species. The structure characteristics, extraction methods, and biological functions of fungal β-glucans with wound healing ability are summarized. Researches about fungal β-glucan-containing biomaterials and structurally modified β-glucans for wound healing are also involved.
Collapse
Affiliation(s)
- Chunhua Xu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China
| | - Fengxia Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China
| | - Shibing Guan
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China.
| |
Collapse
|
9
|
Holt RR, Munafo JP, Salmen J, Keen CL, Mistry BS, Whiteley JM, Schmitz HH. Mycelium: A Nutrient-Dense Food To Help Address World Hunger, Promote Health, and Support a Regenerative Food System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2697-2707. [PMID: 38054424 PMCID: PMC10853969 DOI: 10.1021/acs.jafc.3c03307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
There is a need for transformational innovation within the existing food system to achieve United Nations Sustainable Development Goal 2 of ending hunger within a sustainable agricultural system by 2030. Mycelium, the vegetative growth form of filamentous fungi, may represent a convergence of several features crucial for the development of food products that are nutritious, desirable, scalable, affordable, and environmentally sustainable. Mycelium has gained interest as technology advances demonstrate its ability to provide scalable biomass for food production delivering good flavor and quality protein, fiber, and essential micronutrients urgently needed to improve public health. We review the potential of mycelium as an environmentally sustainable food to address malnutrition and undernutrition, driven by food insecurity and caloric dense diets with less than optimal macro- and micronutrient density.
Collapse
Affiliation(s)
- Roberta R. Holt
- Department
of Nutrition, University of California,
Davis, Davis, California 95616, United States
| | - John P. Munafo
- Department
of Food Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Julie Salmen
- Nutritious
Ideas, LLC, Saint John, Indiana 46373, United States
| | - Carl L. Keen
- Department
of Nutrition, University of California,
Davis, Davis, California 95616, United States
| | - Behroze S. Mistry
- Meati
Foods, 6880 Winchester
Cir Unit D, Boulder, Colorado 80301, United States
| | - Justin M. Whiteley
- Meati
Foods, 6880 Winchester
Cir Unit D, Boulder, Colorado 80301, United States
| | - Harold H. Schmitz
- March
Capital US, LLC, Davis, California 95616, United States
- T.O.P.,
LLC, Davis, California 95616, United States
- Graduate
School of Management, University of California,
Davis, Davis, California 95616, United States
| |
Collapse
|
10
|
Tejedor-Calvo E, Morales D, Morillo L, Vega L, Caro M, Smiderle FR, Iacomini M, Marco P, Soler-Rivas C. Pressurized Liquid (PLE) Truffle Extracts Have Inhibitory Activity on Key Enzymes Related to Type 2 Diabetes (α-Glucosidase and α-Amylase). Foods 2023; 12:2724. [PMID: 37509816 PMCID: PMC10379309 DOI: 10.3390/foods12142724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
An optimized PLE method was applied to several truffle species using three different solvent mixtures to obtain bioactive enriched fractions. The pressurized water extracts contained mainly (1 → 3),(1 → 6)-β-D-glucans, chitins, and heteropolymers with galactose and mannose in their structures. The ethanol extracts included fatty acids and fungal sterols and others such as brassicasterol and stigmasterol, depending on the species. They also showed a different fatty acid lipid profile depending on the solvent utilized and species considered. Ethanol:water extracts showed interesting lipids and many phenolic compounds; however, no synergic extraction of compounds was noticed. Some of the truffle extracts were able to inhibit enzymes related to type 2 diabetes; pressurized water extracts mainly inhibited the α-amylase enzyme, while ethanolic extracts were more able to inhibit α-glucosidase. Tuber brumale var. moschatum and T. aestivum var. uncinatum extracts showed an IC50 of 29.22 mg/mL towards α-amylase and 7.93 mg/mL towards α-glucosidase. Thus, use of the PLE method allows o bioactive enriched fractions to be obtained from truffles with antidiabetic properties.
Collapse
Affiliation(s)
- Eva Tejedor-Calvo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Forest Resources, Agrifood Research and Technology Centre of Aragon (CITA), Agrifood Institute of Aragón-IA2 (CITA-Zaragoza University), Av. Montañana 930, 50059 Zaragoza, Spain
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain
| | - Diego Morales
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Morillo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Vega
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mercedes Caro
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain
| | - Fhernanda Ribeiro Smiderle
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80240-020, PR, Brazil
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba 81531-980, PR, Brazil
| | - Pedro Marco
- Department of Forest Resources, Agrifood Research and Technology Centre of Aragon (CITA), Agrifood Institute of Aragón-IA2 (CITA-Zaragoza University), Av. Montañana 930, 50059 Zaragoza, Spain
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
11
|
Yang F, Cheung PCK. Fungal β-Glucan-Based Nanotherapeutics: From Fabrication to Application. J Fungi (Basel) 2023; 9:jof9040475. [PMID: 37108930 PMCID: PMC10143420 DOI: 10.3390/jof9040475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal β-glucans are naturally occurring active macromolecules used in food and medicine due to their wide range of biological activities and positive health benefits. Significant research efforts have been devoted over the past decade to producing fungal β-glucan-based nanomaterials and promoting their uses in numerous fields, including biomedicine. Herein, this review offers an up-to-date report on the synthetic strategies of common fungal β-glucan-based nanomaterials and preparation methods such as nanoprecipitation and emulsification. In addition, we highlight current examples of fungal β-glucan-based theranostic nanosystems and their prospective use for drug delivery and treatment in anti-cancer, vaccination, as well as anti-inflammatory treatments. It is anticipated that future advances in polysaccharide chemistry and nanotechnology will aid in the clinical translation of fungal β-glucan-based nanomaterials for the delivery of drugs and the treatment of illnesses.
Collapse
Affiliation(s)
- Fan Yang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
12
|
Sushytskyi L, Synytsya A, Čopíková J, Lukáč P, Rajsiglová L, Tenti P, Vannucci LE. Perspectives in the Application of High, Medium, and Low Molecular Weight Oat β-d-Glucans in Dietary Nutrition and Food Technology-A Short Overview. Foods 2023; 12:foods12061121. [PMID: 36981048 PMCID: PMC10048208 DOI: 10.3390/foods12061121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
For centuries human civilization has cultivated oats, and now they are consumed in various forms of food, from instant breakfasts to beverages. They are a nutrient-rich food containing linear mixed-linkage (1 → 3) (1 → 4)-β-d-glucans, which are relatively well soluble in water and responsible for various biological effects: the regulation of the blood cholesterol level, as well as being anti-inflammatory, prebiotic, antioxidant, and tumor-preventing. Numerous studies, especially in the last two decades, highlight the differences in the biological properties of the oat β-d-glucan fractions of low, medium, and high molecular weight. These fractions differ in their features due to variations in bioavailability related to the rheological properties of these polysaccharides, and their association with food matrices, purity, and mode of preparation or modification. There is strong evidence that, under different conditions, the molecular weight may determine the potency of oat-extracted β-d-glucans. In this review, we intend to give a concise overview of the properties and studies of the biological activities of oat β-d-glucan preparations depending on their molecular weight and how they represent a prospective ingredient of functional food with the potential to prevent or modulate various pathological conditions.
Collapse
Affiliation(s)
- Leonid Sushytskyi
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Pavol Lukáč
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Lenka Rajsiglová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Paolo Tenti
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Luca E Vannucci
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
13
|
Physicochemical Characteristics and Storage Stability of Hybrid Beef Patty Using Shiitake Mushroom (Lentinus edodes). J FOOD QUALITY 2023. [DOI: 10.1155/2023/7239709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
This study evaluated the physicochemical characteristics and storage stability (at 0, 3, and 7 days) of hybrid beef patties with different amount of shiitake mushrooms (Lentinus edodes) added. Shiitake mushrooms contain healthy ingredients such as ergosterol and β-glucan. Four proportions of shiitake mushrooms were added to beef patties (T1, 20%, T2, 40%, T3, 60%, T4, 80%) as a substitute for beef and compared with a control group (CON 0%). Chemical composition, water holding capacity (WHC), cooking loss, pH, color, texture profile analysis, and sensory properties of the products were compared on day 0. As a storage stability experiment, volatile basic nitrogen (VBN), 2-thiobarbituric acid reactive substances (TBARS), and total microbial count were compared (0, 3, and 7 days). The results revealed that replacement with shiitake improved the WHC and cooking loss of patties but had a negative effect on sensory properties and storage stability. These results indicate that shiitake mushrooms can be added along with beef to produce hybrid patties; however, the usage amount must be considered.
Collapse
|
14
|
Pachekrepapol U, Thangrattana M, Kitikangsadan A. Impact of oyster mushroom (Pleurotus ostreatus) on chemical, physical, microbiological and sensory characteristics of fish burger prepared from salmon and striped catfish filleting by-product. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Angelova G, Brazkova M, Mihaylova D, Slavov A, Petkova N, Blazheva D, Deseva I, Gotova I, Dimitrov Z, Krastanov A. Bioactivity of Biomass and Crude Exopolysaccharides Obtained by Controlled Submerged Cultivation of Medicinal Mushroom Trametes versicolor. J Fungi (Basel) 2022; 8:738. [PMID: 35887493 PMCID: PMC9319109 DOI: 10.3390/jof8070738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this study is to characterize the bioactivity of mycelial biomass and crude exopolysaccharides (EPS) produced by Trametes versicolor NBIMCC 8939 and to reveal its nutraceutical potential. The EPS (1.58 g/L) were isolated from a culture broth. The macrofungal biomass was rich in protein, insoluble dietary fibers and glucans. The amino acid composition of the biomass was analyzed and 18 amino acids were detected. Three mycelial biomass extracts were prepared and the highest total polyphenol content (16.11 ± 0.14 mg GAE/g DW) and the total flavonoid content (5.15 ± 0.03 mg QE/g DW) were found in the water extract. The results indicated that the obtained EPS were heteropolysaccharides with glucose as the main building monosaccharide and minor amounts of mannose, xylose, galactose, fucose and glucuronic acid. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the complex structure of the crude EPS. Five probiotic lactic acid bacteria strains were used for the determination of the prebiotic effect of the crude EPS. The anti-inflammatory potential was tested in vitro using cell line HT-29. The significant decrease of IL-1 and IL-8 and increase of TGF-beta expression revealed anti-inflammatory potential of the crude exopolysaccharides from T. versicolor.
Collapse
Affiliation(s)
- Galena Angelova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Mariya Brazkova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Anton Slavov
- Department of Organic and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (A.S.); (N.P.)
| | - Nadejda Petkova
- Department of Organic and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (A.S.); (N.P.)
| | - Denica Blazheva
- Department of Microbiology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Ivelina Deseva
- Department of Analytical Chemistry and Physicochemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Irina Gotova
- LB-Bulgaricum PLC, R&D Center, 1000 Sofia, Bulgaria; (I.G.); (Z.D.)
| | - Zhechko Dimitrov
- LB-Bulgaricum PLC, R&D Center, 1000 Sofia, Bulgaria; (I.G.); (Z.D.)
| | - Albert Krastanov
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| |
Collapse
|
16
|
Effects of β-glucan extracted from Saccharomyces cerevisiae on the quality of bio-yoghurts: in vitro and in vivo evaluation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Ozaki Y, Aimi T, Shimomura N. Detection of Autophagy-Related Structures in Fruiting Bodies of Edible Mushroom, Pleurotus ostreatus. Microscopy (Oxf) 2022; 71:222-230. [PMID: 35445724 DOI: 10.1093/jmicro/dfac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/12/2022] Open
Abstract
Autophagy is involved in various fungal morphogenetic processes. However, there are limited reports regarding the role of autophagy in mushroom fruiting body formation. The purpose of this study was to reveal the autophagy-related structures in mushroom-forming fungi. The edible mushroom Pleurotus ostreatus was used in this study. Transmission electron microscopy revealed double-membrane bounded structures containing cytoplasmic components in the fruiting bodies of this fungus. Some of these double-membrane structures were observed to interact with the vacuoles. Additionally, curved flat cisternae of various lengths were detected in the cytoplasm. The shape, size, and thickness of the limiting membrane of the double-membrane structures and the flat cisternae corresponded well with those of the autophagosomes and the isolation membranes, respectively. Regarding autophagosome formation, a membrane-bound specific zone was detected near the isolation membrane, which appeared to expand along the novel membrane. This is the first detailed report showing autophagy-related structures in P. ostreatus and provides a possible model for autophagosome formation in these filamentous fungi. Mini-abstract Autophagy is involved in fungal morphogenetic processes. The fruiting bodies of edible mushroom Pleurotus ostreatus was observed under a TEM. The present study showed autophagy-related structures in this fungus and provides a possible model for autophagosome formation in filamentous fungi.
Collapse
Affiliation(s)
- Yuma Ozaki
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8553, Japan
| | - Tadanori Aimi
- Faculty of Agriculture, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8553, Japan
| | - Norihiro Shimomura
- Faculty of Agriculture, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8553, Japan
| |
Collapse
|
18
|
Kumar H, Bhardwaj K, Kuča K, Sahrifi‐Rad J, Verma R, Machado M, Kumar D, Cruz‐Martins N. Edible mushrooms enrichment in food and feed: A mini review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Harsh Kumar
- School of Bioengineering & Food Technology Shoolini University of Biotechnology and Management Sciences Solan 173229 India
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences Shoolini University of Biotechnology and Management Sciences Solan 173229 India
| | - Kamil Kuča
- Department of Chemistry Faculty of Science University of Hradec Kralove 50003 Hradec Kralove Czech Republic
- Biomedical Research Center University Hospital in Hradec Kralove Sokolska 581 50005 Hradec Kralove Czech Republic
| | - Javad Sahrifi‐Rad
- Phytochemistry Research Center Shahid Beheshti University of Medical Sciences Tehran 11369 Iran
| | - Rachna Verma
- School of Biological and Environmental Sciences Shoolini University of Biotechnology and Management Sciences Solan 173229 India
| | - Marisa Machado
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU) Rua Central de Gandra 1317 4585‐116 Gandra PRD Portugal
- TOXRUN ‐ Toxicology Research Unit University Institute of Health Sciences CESPU CRL 4585‐116 Gandra Portugal
| | - Dinesh Kumar
- School of Bioengineering & Food Technology Shoolini University of Biotechnology and Management Sciences Solan 173229 India
| | - Natália Cruz‐Martins
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU) Rua Central de Gandra 1317 4585‐116 Gandra PRD Portugal
- TOXRUN ‐ Toxicology Research Unit University Institute of Health Sciences CESPU CRL 4585‐116 Gandra Portugal
- Faculty of Medicine University of Porto 4200‐319 Porto Portugal
- Institute for Research and Innovation in Health (i3S) University of Porto 4200‐135 Porto Portugal
| |
Collapse
|
19
|
Velamakanni RP, Sree BS, Vuppugalla P, Velamakanni RS, Merugu R. Biopolymers from Microbial Flora. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Tomas M, Capanoglu E, Bahrami A, Hosseini H, Akbari‐Alavijeh S, Shaddel R, Rehman A, Rezaei A, Rashidinejad A, Garavand F, Goudarzi M, Jafari SM. The direct and indirect effects of bioactive compounds against coronavirus. FOOD FRONTIERS 2021; 3:96-123. [PMID: 35462942 PMCID: PMC9015578 DOI: 10.1002/fft2.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging viruses are known to pose a threat to humans in the world. COVID‐19, a newly emerging viral respiratory disease, can spread quickly from people to people via respiratory droplets, cough, sneeze, or exhale. Up to now, there are no specific therapies found for the treatment of COVID‐19. In this sense, the rising demand for effective antiviral drugs is stressed. The main goal of the present study is to cover the current literature about bioactive compounds (e.g., polyphenols, glucosinolates, carotenoids, minerals, vitamins, oligosaccharides, bioactive peptides, essential oils, and probiotics) with potential efficiency against COVID‐19, showing antiviral activities via the inhibition of coronavirus entry into the host cell, coronavirus enzymes, as well as the virus replication in human cells. In turn, these compounds can boost the immune system, helping fight against COVID‐19. Overall, it can be concluded that bioactives and the functional foods containing these compounds can be natural alternatives for boosting the immune system and defeating coronavirus.
Collapse
Affiliation(s)
- Merve Tomas
- Department of Food Engineering Faculty of Engineering and Natural Sciences Istanbul Sabahattin Zaim University Halkali Istanbul Turkey
| | - Esra Capanoglu
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Maslak Istanbul Turkey
| | - Akbar Bahrami
- Center for Excellence in Post‐Harvest Technologies North Carolina Agricultural and Technical State University Kannapolis North Carolina USA
| | - Hamed Hosseini
- Food Additives Department Food Science and Technology Research Institute Research Center for Iranian Academic Center for Education Culture and Research (ACECR) Mashhad Iran
| | - Safoura Akbari‐Alavijeh
- Department of Food Science and Technology Faculty of Agriculture and Natural Resources University of Mohaghegh Ardabili Ardabil Iran
| | - Rezvan Shaddel
- Department of Food Science and Technology Faculty of Agriculture and Natural Resources University of Mohaghegh Ardabili Ardabil Iran
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology Jiangnan University Jiangsu Wuxi China
- Collaborative Innovation Centre of Food Safety and Quality Control Wuxi Jiangsu Province China
| | - Atefe Rezaei
- Department of Food Science and Technology School of Nutrition and Food Science Isfahan University of Medical Sciences Isfahan Iran
| | | | - Farhad Garavand
- Department of Food Chemistry and Technology Teagasc Food Research Centre, Moorepark Fermoy, Co. Cork Ireland
| | - Mostafa Goudarzi
- Department of Food Science and Engineering University College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering Gorgan University of Agricultural Science and Natural Resources Gorgan Iran
| |
Collapse
|
21
|
Recent trends in submerged cultivation of mushrooms and their application as a source of nutraceuticals and food additives. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
22
|
Mirończuk-Chodakowska I, Kujawowicz K, Witkowska AM. Beta-Glucans from Fungi: Biological and Health-Promoting Potential in the COVID-19 Pandemic Era. Nutrients 2021; 13:3960. [PMID: 34836215 PMCID: PMC8623785 DOI: 10.3390/nu13113960] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-glucans comprise a group of polysaccharides of natural origin found in bacteria, algae, and plants, e.g., cereal seeds, as well as microfungi and macrofungi (mushrooms), which are characterized by diverse structures and functions. They are known for their metabolic and immunomodulatory properties, including anticancer, antibacterial, and antiviral. Recent reports suggest a potential of beta-glucans in the prevention and treatment of COVID-19. In contrast to β-glucans from other sources, β-glucans from mushrooms are characterized by β-1,3-glucans with short β-1,6-side chains. This structure is recognized by receptors located on the surface of immune cells; thus, mushroom β-glucans have specific immunomodulatory properties and gained BRM (biological response modifier) status. Moreover, mushroom beta-glucans also owe their properties to the formation of triple helix conformation, which is one of the key factors influencing the bioactivity of mushroom beta-glucans. This review summarizes the latest findings on biological and health-promoting potential of mushroom beta-glucans for the treatment of civilization and viral diseases, with particular emphasis on COVID-19.
Collapse
Affiliation(s)
- Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.K.); (A.M.W.)
| | | | | |
Collapse
|
23
|
Yadav D, Negi PS. Bioactive components of mushrooms: Processing effects and health benefits. Food Res Int 2021; 148:110599. [PMID: 34507744 DOI: 10.1016/j.foodres.2021.110599] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Mushrooms have been recognized for their culinary attributes for long and were relished in the most influential civilizations in history. Currently, they are the focus of renewed research because of their therapeutic abilities. Nutritional benefits from mushrooms are in the form of a significant source of essential proteins, dietary non-digestible carbohydrates, unsaturated fats, minerals, as well as various vitamins, which have enhanced its consumption, and also resulted in the development of various processed mushroom products. Mushrooms are also a crucial ingredient in traditional medicine for their healing potential and curative properties. The literature on the nutritional, nutraceutical, and therapeutic potential of mushrooms, and their use as functional foods for the maintenance of health was reviewed, and the available literature indicates the enormous potential of the bioactive compounds present in mushrooms. Future research should be focused on the development of processes to retain the mushroom bioactive components, and valorization of waste generated during processing. Further, the mechanisms of action of mushroom bioactive components should be studied in detail to delineate their diverse roles and functions in the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Divya Yadav
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
24
|
Antiviral, Cytotoxic, and Antioxidant Activities of Three Edible Agaricomycetes Mushrooms: Pleurotus columbinus, Pleurotus sajor-caju, and Agaricus bisporus. J Fungi (Basel) 2021; 7:jof7080645. [PMID: 34436184 PMCID: PMC8399653 DOI: 10.3390/jof7080645] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 01/02/2023] Open
Abstract
In this study, we investigated aqueous extracts of three edible mushrooms: Agaricus bisporus (white button mushroom), Pleurotus columbinus (oyster mushroom), and Pleurotus sajor-caju (grey oyster mushroom). The extracts were biochemically characterized for total carbohydrate, phenolic, flavonoid, vitamin, and protein contents besides amino acid analysis. Triple TOF proteome analysis showed 30.1% similarity between proteomes of the two Pleurotus spp. All three extracts showed promising antiviral activities. While Pleurotus columbinus extract showed potent activity against adenovirus (Ad7, selectivity index (SI) = 4.2), Agaricus bisporus showed strong activity against herpes simplex II (HSV-2; SI = 3.7). The extracts showed low cytotoxicity against normal human peripheral blood mononuclear cells (PBMCs) and moderate cytotoxicity against prostate (PC3, DU-145); colorectal (Colo-205); cecum carcinoma (LS-513); liver carcinoma (HepG2); cervical cancer (HeLa); breast adenocarcinoma (MDA-MB-231 and MCF-7) as well as leukemia (CCRF-CEM); acute monocytic leukemia (THP1); acute promyelocytic leukemia (NB4); and lymphoma (U937) cell lines. Antioxidant activity was evaluated using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging, 2,2′-Azinobis-(3-Ethylbenzthiazolin-6-Sulfonic Acid) ABTS radical cation scavenging, and oxygen radical absorbance capacity (ORAC) assays. The three extracts showed potential antioxidant activities with the maximum activity recorded for Pleurotus columbinus (IC50 µg/mL) = 35.13 ± 3.27 for DPPH, 13.97 ± 4.91 for ABTS, and 29.42 ± 3.21 for ORAC assays.
Collapse
|
25
|
Healthy function and high valued utilization of edible fungi. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Ruthes AC, Cantu-Jungles TM, Cordeiro LMC, Iacomini M. Prebiotic potential of mushroom d-glucans: implications of physicochemical properties and structural features. Carbohydr Polym 2021; 262:117940. [PMID: 33838817 DOI: 10.1016/j.carbpol.2021.117940] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Mushroom d-glucans are recognized as dietary fibers and as biologically active natural polysaccharides, with the advantages of being quite inexpensive for production, tolerable, and having a range of possible structures and physicochemical properties. The prebiotic potential of mushroom d-glucans has been explored in recent years, but the relationship between their various structural features and activity is poorly understood. This review focuses on comprehensively evaluating the prebiotic potential of mushroom d-glucans in face of their structural variations. Overall, mushroom d-glucans provide a unique set of different structures and physicochemical properties with prebiotic potential, where linkage type and solubility degree seem to be associated with prebiotic activity outcomes. The understanding of the effects of distinct structures and physicochemical properties in mushroom d-glucans on the gut microbiota contributes to the design and selection of new prebiotics in a more predictable way.
Collapse
Affiliation(s)
- Andrea Caroline Ruthes
- Agroscope, Research Division, Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Thaísa Moro Cantu-Jungles
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, USA
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
27
|
β-Glucan: A dual regulator of apoptosis and cell proliferation. Int J Biol Macromol 2021; 182:1229-1237. [PMID: 33991557 DOI: 10.1016/j.ijbiomac.2021.05.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 01/09/2023]
Abstract
β-Glucans are polysaccharides generally obtained from the cell wall of bacteria, fungi, yeasts, and aleurone layer of cereals. β-Glucans are polymers, with β-1,3 glucose as core linear structure, but they differ in their main branch length, linkages and branching patterns, giving rise to high and low-molecular-weight β-glucans. They are well-known cell response modifiers with immune-modulating, nutraceutical and health beneficial effects, including anticancer and pro-apoptotic properties. β-Glucan extracts have shown positive responses in controlling tumor cell proliferation and activation of the immune system. The immunomodulatory action of β-glucans enhances the host's antitumor defense against cancer. In consonance with the above, many studies have shown that β-glucan treatment leads to the induction of apoptotic death of cancer cells. The ability of β-glucans to stimulate apoptotic pathways or the proteins involved in apoptosis prompting a new domain in cancer therapy. β-glucan can be a potential therapeutic agent for the treatment of cancer. However, there is a need to legitimize the β-glucan type, as most of the studies include β-glucan from different sources having different physicochemical properties. The body of literature presented here focuses on the effects of β-glucan on immunomodulation, proliferation, cell death and the possible mechanisms and pathways involved in these processes.
Collapse
|
28
|
Preparation and Characterization of Fish Skin Collagen Material Modified with β-Glucan as Potential Wound Dressing. MATERIALS 2021; 14:ma14061322. [PMID: 33801809 PMCID: PMC8000014 DOI: 10.3390/ma14061322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022]
Abstract
Collagen possesses unique properties, e.g., biocompatibility, biodegradability, and non-toxicity. However, collagen material degrades too quickly and has low mechanical properties. One of the methods of polymers' modification is mixing them to obtain blends. In this study, the influence of β-glucan for collagen material was analyzed. The interaction between the functional groups of the polymer was analyzed by ATR-FTIR (attenuated total reflection-fourier transform infrared) spectroscopy. The influence of β-glucan on mechanical properties was evaluated. The surface properties of materials were assessed using contact angle measurements and the topography of materials was evaluated by AFM (atomic force microscope). The structure of materials was analyzed according to SEM (scanning electron microscopy) pictures. Moreover, the DPPH-free radicals' scavenging ability and biocompatibility against erythrocytes and HaCaT cells were evaluated. Collagen and β-glucan were bound together by a hydrogen bond. β-glucan addition increased the roughness of the surface of the film and resulted in a more rigid character of the materials. A small addition of β-glucan to collagen provided a more hydrophilic character. All the materials could swell in in vitro conditions and showed antioxidant activity. Materials do not cause erythrocyte hemolysis. Finely, our cytotoxicity studies indicated that β-glucan can be safely added at small (10% or less) quantity to collagen matrix, they sufficiently support cell growth, and the degradation products of such matrices may actually provide some beneficial effects to the surrounding cells/tissues.
Collapse
|
29
|
Liu E, Ji Y, Zhang F, Liu B, Meng X. Review on Auricularia auricula-judae as a Functional Food: Growth, Chemical Composition, and Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1739-1750. [PMID: 33543932 DOI: 10.1021/acs.jafc.0c05934] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the application of Auricularia auricula-judae (AAJ) for health purposes has a long tradition in Asia, there is a lack of research on the functional nutrition of AAJ; the current research focused on polysaccharides has been too unitary compared to other mushrooms in recent years. Identification, extraction, and large-scale production of biologically active substances have emerged as critical determinants that determine AAJ becoming a functional food. AAJ is being treated in a restrained manner, despite having significant potential as a drug or a source of pure bioactive substances. Functional ingredients of mushrooms and AAJ have emerged as a new impetus for researchers interested in developing functional foods. This review presents an overview of current studies relevant to nutrition and the application of AAJ. The physiological conditions of AAJ and the corresponding functional ingredients beneficial to human health are reviewed to better understand the function and mechanisms of different nutrient contents. Relevant methods for evaluating the efficiency of extraction are also summarized. Finally, current limitations and the future scope for functional ingredients of AAJ are identified and discussed.
Collapse
Affiliation(s)
- Enchao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Yuan Ji
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| |
Collapse
|
30
|
Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104326] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
31
|
Ghosh S, Khatua S, Dasgupta A, Acharya K. Crude polysaccharide from the milky mushroom, Calocybe indica, modulates innate immunity of macrophage cells by triggering MyD88-dependent TLR4/NF-κB pathway. J Pharm Pharmacol 2020; 73:70-81. [PMID: 33791803 DOI: 10.1093/jpp/rgaa020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Calocybe indica is a famous nutritious food in Asian countries and one of the most widely cultivated mushrooms in the world. Here, we have isolated crude polysaccharides from this mushroom, characterized it and investigated its antioxidant and immunostimulatory potential. METHODS The polysaccharide was chemically characterized by spectrophotometry, FTIR and high-performance thin layer chromatography and tested its antioxidant potential by in vitro assays. Immunomodulatory activity and its underlying signalling process were ascertained in RAW 264.7 cells. KEY FINDINGS The polysaccharide consisted of D-glucose (β-linked sugars), D-mannose and D-galactose, where backbone was organized in random coil structure. Preliminary investigation of the bioactivity of the polysaccharide revealed its antioxidant potential. The polysaccharide could noticeably induce phagocytic activity and production of immune mediators in macrophage cells. The polysaccharide was found to enhance the expression of pro-inflammatory cytokines and activate NF-κB signalling pathway by overexpressing MyD88, Iκ-Bα and NF-κB. Further studies indicated the polysaccharide binds to the toll-like receptor 4 to manifest its immunostimulatory activity in macrophage cells. CONCLUSIONS Our findings indicate potential therapeutic properties of the crude polysaccharide of C. indica which might provide the means to treat various radical induced and immunodeficiency disorders in the days to come.
Collapse
Affiliation(s)
- Sandipta Ghosh
- Molecular and Applied Mycology and Plant Pathology Laboratory, Center of Advanced Study, Department of Botany, University of Calcutta, Kolkata, India
| | - Somanjana Khatua
- Molecular and Applied Mycology and Plant Pathology Laboratory, Center of Advanced Study, Department of Botany, University of Calcutta, Kolkata, India
| | - Adhiraj Dasgupta
- Molecular and Applied Mycology and Plant Pathology Laboratory, Center of Advanced Study, Department of Botany, University of Calcutta, Kolkata, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Center of Advanced Study, Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
32
|
López-Legarda X, Arboleda-Echavarría C, Parra-Saldívar R, Rostro-Alanis M, Alzate JF, Villa-Pulgarín JA, Segura-Sánchez F. Biotechnological production, characterization and in vitro antitumor activity of polysaccharides from a native strain of Lentinus crinitus. Int J Biol Macromol 2020; 164:3133-3144. [DOI: 10.1016/j.ijbiomac.2020.08.191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
|
33
|
Umaña M, Turchiuli C, Rosselló C, Simal S. Addition of a mushroom by-product in oil-in-water emulsions for the microencapsulation of sunflower oil by spray drying. Food Chem 2020; 343:128429. [PMID: 33127232 DOI: 10.1016/j.foodchem.2020.128429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 01/24/2023]
Abstract
The by-product generated after ergosterol extraction from mushrooms (A. bisporus) is rich in polysaccharides (β-glucans) and proteins. The usefulness of this mushroom's by-product (MC) in oil microencapsulation by spray drying was evaluated partially replacing maltodextrin (13.5% w/w dry matter) and totally substituting Tween®20 with MC. Ergosterol was investigated as antioxidant. Non-Newtonian stable emulsions with mono-modal droplet size distributions were obtained with MC. Oil encapsulation efficiency was high (≥89%) and oil within microcapsules containing MC exhibited higher (p < 0.05) oxidative stability during spray drying. Powders containing MC exhibited larger particles (d5027% larger), 12% lower solubility in water and perceptible color changes. During storage (35 °C 50% RH), conjugated dienes increased more slowly in microcapsules containing MC. Reductions up to 28% in linoleic acid were observed after 150 days. Ergosterol was 95% degraded after 150 days in powders with MC and totally degraded after 2 days in powders without MC.
Collapse
Affiliation(s)
- Mónica Umaña
- Departmentof Chemistry, University of the Balearic Islands, Ctra. Valldemossa, km. 7.5, 07122 Palma de Mallorca, Spain
| | - Christelle Turchiuli
- UniversitéParis-Saclay, INRAE, AgroParisTech, UMR SayFood, 91300 Massy, France; Université Paris-Saclay, IUT d'Orsay, 91400 Orsay, France
| | - Carmen Rosselló
- Departmentof Chemistry, University of the Balearic Islands, Ctra. Valldemossa, km. 7.5, 07122 Palma de Mallorca, Spain
| | - Susana Simal
- Departmentof Chemistry, University of the Balearic Islands, Ctra. Valldemossa, km. 7.5, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
34
|
Barbosa JR, Carvalho Junior RND. Occurrence and possible roles of polysaccharides in fungi and their influence on the development of new technologies. Carbohydr Polym 2020; 246:116613. [PMID: 32747253 PMCID: PMC7293488 DOI: 10.1016/j.carbpol.2020.116613] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/23/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
The article summarizes the roles of polysaccharides in the biology of fungi and their relationship in the development of new technologies. The comparative approach between the evolution of fungi and the chemistry of glycobiology elucidated relevant aspects about the role of polysaccharides in fungi. Also, based on the knowledge of fungal glycobiology, it was possible to address the development of new technologies, such as the production of new anti-tumor drugs, vaccines, biomaterials, and applications in the field of robotics. We conclude that polysaccharides activate pathways of apoptosis, secretion of pro-inflammatory substances, and macrophage, inducing anticancer activity. Also, the activation of the immune system, which opens the way for the production of vaccines. The development of biomaterials and parts for robotics is a promising and little-explored field. Finally, the article is multidisciplinary, with a different and integrated approach to the role of nature in the sustainable development of new technologies.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho Junior
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
35
|
Evaluation of Polish wild Mushrooms as Beta-Glucan Sources. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197299. [PMID: 33036263 PMCID: PMC7579588 DOI: 10.3390/ijerph17197299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/26/2022]
Abstract
Mushroom beta-glucans show immunomodulatory, anticancer and antioxidant features. Numerous papers have been published in the last years on fungal polysaccharides, especially beta-glucans, demonstrating their various biological activities. However substantial data about beta-glucan contents in many mushroom species, especially wild mushrooms, are still missing. Therefore, the main objective of the study was to evaluate β-glucans in 18 species of wild mushrooms and three species of commercial mushrooms for comparison purposes. The contents of β-glucans were determined by the Megazyme method and with the Congo red method, which differ in analytical procedure. Among wild mushrooms, the highest mean β-glucan content assessed with the Megazyme method was found in Tricholoma portentosum (34.97 g/100 g DM), whereas with the Congo red method in Lactarius deliciosus (17.11 g/100 g DM) and Suillus grevillei (16.97 g/100 g DM). The β-glucans in wild mushrooms assessed with the Megazyme method were comparable to commercial mushrooms, whereas β-glucans assessed with the Congo red method were generally higher in wild mushrooms, especially in Russula vinosa, L. deliciosus and S. grevillei. This study indicates wild mushrooms as interesting material for β-glucan extraction for food industry and medicinal purposes.
Collapse
|
36
|
Tagkouli D, Kaliora A, Bekiaris G, Koutrotsios G, Christea M, Zervakis GI, Kalogeropoulos N. Free Amino Acids in Three Pleurotus Species Cultivated on Agricultural and Agro-Industrial By-Products. Molecules 2020; 25:molecules25174015. [PMID: 32887476 PMCID: PMC7504736 DOI: 10.3390/molecules25174015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
Previous studies have demonstrated the feasibility of employing by-products of the olive and wine sectors for the production of Pleurotus mushrooms with enhanced functionalities. In this work we investigated the influence of endogenous and exogenous factors on free amino acids (FAAs) profile of Pleurotus ostreatus, P. eryngii and P. nebrodensis mushrooms produced on wheat straw (WS), alone or mixed with grape marc (GM), and on by-products of the olive industry (OL). Overall, 22 FAAs were determined in substrates and mushrooms, including all the essential amino acids, the neurotransmitter γ-aminobutyric acid (GABA) and ornithine. On a dry weight (dw) basis, total FAAs ranged from 17.37 mg/g in P. nebrodensis to 130.12 mg/g in P. ostreatus samples, with alanine, leucine, glutamine, valine and serine predominating. Similar distribution patterns were followed by the monosodium glutamate (MSG)-like, sweet and bitter FAAs. Significant differences in FAAs level were observed among the species examined and among the cultivation substrates used. Principal Component Analysis (PCA) performed on the entire FAAs profile of six Pleurotus strains, clearly separated P. ostreatus from P. eryngii and P. nebrodensis, in accordance to their phylogenetic affinity. This is the first report of FAAs in P. nebrodensis.
Collapse
Affiliation(s)
- Dimitra Tagkouli
- Department of Dietetics-Nutrition, School of Health Science and Education, Harokopio University of Athens, El. Venizelou 70, Kallithea, 17676 Athens, Greece; (D.T.); (A.K.); (M.C.)
| | - Andriana Kaliora
- Department of Dietetics-Nutrition, School of Health Science and Education, Harokopio University of Athens, El. Venizelou 70, Kallithea, 17676 Athens, Greece; (D.T.); (A.K.); (M.C.)
| | - Georgios Bekiaris
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.B.); (G.K.)
| | - Georgios Koutrotsios
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.B.); (G.K.)
| | - Margarita Christea
- Department of Dietetics-Nutrition, School of Health Science and Education, Harokopio University of Athens, El. Venizelou 70, Kallithea, 17676 Athens, Greece; (D.T.); (A.K.); (M.C.)
| | - Georgios I. Zervakis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.B.); (G.K.)
- Correspondence: (G.I.Z.); (N.K.); Tel.: +30-210-5294341 (G.I.Z.); +30-210-9549251 (N.K.)
| | - Nick Kalogeropoulos
- Department of Dietetics-Nutrition, School of Health Science and Education, Harokopio University of Athens, El. Venizelou 70, Kallithea, 17676 Athens, Greece; (D.T.); (A.K.); (M.C.)
- Correspondence: (G.I.Z.); (N.K.); Tel.: +30-210-5294341 (G.I.Z.); +30-210-9549251 (N.K.)
| |
Collapse
|
37
|
Luft L, Confortin TC, Todero I, Zabot GL, Mazutti MA. An overview of fungal biopolymers: bioemulsifiers and biosurfactants compounds production. Crit Rev Biotechnol 2020; 40:1059-1080. [DOI: 10.1080/07388551.2020.1805405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luciana Luft
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tássia C. Confortin
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Izelmar Todero
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Giovani L. Zabot
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Cachoeira do Sul, Brazil
| | - Marcio A. Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
38
|
Liu Y, Hu CF, Feng X, Cheng L, Ibrahim SA, Wang CT, Huang W. Isolation, characterization and antioxidant of polysaccharides from Stropharia rugosoannulata. Int J Biol Macromol 2020; 155:883-889. [DOI: 10.1016/j.ijbiomac.2019.11.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/20/2019] [Accepted: 11/06/2019] [Indexed: 01/06/2023]
|
39
|
Liu Y, Li Y, Zhang H, Li C, Zhang Z, Liu A, Chen H, Hu B, Luo Q, Lin B, Wu W. Polysaccharides from Cordyceps miltaris cultured at different pH: Sugar composition and antioxidant activity. Int J Biol Macromol 2020; 162:349-358. [PMID: 32574745 DOI: 10.1016/j.ijbiomac.2020.06.182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022]
Abstract
In the study, the β-glucan content, the primary structure and the antioxidant capacity of polysaccharides in Cordyceps militaris cultivated with different initial growth pH were evaluated. Meanwhile, the mechanism of β-glucan biosynthesis was investigated by RNA-Seq. Based on the results, C. militaris growing at an initial growth pH of 5-7 (CMsA) was distinguished from C. militaris growing at an initial growth pH of 8-9 (CMsB) and their unigenes showed the comparable expression. The mean of β-glucan content of CMsB group was 32.7% (w/w), 10% higher than that of CMsA. The results of RNA-seq showed 1088 differentially expressed genes between CMsA and CMsB groups. Furthermore, oxidative phosphorylation-related Gene ontology terms were up-regulated in CMsB groups. In addition, the results of structural analysis (FTIR spectrum, monosaccharide composition, periodate oxidation) and bioactivity evaluation speculated that C. militaris polysaccharides possessed higher β-(1 → 6)-glucan content and antioxidant activities in CMsB groups.
Collapse
Affiliation(s)
- Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yiwen Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Huilan Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Bin Hu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Qingying Luo
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Bokun Lin
- School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Wenjuan Wu
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| |
Collapse
|
40
|
Tejedor-Calvo E, Morales D, Marco P, Sánchez S, Garcia-Barreda S, Smiderle FR, Iacomini M, Villalva M, Santoyo S, Soler-Rivas C. Screening of bioactive compounds in truffles and evaluation of pressurized liquid extractions (PLE) to obtain fractions with biological activities. Food Res Int 2020; 132:109054. [DOI: 10.1016/j.foodres.2020.109054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
|
41
|
Liu Y, Tang T, Duan S, Li C, Lin Q, Wu H, Liu A, Hu B, Wu D, Li S, Shen L, Wu W. The purification, structural characterization and antidiabetic activity of a polysaccharide from Anoectochilus roxburghii. Food Funct 2020; 11:3730-3740. [DOI: 10.1039/c9fo00860h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Anoectochilus roxburghii, a traditional Chinese medicinal herb, has been widely used for treating numerous chronic diseases.
Collapse
|
42
|
Rodrigues Barbosa J, Dos Santos Freitas MM, da Silva Martins LH, de Carvalho RN. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr Polym 2019; 229:115550. [PMID: 31826512 DOI: 10.1016/j.carbpol.2019.115550] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
The biodiversity of mushrooms Pleurotus spp. is impressive due to its complexity and diversity related to the composition of chemical structures such as polysaccharides, glycoproteins and secondary metabolites such as alkaloids, flavonoids and betalains. Recent studies of polysaccharides and their structural elucidation have helped to direct research and development of technologies related to pharmacological action, production of bioactive foods and application of new, more sophisticated extraction tools. The diversity of bioactivities related to these biopolymers, their mechanisms and routes of action are constant focus of researches. The elucidation of bioactivities has helped to formulate new vaccines and targeted drugs. In this context, in terms of polysaccharides and the diversity of mushrooms Pleurotus spp., this review seeks to revisit the genus, making an updated approach on the recent discoveries of polysaccharides, new extraction techniques and bioactivities, emphasising on their mechanisms and routes in order to update the reader on the recent technologies related to these polymers.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Maurício Madson Dos Santos Freitas
- LAPOA/FEA (Laboratory of Products of Animal Origin/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Luiza Helena da Silva Martins
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
43
|
Morales D, Rutckeviski R, Villalva M, Abreu H, Soler-Rivas C, Santoyo S, Iacomini M, Smiderle FR. Isolation and comparison of α- and β-D-glucans from shiitake mushrooms (Lentinula edodes) with different biological activities. Carbohydr Polym 2019; 229:115521. [PMID: 31826486 DOI: 10.1016/j.carbpol.2019.115521] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
A polysaccharide-enriched extract obtained from Lentinula edodes was submitted to several purification steps to separate three different D-glucans with β-(1→6), β-(1→3),(1→6) and α-(1→3) linkages, being characterized through GC-MS, FT-IR, NMR, SEC and colorimetric/fluorimetric determinations. Moreover, in vitro hypocholesterolemic, antitumoral, anti-inflammatory and antioxidant activities were also tested. Isolated glucans exerted HMGCR inhibitory activity, but only β-(1→6) and β-(1→3),(1→6) fractions showed DPPH scavenging capacity. Glucans were also able to lower IL-1β and IL-6 secretion by LPS-activated THP-1/M cells and showed cytotoxic effect on a breast cancer cell line that was not observed on normal breast cells. These in vitro results pointed important directions for further in vivo studies, showing different effects of each chemical structure of the isolated glucans from shiitake mushrooms.
Collapse
Affiliation(s)
- Diego Morales
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Renata Rutckeviski
- Instituto de Pesquisa Pelé Pequeno Príncipe, CEP 80240-020, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, CEP 80230-020, Curitiba, PR, Brazil.
| | - Marisol Villalva
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Hellen Abreu
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil.
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Susana Santoyo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil.
| | - Fhernanda Ribeiro Smiderle
- Instituto de Pesquisa Pelé Pequeno Príncipe, CEP 80240-020, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, CEP 80230-020, Curitiba, PR, Brazil.
| |
Collapse
|
44
|
Morales D, Smiderle FR, Villalva M, Abreu H, Rico C, Santoyo S, Iacomini M, Soler-Rivas C. Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from Lentinula edodes. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
45
|
Morales D, Tejedor-Calvo E, Jurado-Chivato N, Polo G, Tabernero M, Ruiz-Rodríguez A, Largo C, Soler-Rivas C. In vitro and in vivo testing of the hypocholesterolemic activity of ergosterol- and β-glucan-enriched extracts obtained from shiitake mushrooms (Lentinula edodes). Food Funct 2019; 10:7325-7332. [DOI: 10.1039/c9fo01744e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, two shiitake fractions were obtained: the ergosterol-enriched fraction exerted higher in vitro hypocholesterolemic activity and the β-glucan-enriched fraction reduced the cholesterol levels in mice.
Collapse
Affiliation(s)
- Diego Morales
- Department of Production and Characterization of Novel Foods
- Institute of Food Science Research – CIAL (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autónoma de Madrid
| | - Eva Tejedor-Calvo
- Department of Production and Characterization of Novel Foods
- Institute of Food Science Research – CIAL (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autónoma de Madrid
| | - Noelia Jurado-Chivato
- Department of Production and Characterization of Novel Foods
- Institute of Food Science Research – CIAL (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autónoma de Madrid
| | - Gonzalo Polo
- Departament of Experimental Surgery
- Research Institute Hospital La Paz (IdiPAZ)
- 28046 Madrid
- Spain
| | - María Tabernero
- Departament of Experimental Surgery
- Research Institute Hospital La Paz (IdiPAZ)
- 28046 Madrid
- Spain
- Department of Innovation in Precision Nutrition
| | - Alejandro Ruiz-Rodríguez
- Department of Production and Characterization of Novel Foods
- Institute of Food Science Research – CIAL (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autónoma de Madrid
| | - Carlota Largo
- Departament of Experimental Surgery
- Research Institute Hospital La Paz (IdiPAZ)
- 28046 Madrid
- Spain
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods
- Institute of Food Science Research – CIAL (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autónoma de Madrid
| |
Collapse
|