1
|
Kamimura S, Smith M, Vogel S, Almeida LEF, Thein SL, Quezado ZMN. Mouse models of sickle cell disease: Imperfect and yet very informative. Blood Cells Mol Dis 2024; 104:102776. [PMID: 37391346 PMCID: PMC10725515 DOI: 10.1016/j.bcmd.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
The root cause of sickle cell disease (SCD) has been known for nearly a century, however, few therapies to treat the disease are available. Over several decades of work, with advances in gene editing technology and after several iterations of mice with differing genotype/phenotype relationships, researchers have developed humanized SCD mouse models. However, while a large body of preclinical studies has led to huge gains in basic science knowledge about SCD in mice, this knowledge has not led to the development of effective therapies to treat SCD-related complications in humans, thus leading to frustration with the paucity of translational progress in the SCD field. The use of mouse models to study human diseases is based on the genetic and phenotypic similarities between mouse and humans (face validity). The Berkeley and Townes SCD mice express only human globin chains and no mouse hemoglobin. With this genetic composition, these models present many phenotypic similarities, but also significant discrepancies that should be considered when interpreting preclinical studies results. Reviewing genetic and phenotypic similarities and discrepancies and examining studies that have translated to humans and those that have not, offer a better perspective of construct, face, and predictive validities of humanized SCD mouse models.
Collapse
Affiliation(s)
- Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Dumas L, Roussel C, Buffet P. Intra-erythrocytic vacuoles in asplenic patients: elusive genesis and original clearance of unique organelles. Front Physiol 2023; 14:1324463. [PMID: 38192744 PMCID: PMC10773617 DOI: 10.3389/fphys.2023.1324463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024] Open
Abstract
The spleen plays a dual role of immune response and the filtration of red blood cells (RBC), the latter function being performed within the unique microcirculatory architecture of the red pulp. The red pulp filters and eliminates senescent and pathological RBC and can expell intra-erythrocytic rigid bodies through the so-called pitting mechanism. The loss of splenic function increases the risk of infections, thromboembolism, and hematological malignancies. However, current diagnostic tests such as quantification of Howell-Jolly Bodies and splenic scintigraphy lack sensitivity or are logistically demanding. Although not widely available in medical practice, the quantification of RBC containing vacuoles, i.e., pocked RBC, is a highly sensitive and specific marker for hyposplenism. The peripheral blood of hypo/asplenic individuals contains up to 80% RBC with vacuoles, whereas these pocked RBC account for less than 4% of RBC in healthy subjects. Despite their value as a spleen function test, intraerythrocytic vacuoles have received relatively limited attention so far, and little is known about their origin, content, and clearance. We provide an overview of the current knowledge regarding possible origins and mechanisms of elimination, as well as the potential function of these unique and original organelles observed in otherwise "empty" mature RBC. We highlight the need for further research on pocked RBC, particularly regarding their potential function and specific markers for easy counting and sorting, which are prerequisites for functional studies and wider application in medical practice.
Collapse
Affiliation(s)
- Lucie Dumas
- Université Paris Cité and Université des Antilles, Inserm, Biologie Tissulaire du Globule Rouge, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Camille Roussel
- Université Paris Cité and Université des Antilles, Inserm, Biologie Tissulaire du Globule Rouge, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
- Laboratoire d’Hématologie, Hôpital Universitaire Necker Enfants Malades, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France
| | - Pierre Buffet
- Université Paris Cité and Université des Antilles, Inserm, Biologie Tissulaire du Globule Rouge, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
- Université Paris Cité, Service de Maladies Infectieuses et Tropicales Hôpital Universitaire Necker Enfants Malades, Assistance Publique–Hôpitaux de Paris (AP-HP), IHU Imagine, Paris, France
| |
Collapse
|
3
|
Pathophysiological characterization of the Townes mouse model for sickle cell disease. Transl Res 2023; 254:77-91. [PMID: 36323381 DOI: 10.1016/j.trsl.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
Abstract
A deeper pathophysiologic understanding of available mouse models of sickle cell disease (SCD), such as the Townes model, will help improve preclinical studies. We evaluated groups of Townes mice expressing either normal adult human hemoglobin (HbA), sickle cell trait (HbAS), or SCD (HbS), comparing younger versus older adults, and females versus males. We obtained hematologic parameters in steady-state and hypoxic conditions and evaluated metabolic markers and cytokines from serum. Kidney function was evaluated by measuring the urine protein/creatinine ratio and urine osmolality. In vivo studies included von Frey assay, non-invasive plethysmography, and echocardiography. Histopathological evaluations were performed in lung, liver, spleen, and kidney tissues. HbS mice displayed elevated hemolysis markers and white blood cell counts, with some increases more pronounced in older adults. After extended in vivo hypoxia, hemoglobin, platelet counts, and white blood cell counts decreased significantly in HbS mice, whereas they remained stable in HbA mice. Cytokine analyses showed increased TNF-alpha in HbS mice. Kidney function assays revealed worsened kidney function in HbS mice. The von Frey assay showed a lower threshold to response in the HbS mice than controls, with more noticeable differences in males. Echocardiography in HbS mice suggested left ventricular hypertrophy and dilatation. Plethysmography suggested obstructive lung disease and inflammatory changes in HbS mice. Histopathological studies showed vascular congestion, increased iron deposition, and disruption of normal tissue architecture in HbS mice. These data correlate with clinical manifestations in SCD patients and highlight analyses and groups to be included in preclinical therapeutic studies.
Collapse
|
4
|
Lizarralde-Iragorri MA, Shet AS. Sickle Cell Disease: A Paradigm for Venous Thrombosis Pathophysiology. Int J Mol Sci 2020; 21:ijms21155279. [PMID: 32722421 PMCID: PMC7432404 DOI: 10.3390/ijms21155279] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Venous thromboembolism (VTE) is an important cause of vascular morbidity and mortality. Many risk factors have been identified for venous thrombosis that lead to alterations in blood flow, activate the vascular endothelium, and increase the propensity for blood coagulation. However, the precise molecular and cellular mechanisms that cause blood clots in the venous vasculature have not been fully elucidated. Patients with sickle cell disease (SCD) demonstrate all the risk factors for venous stasis, activated endothelium, and blood hypercoagulability, making them particularly vulnerable to VTE. In this review, we will discuss how mouse models have elucidated the complex vascular pathobiology of SCD. We review the dysregulated pathways of inflammation and coagulation in SCD and how the resultant hypercoagulable state can potentiate thrombosis through down-regulation of vascular anticoagulants. Studies of VTE pathogenesis using SCD mouse models may provide insight into the intersection between the cellular and molecular processes involving inflammation and coagulation and help to identify novel mechanistic pathways.
Collapse
|
5
|
Tougan T, Suzuki Y, Izuka M, Aono K, Okazaki T, Toya Y, Uchihashi K, Horii T. Application of the automated haematology analyzer XN-30 in an experimental rodent model of malaria. Malar J 2018; 17:165. [PMID: 29661200 PMCID: PMC5902832 DOI: 10.1186/s12936-018-2313-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/09/2018] [Indexed: 11/23/2022] Open
Abstract
Background The erythrocytic stage, where malaria parasites proliferate in human blood, is clinically significant as this causes the symptoms and illness of malaria. Experimental rodent models of malaria at the erythrocytic stage are used for the development of anti-malarial drugs and for biological analysis. An automated haematology analyzer XN-30 was developed for detection of infected red blood cells (iRBCs) in human blood samples and measurement of their parasitaemia in approximately 1 min through flow cytometry analysis. Additionally, the analyzer simultaneously measured other haematological parameters in these samples. It is inferred that the analyzer would also allow easy and rapid measurement of parasitaemia in mice and provide important clues on the mouse haematological state during infection and treatment. Results The XN-30 analyzer is a simple and rapid tool to detect iRBCs in mouse blood samples infected with rodent malarial parasites, with three-dimensional analysis permitting the precise measurement of parasitaemia (referred herein as the ‘XN-30 system’). The XN-30 analyzer allowed not only the detection of iRBCs but also the monitoring of RBC, white blood cell, and platelet counts, as well as haematocrit, mean corpuscular volume and mean platelet volume values in the mouse blood sample. For anti-malarial drug development, aside from demonstrating possible efficacy in mouse models, XN-30 analyzer could provide a first glimpse of the safety profile of the drug. Conclusions The XN-30 system is a powerful tool that can be utilized for the in vivo screening, development, and evaluation of anti-malarial drugs as well as for pre-clinical pharmacology and/or toxicity tests in rodent models. Electronic supplementary material The online version of this article (10.1186/s12936-018-2313-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takahiro Tougan
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuhgi Suzuki
- Sysmex Corporation, 4-4-4 Takatsukadai Nishiku, Kobe, Hyogo, 651-2271, Japan
| | - Munehisa Izuka
- Sysmex Corporation, 4-4-4 Takatsukadai Nishiku, Kobe, Hyogo, 651-2271, Japan
| | - Kei Aono
- Sysmex Corporation, 4-4-4 Takatsukadai Nishiku, Kobe, Hyogo, 651-2271, Japan
| | - Tomonori Okazaki
- Sysmex Corporation, 4-4-4 Takatsukadai Nishiku, Kobe, Hyogo, 651-2271, Japan
| | - Yuji Toya
- Sysmex Corporation, 4-4-4 Takatsukadai Nishiku, Kobe, Hyogo, 651-2271, Japan
| | - Kinya Uchihashi
- Sysmex Corporation, 4-4-4 Takatsukadai Nishiku, Kobe, Hyogo, 651-2271, Japan
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Photoacoustic Flow Cytometry for Single Sickle Cell Detection In Vitro and In Vivo. Anal Cell Pathol (Amst) 2016; 2016:2642361. [PMID: 27699143 PMCID: PMC5028878 DOI: 10.1155/2016/2642361] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/03/2016] [Indexed: 01/18/2023] Open
Abstract
Control of sickle cell disease (SCD) stage and treatment efficiency are still time-consuming which makes well-timed prevention of SCD crisis difficult. We show here that in vivo photoacoustic (PA) flow cytometry (PAFC) has a potential for real-time monitoring of circulating sickled cells in mouse model. In vivo data were verified by in vitro PAFC and photothermal (PT) and PA spectral imaging of sickle red blood cells (sRBCs) expressing SCD-associated hemoglobin (HbS) compared to normal red blood cells (nRBCs). We discovered that PT and PA signal amplitudes from sRBCs in linear mode were 2–4-fold lower than those from nRBCs. PT and PA imaging revealed more profound spatial hemoglobin heterogeneity in sRBCs than in nRBCs, which can be associated with the presence of HbS clusters with high local absorption. This hypothesis was confirmed in nonlinear mode through nanobubble formation around overheated HbS clusters accompanied by spatially selective signal amplification. More profound differences in absorption of sRBCs than in nRBCs led to notable increase in PA signal fluctuation (fluctuation PAFC mode) as an indicator of SCD. The obtained data suggest that noninvasive label-free fluctuation PAFC has a potential for real-time enumeration of sRBCs both in vitro and in vivo.
Collapse
|
7
|
Genetic diminution of circulating prothrombin ameliorates multiorgan pathologies in sickle cell disease mice. Blood 2015; 126:1844-55. [PMID: 26286849 DOI: 10.1182/blood-2015-01-625707] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/07/2015] [Indexed: 01/03/2023] Open
Abstract
Sickle cell disease (SCD) results in vascular occlusions, chronic hemolytic anemia, and cumulative organ damage. A conspicuous feature of SCD is chronic inflammation and coagulation system activation. Thrombin (factor IIa [FIIa]) is both a central protease in hemostasis and a key modifier of inflammatory processes. To explore the hypothesis that reduced prothrombin (factor II [FII]) levels in SCD will limit vaso-occlusion, vasculopathy, and inflammation, we used 2 strategies to suppress FII in SCD mice. Weekly administration of FII antisense oligonucleotide "gapmer" to Berkeley SCD mice to selectively reduce circulating FII levels to ∼10% of normal for 15 weeks significantly diminished early mortality. More comprehensive, long-term comparative studies were done using mice with genetic diminution of circulating FII. Here, cohorts of FII(lox/-) mice (constitutively carrying ∼10% normal FII) and FII(WT) mice were tracked in parallel for a year following the imposition of SCD via hematopoietic stem cell transplantation. This genetically imposed suppression of FII levels resulted in an impressive reduction in inflammation (reduction in leukocytosis, thrombocytosis, and circulating interleukin-6 levels), reduced endothelial cell dysfunction (reduced endothelial activation and circulating soluble vascular cell adhesion molecule), and a significant improvement in SCD-associated end-organ damage (nephropathy, pulmonary hypertension, pulmonary inflammation, liver function, inflammatory infiltration, and microinfarctions). Notably, all of these benefits were achieved with a relatively modest 1.25-fold increase in prothrombin times, and in the absence of hemorrhagic complications. Taken together, these data establish that prothrombin is a powerful modifier of SCD-induced end-organ damage, and present a novel therapeutic target to ameliorate SCD pathologies.
Collapse
|
8
|
Lelliott PM, McMorran BJ, Foote SJ, Burgio G. In vivo assessment of rodent Plasmodium parasitemia and merozoite invasion by flow cytometry. J Vis Exp 2015:e52736. [PMID: 25867202 PMCID: PMC4401393 DOI: 10.3791/52736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
During blood stage infection, malaria parasites invade, mature, and replicate within red blood cells (RBCs). This results in a regular growth cycle and an exponential increase in the proportion of malaria infected RBCs, known as parasitemia. We describe a flow cytometry based protocol which utilizes a combination of the DNA dye Hoechst, and the mitochondrial membrane potential dye, JC-1, to identify RBCs which contain parasites and therefore the parasitemia, of in vivo blood samples from Plasmodium chabaudi adami DS infected mice. Using this approach, in combination with fluorescently conjugated antibodies, parasitized RBCs can be distinguished from leukocytes, RBC progenitors, and RBCs containing Howell-Jolly bodies (HJ-RBCs), with a limit of detection of 0.007% parasitemia. Additionally, we outline a method for the comparative assessment of merozoite invasion into two different RBC populations. In this assay RBCs, labeled with two distinct compounds identifiable by flow cytometry, are transfused into infected mice. The relative rate of invasion into the two populations can then be assessed by flow cytometry based on the proportion of parasitized RBCs in each population over time. This combined approach allows the accurate measurement of both parasitemia and merozoite invasion in an in vivo model of malaria infection.
Collapse
Affiliation(s)
| | | | - Simon J Foote
- Australian School of Advanced Medicine, Macquarie University; John Curtin School of Medical Research, Australian National University
| | - Gaetan Burgio
- Australian School of Advanced Medicine, Macquarie University
| |
Collapse
|
9
|
Ohno K, Tanaka H, Samata N, Jakubowski JA, Tomizawa A, Mizuno M, Sugidachi A. Platelet activation biomarkers in Berkeley sickle cell mice and the response to prasugrel. Thromb Res 2014; 134:889-94. [PMID: 25130912 DOI: 10.1016/j.thromres.2014.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 11/26/2022]
Abstract
Vaso-occlusive crisis (VOC) is a common complication that occurs in sickle cell disease (SCD) patients. Although underlying mechanisms of VOC remain unclear, platelet activation has been associated with VOC. In the present study, plasma adenine nucleotide measurements using LC-ESI-MS/MS showed that plasma ADP in the Berkeley murine model of SCD was significantly higher (applox. 2.7-fold increase) compared with control mice. Assessment of platelet activation markers using flow cytometry indicated that in SCD mice at steady state (8 weeks old), circulating platelets were partially activated and this tended to increase with age (15 weeks old). The administration of prasugrel, a thienopiridyl P2Y12 antagonist, did not affect the activation state of circulating platelets suggesting P2Y12 independent mechanism of activation. In this murine SCD model, ex vivo addition of ADP or PAR4 TRAP resulted in further platelet activation as assessed by expression of activated GPIIb/IIIa and P-selectin both at 8 and 15 weeks. In 15 weeks old SCD mice, agonist-induced increases in activation markers were enhanced compared to control mice. Oral administration of prasugrel effectively inhibited ex vivo platelet activation consistent with clinical data in patients with SCD. In conclusion, in the Berkeley murine model of SCD, we found evidence of basal and agonist-stimulated platelet activation which could in part be attenuated by prasugrel. These data are consistent with observations made in patients with SCD and suggest possible utility of this murine model and prasugrel therapy in exploring treatment options for patients with SCD.
Collapse
Affiliation(s)
- Kousaku Ohno
- Biological Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Hisako Tanaka
- Center for Pharmaceutical and Biomedical Analysis, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Naozumi Samata
- Center for Pharmaceutical and Biomedical Analysis, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | | | - Atsuyuki Tomizawa
- Biological Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Makoto Mizuno
- Biological Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Atsuhiro Sugidachi
- Biological Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan.
| |
Collapse
|
10
|
Lelliott PM, Lampkin S, McMorran BJ, Foote SJ, Burgio G. A flow cytometric assay to quantify invasion of red blood cells by rodent Plasmodium parasites in vivo. Malar J 2014; 13:100. [PMID: 24628989 PMCID: PMC4004390 DOI: 10.1186/1475-2875-13-100] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria treatments are becoming less effective due to the rapid spread of drug resistant parasites. Increased understanding of the host/parasite interaction is crucial in order to develop treatments that will be less prone to resistance. Parasite invasion of the red blood cell (RBC) is a critical aspect of the parasite life cycle and is, therefore, a promising target for the development of malaria treatments. Assays for analysing parasite invasion in vitro have been developed, but no equivalent assays exist for in vivo studies. This article describes a novel flow cytometric in vivo parasite invasion assay. METHODS Experiments were conducted with mice infected with erythrocytic stages of Plasmodium chabaudi adami strain DS. Exogenously labelled blood cells were transfused into infected mice at schizogony, and collected blood samples stained and analysed using flow cytometry to specifically detect and measure proportions of labelled RBC containing newly invaded parasites. A combination of antibodies (CD45 and CD71) and fluorescent dyes, Hoechst (DNA) and JC-1 (mitochondrial membrane potential), were used to differentiate parasitized RBCs from uninfected cells, RBCs containing Howell-Jolly bodies, leukocytes and RBC progenitors. Blood cells were treated ex vivo with proteases to examine the effects on in vivo parasite invasion. RESULTS The staining and flow cytometry analysis method was accurate in determining the parasitaemia down to 0.013% with the limit of detection at 0.007%. Transfused labelled blood supported normal rates of parasite invasion. Protease-treated red cells resulted in 35% decrease in the rate of parasite invasion within 30 minutes of introduction into the bloodstream of infected mice. CONCLUSIONS The invasion assay presented here is a versatile method for the study of in vivo red cell invasion efficiency of Plasmodium parasites in mice, and allows direct comparison of invasion in red cells derived from two different populations. The method also serves as an accurate alternative method of estimating blood parasitaemia.
Collapse
Affiliation(s)
- Patrick M Lelliott
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
11
|
Rathkolb B, Fuchs H, Gailus-Durner V, Aigner B, Wolf E, Hrabě de Angelis M. Blood Collection from Mice and Hematological Analyses on Mouse Blood. ACTA ACUST UNITED AC 2013; 3:101-19. [PMID: 26069060 DOI: 10.1002/9780470942390.mo130054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Basic phenotyping of inbred mouse strains and genetically modified mouse models usually includes the determination of blood-based parameters as a diagnostic screen for genotype effects on metabolism and organ function. A broad range of analytes, including hematological parameters, can be reliably determined in mouse blood, if appropriate samples are available. Here we describe recommended techniques for blood collection from mice and the considerations that have to be taken into account to get adequate samples for hematological investigations. Furthermore, we describe established methods used in the German Mouse Clinic (GMC) to determine hematological parameters in the mouse. Curr. Protoc. Mouse Biol. 3:101-119 © 2013 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz-Zentrum München, German Research Center for Environmental Health, GmbH, Neuherberg, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz-Zentrum München, German Research Center for Environmental Health, GmbH, Neuherberg, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz-Zentrum München, German Research Center for Environmental Health, GmbH, Neuherberg, Germany
| | - Bernhard Aigner
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz-Zentrum München, German Research Center for Environmental Health, GmbH, Neuherberg, Germany.,Institute of Experimental Genetics, Life and Food Science Center Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany.,German Research Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
12
|
Platelet TGF-β1 contributions to plasma TGF-β1, cardiac fibrosis, and systolic dysfunction in a mouse model of pressure overload. Blood 2011; 119:1064-74. [PMID: 22134166 DOI: 10.1182/blood-2011-09-377648] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Circulating platelets contain high concentrations of TGF-β1 in their α-granules and release it on platelet adhesion/activation. We hypothesized that uncontrolled in vitro release of platelet TGF-β1 may confound measurement of plasma TGF-β1 in mice and that in vivo release and activation may contribute to cardiac pathology in response to constriction of the transverse aorta, which produces both high shear and cardiac pressure overload. Plasma TGF-β1 levels in blood collected from C57Bl/6 mice by the standard retro-bulbar technique were much higher than those obtained when prostaglandin E₁ was added to inhibit release or when blood was collected percutaneously from the left ventricle under ultrasound guidance. Even with optimal blood drawing, plasma TGF-β1 was lower in mice rendered profoundly thrombocytopenic or mice with selectively low levels of platelet TGF-β1 because of megakaryocyte-specific disruption of their TGF-β1 gene (Tgfb1(flox)). Tgfb1(flox) mice were also partially protected from developing cardiac hypertrophy, fibrosis, and systolic dysfunction in response to transverse aortic constriction. These studies demonstrate that plasma TGF-β1 levels can be assessed accurately, but it requires special precautions; that platelet TGF-β1 contributes to plasma levels of TGF-β1; and that platelet TGF-β1 contributes to the pathologic cardiac changes that occur in response to aortic constriction.
Collapse
|
13
|
Apte SH, Groves PL, Roddick JS, P da Hora V, Doolan DL. High-throughput multi-parameter flow-cytometric analysis from micro-quantities of plasmodium-infected blood. Int J Parasitol 2011; 41:1285-94. [PMID: 21907206 DOI: 10.1016/j.ijpara.2011.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 11/18/2022]
Abstract
Despite significant technological and conceptual advances over the last century, evaluation of the efficacy of anti-malarial vaccines or drugs continues to rely principally on direct microscopic visualisation of parasites on thick and/or thin Giemsa-stained blood smears. This requires technical expertise of the microscopist, is highly subjective and error-prone, and does not account for aberrations such as anaemia. Many published methods have shown that flow cytometric analysis of blood is a highly versatile method that can readily detect nucleic acid-stained parasitised red blood cells within cultured cell populations and in ex-vivo samples. However several impediments, including the difficulty in distinguishing reticulocytes from infected red blood cells and the fickle nature of red blood cells, have precluded the development and universal adoption of flow-cytometric based assays for ex-vivo sample analysis. We have developed a novel high-throughput assay for the flow cytometric assessment of blood that overcomes these impediments by utilising the unique properties of the nucleic acid stain DAPI to differentially stain RNA and DNA, combined with novel fixation and analysis protocols. The assay allows the rapid and reliable analysis of multiple parameters from micro-volumes of blood, including: parasitaemia, platelet count, reticulocyte count, normocyte count, white blood cell count and delineation of subsets and phenotypic markers including, but not limited to, CD4(+) and CD8(+) T cells, and the expression of phenotypic markers such as PD-L1 or intracellular cytokines. The assay requires less than one drop of blood and is therefore suitable for short interval time-course experiments and allows the progression of infection and immune responses to be closely monitored in the laboratory or cytometer-equipped field locations. Herein, we describe the technique and demonstrate its application in vaccinology and with a range of rodent and human parasite species including Plasmodium yoelii, Plasmodium chabaudi, Plasmodium berghei and Plasmodium falciparum.
Collapse
Affiliation(s)
- Simon H Apte
- Queensland Institute of Medical Research, and The Australian Centre for Vaccine Development, 300 Herston Road, Locked Bag 2000, Royal Brisbane Hospital, Brisbane, QLD 4029, Australia.
| | | | | | | | | |
Collapse
|
14
|
Mechanisms of enhanced thrombus formation in cerebral microvessels of mice expressing hemoglobin-S. Blood 2011; 117:4125-33. [PMID: 21304105 DOI: 10.1182/blood-2010-08-301366] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The microvasculature assumes an inflammatory and procoagulant state in a variety of different diseases, including sickle cell disease (SCD), which may contribute to the high incidence of ischemic stroke in these patients. This study provides evidence for accelerated thrombus formation in arterioles and venules in the cerebral vasculature of mice that express hemoglobin-S (β(s) mice). Enhanced microvascular thrombosis in β(s) mice was blunted by immunologic or genetic interventions that target tissue factor, endothelial protein C receptor, activated protein C, or thrombin. Platelets from β(s) mice also exhibited enhanced aggregation velocity after stimulation with thrombin but not ADP. Neutropenia also protected against the enhanced thrombosis response in β(s) mice. These results indicate that the cerebral microvasculature is rendered vulnerable to thrombus formation in β(s) mice via a neutrophil-dependent mechanism that is associated with an increased formation of and enhanced platelet sensitivity to thrombin.
Collapse
|
15
|
Polanowska-Grabowska R, Wallace K, Field JJ, Chen L, Marshall MA, Figler R, Gear ARL, Linden J. P-selectin-mediated platelet-neutrophil aggregate formation activates neutrophils in mouse and human sickle cell disease. Arterioscler Thromb Vasc Biol 2010; 30:2392-9. [PMID: 21071696 DOI: 10.1161/atvbaha.110.211615] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine the role of platelets in stimulating mouse and human neutrophil activation and pulmonary injury in sickle cell disease (SCD). METHODS AND RESULTS Both platelet and neutrophil activation occur in SCD, but the interdependence of these events is unknown. Platelet activation and binding to leukocytes were measured in mice and patients with SCD and in controls. Relative to controls, blood obtained from mice or patients with SCD contained significantly elevated platelet-neutrophil aggregates (PNAs). Both platelets and neutrophils found in sickle PNAs were activated. Multispectral imaging (ImageStream) and conventional flow cytometry revealed a subpopulation of activated neutrophils with multiple adhered platelets that expressed significantly more CD11b and exhibited greater oxidative activity than single neutrophils. On average, wild-type and sickle PNAs contained 1.1 and 2.6 platelets per neutrophil, respectively. Hypoxia/reoxygenation induced a further increase in PNAs in mice with SCD and additional activation of both platelets and neutrophils. The pretreatment of mice with SCD with clopidogrel or P-selectin antibody reduced the formation of PNAs and neutrophil activation and decreased lung vascular permeability. CONCLUSIONS Our findings suggest that platelet binding activates neutrophils and contributes to a chronic inflammatory state and pulmonary dysfunction in SCD. The inhibition of platelet activation may be useful to decrease tissue injury in SCD, particularly during the early stages of vaso-occlusive crises.
Collapse
|
16
|
In vitro and in vivo evidence that thrombospondin-1 (TSP-1) contributes to stirring- and shear-dependent activation of platelet-derived TGF-beta1. PLoS One 2009; 4:e6608. [PMID: 19672301 PMCID: PMC2719874 DOI: 10.1371/journal.pone.0006608] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 07/15/2009] [Indexed: 11/23/2022] Open
Abstract
Thrombospondin 1 (TSP-1), which is contained in platelet α-granules and released with activation, has been shown to activate latent TGF-β1 in vitro, but its in vivo role is unclear as TSP-1-null (Thbs1−/−) mice have a much less severe phenotype than TGF-β1-null (Tgfb1−/−) mice. We recently demonstrated that stirring and/or shear could activate latent TGF-β1 released from platelets and have now studied these methods of TGF-β1 activation in samples from Thbs1−/− mice, which have higher platelet counts and higher levels of total TGF-β1 in their serum than wild type mice. After either two hours of stirring or shear, Thbs1−/− samples demonstrated less TGF-β1 activation (31% and 54% lower levels of active TGF-β1 in serum and platelet releasates, respectively). TGF-β1 activation in Thbs1−/− mice samples was normalized by adding recombinant human TSP-1 (rhTSP-1). Exposure of platelet releasates to shear for one hour led to near depletion of TSP-1, but this could be prevented by preincubating samples with thiol-reactive agents. Moreover, replenishing rhTSP-1 to human platelet releasates after one hour of stirring enhanced TGF-β1 activation. In vivo TGF-β1 activation in carotid artery thrombi was also partially impaired in Thbs1−/− mice. These data indicate that TSP-1 contributes to shear-dependent TGF-β1 activation, thus providing a potential explanation for the inconsistent in vitro data previously reported as well as for the differences in phenotypes of Thbs1−/− and Tgfb1−/− mice.
Collapse
|