1
|
Heri Suselo Y, Indarto D, Wasita B, Hartono H. Alkaloid Fraction of Mirabilis jalapa Linn. Flowers Has Low Cytotoxicity and Increases Iron Absorption through Erythropoietin-Matriptase-2-Hepcidin pathway in Iron Deficiency Hepatocarcinoma Cell Model. Saudi J Biol Sci 2022; 30:103508. [DOI: 10.1016/j.sjbs.2022.103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
|
2
|
Huang Y, Duanmu J, Liu Y, Yan M, Li T, Jiang Q. Analysis of multi-omics differences in left-side and right-side colon cancer. PeerJ 2021; 9:e11433. [PMID: 34026368 PMCID: PMC8123232 DOI: 10.7717/peerj.11433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
Background Colon cancer is one of the most common tumors in the digestive tract. Studies of left-side colon cancer (LCC) and right-side colon cancer (RCC) show that these two subtypes have different prognoses, outcomes, and clinical responses to chemotherapy. Therefore, a better understanding of the importance of the clinical classifications of the anatomic subtypes of colon cancer is needed. Methods We collected colon cancer patients’ transcriptome data, clinical information, and somatic mutation data from the Cancer Genome Atlas (TCGA) database portal. The transcriptome data were taken from 390 colon cancer patients (172 LCC samples and 218 RCC samples); the somatic mutation data included 142 LCC samples and 187 RCC samples. We compared the expression and prognostic differences of LCC and RCC by conducting a multi-omics analysis of each using the clinical characteristics, immune microenvironment, transcriptomic differences, and mutation differences. The prognostic signatures was validated using the internal testing set, complete set, and external testing set (GSE39582). We also verified the independent prognostic value of the signature. Results The results of our clinical characteristic analysis showed that RCC had a significantly worse prognosis than LCC. The analysis of the immune microenvironment showed that immune infiltration was more common in RCC than LCC. The results of differential gene analysis showed that there were 360 differentially expressed genes, with 142 upregulated genes in LCC and 218 upregulated genes in RCC. The mutation frequency of RCC was generally higher than that of LCC. BRAF and KRAS gene mutations were the dominant genes mutations in RCC, and they had a strong mutual exclusion with APC, while APC gene mutation was the dominant gene mutation in LCC. This suggests that the molecular mechanisms of RCC and LCC differed. The 4-mRNA and 6-mRNA in the prognostic signatures of LCC and RCC, respectively, were highly predictive and may be used as independent prognostic factors. Conclusion The clinical classification of the anatomic subtypes of colon cancer is of great significance for early diagnosis and prognostic risk assessment. Our study provides directions for individualized treatment of left and right colon cancer.
Collapse
Affiliation(s)
- Yanyi Huang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, The Second Clinical Medicine College, Nanchang, Jiangxi, China
| | - Jinzhong Duanmu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yushu Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, The Second Clinical Medicine College, Nanchang, Jiangxi, China
| | - Mengyun Yan
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, The First Clinical Medicine College, Nanchang, Jiangxi, China
| | - Taiyuan Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qunguang Jiang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Li Y, Zhou Y, Zhang D, Wu W, Kang X, Wu Q, Wang P, Liu X, Gao G, Zhou Y, Wang G, Chang Y. Hypobaric hypoxia regulates iron metabolism in rats. J Cell Biochem 2019; 120:14076-14087. [DOI: 10.1002/jcb.28683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yaru Li
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology of Hebei Province, College of Life Science Hebei Normal University Shijiazhuang Hebei China
| | - Yue Zhou
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology of Hebei Province, College of Life Science Hebei Normal University Shijiazhuang Hebei China
| | - Dong Zhang
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology of Hebei Province, College of Life Science Hebei Normal University Shijiazhuang Hebei China
| | - Wen‐Yue Wu
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology of Hebei Province, College of Life Science Hebei Normal University Shijiazhuang Hebei China
| | - Xiaoxuan Kang
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology of Hebei Province, College of Life Science Hebei Normal University Shijiazhuang Hebei China
| | - Qiong Wu
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology of Hebei Province, College of Life Science Hebei Normal University Shijiazhuang Hebei China
| | - Peina Wang
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology of Hebei Province, College of Life Science Hebei Normal University Shijiazhuang Hebei China
| | - Xiaopeng Liu
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology of Hebei Province, College of Life Science Hebei Normal University Shijiazhuang Hebei China
- Department of Neurosurgery The Second Hospital of Hebei Medical University Shijiazhuang Hebei China
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology of Hebei Province, College of Life Science Hebei Normal University Shijiazhuang Hebei China
| | - Yaru Zhou
- Department of Endocrinology The Third Hospital of Hebei Medical University Shijiazhuang Hebei China
| | - Guangyou Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology Harbin Medical University Harbin Heilongjiang China
| | - Yan‐Zhong Chang
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology of Hebei Province, College of Life Science Hebei Normal University Shijiazhuang Hebei China
| |
Collapse
|
4
|
Frýdlová J, Rogalsky DW, Truksa J, Nečas E, Vokurka M, Krijt J. Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice. PLoS One 2019; 14:e0215028. [PMID: 30958854 PMCID: PMC6453526 DOI: 10.1371/journal.pone.0215028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/25/2019] [Indexed: 12/21/2022] Open
Abstract
Expression of hepcidin, the hormone regulating iron homeostasis, is increased by iron overload and decreased by accelerated erythropoiesis or iron deficiency. The purpose of the study was to examine the effect of these stimuli, either alone or in combination, on the main signaling pathway controlling hepcidin biosynthesis in the liver, and on the expression of splenic modulators of hepcidin biosynthesis. Liver phosphorylated SMAD 1 and 5 proteins were determined by immunoblotting in male mice treated with iron dextran, kept on an iron deficient diet, or administered recombinant erythropoietin for four consecutive days. Administration of iron increased liver phosphorylated SMAD protein content and hepcidin mRNA content; subsequent administration of erythropoietin significantly decreased both the iron-induced phosphorylated SMAD proteins and hepcidin mRNA. These results are in agreement with the recent observation that erythroferrone binds and inactivates the BMP6 protein. Administration of erythropoietin substantially increased the amount of erythroferrone and transferrin receptor 2 proteins in the spleen; pretreatment with iron did not influence the erythropoietin-induced content of these proteins. Erythropoietin-treated iron-deficient mice displayed smaller spleen size in comparison with erythropoietin-treated mice kept on a control diet. While the erythropoietin-induced increase in splenic erythroferrone protein content was not significantly affected by iron deficiency, the content of transferrin receptor 2 protein was lower in the spleens of erythropoietin-treated mice kept on iron-deficient diet, suggesting posttranscriptional regulation of transferrin receptor 2. Interestingly, iron deficiency and erythropoietin administration had additive effect on hepcidin gene downregulation in the liver. In mice subjected both to iron deficiency and erythropoietin administration, the decrease of hepcidin expression was much more pronounced than the decrease in phosphorylated SMAD protein content or the decrease in the expression of the SMAD target genes Id1 and Smad7. These results suggest the existence of another, SMAD-independent pathway of hepcidin gene downregulation.
Collapse
Affiliation(s)
- Jana Frýdlová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Daniel W. Rogalsky
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Truksa
- Laboratory of Tumour Resistance, Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Vestec, Czech Republic
| | - Emanuel Nečas
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Krijt
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Abstract
Erythropoiesis is the predominant consumer of iron in humans and other vertebrates. By decreasing the transcription of the gene encoding the iron-regulatory hormone hepcidin, erythropoietic activity stimulates iron absorption, as well as the release of iron from recycling macrophages and from stores in hepatocytes. The main erythroid regulator of hepcidin is erythroferrone (ERFE), synthesized and secreted by erythroblasts in the marrow and extramedullary sites. The production of ERFE is induced by erythropoietin (EPO) and is also proportional to the total number of responsive erythroblasts. ERFE acts on hepatocytes to suppress the production of hepcidin, through an as yet unknown mechanism that involves the bone morphogenetic protein pathway. By suppressing hepcidin, ERFE facilitates iron delivery during stress erythropoiesis but also contributes to iron overload in anemias with ineffective erythropoiesis. Although most of these mechanisms have been defined in mouse models, studies to date indicate that the pathophysiology of ERFE is similar in humans. ERFE antagonists and mimics may prove useful for the prevention and treatment of iron disorders.
Collapse
Affiliation(s)
- Tomas Ganz
- Departments of Medicine and Pathology, David Geffen School of Medicine, UCLA, Los Angeles, USA.
| |
Collapse
|
6
|
Mao P, Wortham AM, Enns CA, Zhang AS. The catalytic, stem, and transmembrane portions of matriptase-2 are required for suppressing the expression of the iron-regulatory hormone hepcidin. J Biol Chem 2018; 294:2060-2073. [PMID: 30559294 DOI: 10.1074/jbc.ra118.006468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Matriptase-2 (MT2) is a type-II transmembrane, trypsin-like serine protease that is predominantly expressed in the liver. It is a key suppressor for the expression of hepatic hepcidin, an iron-regulatory hormone that is induced via the bone morphogenetic protein signaling pathway. A current model predicts that MT2 suppresses hepcidin expression by cleaving multiple components of the induction pathway. MT2 is synthesized as a zymogen that undergoes autocleavage for activation and shedding. However, the biologically active form of MT2 and, importantly, the contributions of different MT2 domains to its function are largely unknown. Here we examined the activities of truncated MT2 that were generated by site-directed mutagenesis or Gibson assembly master mix, and found that the stem region of MT2 determines the specificity and efficacy for substrate cleavage. The transmembrane domain allowed MT2 activation after reaching the plasma membrane, and the cytoplasmic domain facilitated these processes. Further in vivo rescue studies indicated that the entire extracellular and transmembrane domains of MT2 are required to correct the low-hemoglobin, low-serum iron, and high-hepcidin status in MT2 -/- mice. Unlike in cell lines, no autocleavage of MT2 was detected in vivo in the liver, implying that MT2 may also function independently of its proteolytic activity. In conjunction with our previous studies implicating the cytoplasmic domain as an intracellular iron sensor, these observations reveal the importance of each MT2 domain for MT2-mediated substrate cleavage and for its biological function.
Collapse
Affiliation(s)
- Peizhong Mao
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Aaron M Wortham
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Caroline A Enns
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - An-Sheng Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
7
|
Abstract
Matriptase-2 (MT2) is a membrane-anchored proteolytic enzyme. It acts as the proteolytic key regulator in human iron homeostasis. A high expression level can lead to iron overload diseases, whereas mutations in the gene encoding MT2, TMPRSS6, may result in various forms of iron deficiency anemia. Recently, MT2 has been reported as a positive prognostic factor in breast and prostate cancers. However, the exact functions of MT2 in various pathophysiological conditions are still not fully understood. In this review, we describe the synthetic tools designed and synthesized to regulate or monitor MT2 proteolytic activity and present the latest knowledge about the role of MT2 in iron homeostasis and cancer.
Collapse
|
8
|
The hemochromatosis protein HFE signals predominantly via the BMP type I receptor ALK3 in vivo. Commun Biol 2018; 1:65. [PMID: 30271947 PMCID: PMC6123693 DOI: 10.1038/s42003-018-0071-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
Mutations in HFE, the most common cause of hereditary hemochromatosis, lead to iron overload. The iron overload is characterized by increased iron uptake due to lower levels of the hepatic, iron regulatory hormone hepcidin. HFE was cloned 21 years ago, but the signaling pathway is still unknown. Because bone morphogenetic protein (BMP) signaling is impaired in patients with hereditary hemochromatosis, and the interaction of HFE and the BMP type I receptor ALK3 was suggested in vitro, in vivo experiments were performed. In vivo, hepatocyte-specific Alk3-deficient and control mice were injected with either AAV2/8-Hfe-Flag or PBS. HFE overexpression in control mice results in increased hepatic hepcidin levels, p-Smad1/5 levels, and iron deficiency anemia, whereas overexpression of HFE in hepatocyte-specific Alk3-deficient mice results in no change in hepcidin, p-Smad1/5 levels, or blood parameters. These results indicate that HFE signals predominantly via ALK3 to induce hepcidin in vivo. Lisa Traeger et al. show that human hereditary hemochromatosis protein (HFE) signals through ALK3 to induce hepcidin in mice in vivo. The results validate and extend previous findings from in vitro studies that suggested a link between HFE and BMP signaling.
Collapse
|
9
|
Frýdlová J, Rychtarčíková Z, Gurieva I, Vokurka M, Truksa J, Krijt J. Effect of erythropoietin administration on proteins participating in iron homeostasis in Tmprss6-mutated mask mice. PLoS One 2017; 12:e0186844. [PMID: 29073189 PMCID: PMC5658091 DOI: 10.1371/journal.pone.0186844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022] Open
Abstract
Tmprss6-mutated mask mice display iron deficiency anemia and high expression of hepcidin. The aim of the study was to determine the effect of erythropoietin administration on proteins participating in the control of iron homeostasis in the liver and spleen in C57BL/6 and mask mice. Administration of erythropoietin for four days at 50 IU/mouse/day increased hemoglobin and hematocrit in C57BL/6 mice, no such increase was seen in mask mice. Erythropoietin administration decreased hepcidin expression in C57BL/6 mice, but not in mask mice. Erythropoietin treatment significantly increased the spleen size in both C57BL/6 and mask mice. Furthermore, erythropoietin administration increased splenic Fam132b, Fam132a and Tfr2 mRNA content. At the protein level, erythropoietin increased the amount of splenic erythroferrone and transferrin receptor 2 both in C57BL/6 and mask mice. Splenic ferroportin content was decreased in erythropoietin-treated mask mice in comparison with erythropoietin-treated C57BL/6 mice. In mask mice, the amount of liver hemojuvelin was decreased in comparison with C57BL/6 mice. The pattern of hemojuvelin cleavage was different between C57BL/6 and mask mice: In both groups, a main hemojuvelin band was detected at approximately 52 kDa; in C57BL/6 mice, a minor cleaved band was seen at 47 kDa. In mask mice, the 47 kDa band was absent, but additional minor bands were detected at approximately 45 kDa and 48 kDa. The results provide support for the interaction between TMPRSS6 and hemojuvelin in vivo; they also suggest that hemojuvelin could be cleaved by another as yet unknown protease in the absence of functional TMPRSS6. The lack of effect of erythropoietin on hepcidin expression in mask mice can not be explained by changes in erythroferrone synthesis, as splenic erythroferrone content increased after erythropoietin administration in both C57BL/6 and mask mice.
Collapse
Affiliation(s)
- Jana Frýdlová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Rychtarčíková
- Laboratory of Tumour Resistance, Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Iuliia Gurieva
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Truksa
- Laboratory of Tumour Resistance, Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Vestec, Czech Republic
- * E-mail: (JT); (JK)
| | - Jan Krijt
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- * E-mail: (JT); (JK)
| |
Collapse
|
10
|
Wahedi M, Wortham AM, Kleven MD, Zhao N, Jue S, Enns CA, Zhang AS. Matriptase-2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway. J Biol Chem 2017; 292:18354-18371. [PMID: 28924039 DOI: 10.1074/jbc.m117.801795] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Systemic iron homeostasis is maintained by regulation of iron absorption in the duodenum, iron recycling from erythrocytes, and iron mobilization from the liver and is controlled by the hepatic hormone hepcidin. Hepcidin expression is induced via the bone morphogenetic protein (BMP) signaling pathway that preferentially uses two type I (ALK2 and ALK3) and two type II (ActRIIA and BMPR2) BMP receptors. Hemojuvelin (HJV), HFE, and transferrin receptor-2 (TfR2) facilitate this process presumably by forming a plasma membrane complex with BMP receptors. Matriptase-2 (MT2) is a protease and key suppressor of hepatic hepcidin expression and cleaves HJV. Previous studies have therefore suggested that MT2 exerts its inhibitory effect by inactivating HJV. Here, we report that MT2 suppresses hepcidin expression independently of HJV. In Hjv-/- mice, increased expression of exogenous MT2 in the liver significantly reduced hepcidin expression similarly as observed in wild-type mice. Exogenous MT2 could fully correct abnormally high hepcidin expression and iron deficiency in MT2-/- mice. In contrast to MT2, increased Hjv expression caused no significant changes in wild-type mice, suggesting that Hjv is not a limiting factor for hepcidin expression. Further studies revealed that MT2 cleaves ALK2, ALK3, ActRIIA, Bmpr2, Hfe, and, to a lesser extent, Hjv and Tfr2. MT2-mediated Tfr2 cleavage was also observed in HepG2 cells endogenously expressing MT2 and TfR2. Moreover, iron-loaded transferrin blocked MT2-mediated Tfr2 cleavage, providing further insights into the mechanism of Tfr2's regulation by transferrin. Together, these observations indicate that MT2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway.
Collapse
Affiliation(s)
- Mastura Wahedi
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Aaron M Wortham
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Mark D Kleven
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Ningning Zhao
- the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona 85721
| | - Shall Jue
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Caroline A Enns
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - An-Sheng Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| |
Collapse
|