1
|
Rotin LE, Viswabandya A, Kumar R, Patriquin CJ, Kuo KHM. A systematic review comparing allogeneic hematopoietic stem cell transplant to gene therapy in sickle cell disease. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2023; 28:2163357. [PMID: 36728286 DOI: 10.1080/16078454.2022.2163357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplant (HSCT) and gene therapy (GT) are two potentially curative approaches for sickle cell disease (SCD), but they have never been compared in clinical trials. OBJECTIVE To compare the safety and efficacy of HSCT and GT to assist clinicians and patients in making informed treatment decisions. METHODS Phase I-III clinical trials and case reports/series were included. Regimens included HSCT from all stem cell sources, lentiviral gene therapy, and gene editing, with any conditioning regimen. We searched Medline and EMBASE databases as of 1st June 2020 for studies reporting HSCT and GT outcomes in SCD. The Newcastle-Ottawa scale was used to assess the risk of bias. Descriptive statistics and post-hoc imputation for standard deviations of mean change in FEV1 and FVC were performed. RESULTS In total, 56 studies (HSCT, n = 53; GT, n = 3) representing 1,198 patients met inclusion criteria (HSCT, n = 1,158; GT, n = 40). Length of follow-up was 3,881.5 and 58.7 patient-years for HSCT and GT, respectively. Overall quality of evidence was low, with no randomized controlled trials identified. Two-year overall survival for HSCT was 91%; mortality was 2.5% for GT. Acute chest syndrome and vaso-occlusive episodes were reduced post-HSCT and GT. Meta-analysis was not possible due to lack of comparator and heterogeneity in outcome measures reporting. Very few studies reported post-transplant end-organ function. Six secondary malignancies (5 post-HSCT, 1 post-GT) were reported. DISCUSSION Reporting of SCD-related complications and patient-important outcomes is lacking for both strategies. We advocate for standardized reporting to better compare outcomes within and between treatment groups.
Collapse
Affiliation(s)
- Lianne E Rotin
- Division of General Internal Medicine, Department of Medicine, University of Toronto, Toronto, Canada.,Division of Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Auro Viswabandya
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, Canada.,Messner Allogeneic Transplant Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Rajat Kumar
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, Canada.,Messner Allogeneic Transplant Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Christopher J Patriquin
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, Canada
| | - Kevin H M Kuo
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Vobugari N, Chaturvedi M, Schlam-Camhi IM, Smith HP. Sideroblastic anaemia in a patient with sickle cell disease. BMJ Case Rep 2022; 15:15/2/e246623. [PMID: 35135795 PMCID: PMC8830102 DOI: 10.1136/bcr-2021-246623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sideroblastic anaemia is a rare condition. We report a unique case of concomitant sideroblastic anaemia in a patient with sickle cell disease with long-standing blood transfusion history. Due to a low prevalence of sideroblastic anaemia, the diagnosis of sideroblastic anaemia is often difficult, especially when coexisting with common types of anaemia, including sickle cell disease. This case highlights the detrimental effects of anchoring bias. Rare causes of refractory anaemia should be considered in patients with haemoglobin disorders as the therapeutic approaches for these conditions are different. High suspicion on the part of the clinician and low threshold for workup of anaemia often aids in the diagnosis of coexisting conditions such as sideroblastic anaemia. Early diagnosis and treatment of sideroblastic anaemia improves patient outcomes and prevents long-term complications.
Collapse
Affiliation(s)
- Nikitha Vobugari
- Internal Medicine, MedStar Washington Hospital Center, Washington, DC, USA
| | - Mansi Chaturvedi
- Internal Medicine, MedStar Washington Hospital Center, Washington, DC, USA
| | - Ilana Miriam Schlam-Camhi
- Hematology/Oncology, Tufts Medical Center, Boston, Massachusetts, USA
- Hematology/Oncology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Hedy Patricia Smith
- Hematology/Oncology, MedStar Washington Hospital Center, Washington, DC, USA
| |
Collapse
|
3
|
Choice of Donor Source and Conditioning Regimen for Hematopoietic Stem Cell Transplantation in Sickle Cell Disease. J Clin Med 2019; 8:jcm8111997. [PMID: 31731790 PMCID: PMC6912427 DOI: 10.3390/jcm8111997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022] Open
Abstract
In the United States, one out of every 500 African American children have sickle cell disease (SCD), and SCD affects approximately 100,000 Americans. Significant advances in the treatment of this monogenetic disorder have failed to substantially extend the life expectancy of adults with SCD over the past two decades. Hematopoietic stem cell transplantation (HSCT) remains the only curative option for patients with SCD. While human leukocyte antigen (HLA) matched sibling HSCT has been successful, its availability is extremely limited. This review summarizes various conditioning regimens that are currently available. We explore recent efforts to expand the availability of allogeneic HSCT, including matched unrelated, umbilical cord blood, and haploidentical stem cell sources. We consider the use of nonmyeloablative conditioning and haploidentical donor sources as emerging strategies to expand transplant availability, particularly for SCD patients with complications and comorbidities who can undergo neither matched related transplant nor myeloablative conditioning. Finally, we show that improved conditioning agents have improved success rates not only in the HLA-matched sibling setting but also alternative donor settings.
Collapse
|
4
|
Pattabhi S, Lotti SN, Berger MP, Singh S, Lux CT, Jacoby K, Lee C, Negre O, Scharenberg AM, Rawlings DJ. In Vivo Outcome of Homology-Directed Repair at the HBB Gene in HSC Using Alternative Donor Template Delivery Methods. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:277-288. [PMID: 31279229 PMCID: PMC6611979 DOI: 10.1016/j.omtn.2019.05.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
Gene editing following designer nuclease cleavage in the presence of a DNA donor template can revert mutations in disease-causing genes. For optimal benefit, reversion of the point mutation in HBB leading to sickle cell disease (SCD) would permit precise homology-directed repair (HDR) while concurrently limiting on-target non-homologous end joining (NHEJ)-based HBB disruption. In this study, we directly compared the relative efficiency of co-delivery of a novel CRISPR/Cas9 ribonucleoprotein targeting HBB in association with recombinant adeno-associated virus 6 (rAAV6) versus single-stranded oligodeoxynucleotides (ssODNs) to introduce the sickle mutation (GTC or GTG; encoding E6V) or a silent change (GAA; encoding E6optE) in human CD34+ mobilized peripheral blood stem cells (mPBSCs) derived from healthy donors. In vitro, rAAV6 outperformed ssODN donor template delivery and mediated greater HDR correction, leading to both higher HDR rates and a higher HDR:NHEJ ratio. In contrast, at 12-14 weeks post-transplant into recipient, immunodeficient, NOD, B6, SCID Il2rγ-/- Kit(W41/W41) (NBSGW) mice, a ∼6-fold higher proportion of ssODN-modified cells persisted in vivo compared to recipients of rAAV6-modified mPBSCs. Together, our findings highlight that methodology for donor template delivery markedly impacts long-term persistence of HBB gene-modified mPBSCs, and they suggest that the ssODN platform is likely to be most amenable to direct clinical translation.
Collapse
Affiliation(s)
- Sowmya Pattabhi
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Samantha N Lotti
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Mason P Berger
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Swati Singh
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Christopher T Lux
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kyle Jacoby
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Andrew M Scharenberg
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA; Casebia Therapeutics, Cambridge, MA, USA; Department of Pediatrics, University of Washington, School of Medicine, Seattle, WA, USA; Department of Immunology, University of Washington, School of Medicine, Seattle, WA, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, School of Medicine, Seattle, WA, USA; Department of Immunology, University of Washington, School of Medicine, Seattle, WA, USA.
| |
Collapse
|
5
|
Sher F, Hossain M, Seruggia D, Schoonenberg VAC, Yao Q, Cifani P, Dassama LMK, Cole MA, Ren C, Vinjamur DS, Macias-Trevino C, Luk K, McGuckin C, Schupp PG, Canver MC, Kurita R, Nakamura Y, Fujiwara Y, Wolfe SA, Pinello L, Maeda T, Kentsis A, Orkin SH, Bauer DE. Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis. Nat Genet 2019; 51:1149-1159. [PMID: 31253978 PMCID: PMC6650275 DOI: 10.1038/s41588-019-0453-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Abstract
Developmental silencing of fetal globins serves as both a paradigm of spatiotemporal gene regulation and an opportunity for therapeutic intervention of β-hemoglobinopathy. The nucleosome remodeling and deacetylase (NuRD) chromatin complex participates in γ-globin repression. We used pooled CRISPR screening to disrupt NuRD protein coding sequences comprehensively in human adult erythroid precursors. Essential for fetal hemoglobin (HbF) control is a non-redundant subcomplex of NuRD protein family paralogs, whose composition we corroborated by affinity chromatography and proximity labeling mass spectrometry proteomics. Mapping top functional guide RNAs identified key protein interfaces where in-frame alleles resulted in loss-of-function due to destabilization or altered function of subunits. We ascertained mutations of CHD4 that dissociate its requirement for cell fitness from HbF repression in both primary human erythroid precursors and transgenic mice. Finally we demonstrated that sequestering CHD4 from NuRD phenocopied these mutations. These results indicate a generalizable approach to discover protein complex features amenable to rational biochemical targeting.
Collapse
Affiliation(s)
- Falak Sher
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Center for Translational & Computational Neuroimmunology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Mir Hossain
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Davide Seruggia
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Vivien A C Schoonenberg
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Qiuming Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura M K Dassama
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Mitchel A Cole
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Divya S Vinjamur
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Claudio Macias-Trevino
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Connor McGuckin
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Patrick G Schupp
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew C Canver
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Takahiro Maeda
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Gallo AM, Patil C, Adeniyi T, Hsu LL, Rondelli D, Saraf S. Health-Related Quality of Life and Personal Life Goals of Adults With Sickle Cell Disease After Hematopoietic Stem Cell Transplantation. West J Nurs Res 2019; 41:555-575. [PMID: 29624126 PMCID: PMC6167199 DOI: 10.1177/0193945918768277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) from a human leukocyte antigen (HLA)-matched sibling donor offers a unique therapy to reverse SCD. This mixed-methods study explores recipients' perception of HSCT success, personal life goals, and associated health-related quality of life (HRQOL) more than 1 year after HSCT. Recipients completed the Short Form-36, version 1 (SF-36v1) HRQOL survey followed by a 60- to 90-min face-to-face or telephone audio-recorded interview. Eleven of 15 eligible recipients participated in the study. Although the eight HRQOL subscale scores varied, the three recipients with a successful HSCT and the highest scores were pursuing their personal life goals. The four with avascular necrosis (AVN) had lower scores related to AVN limitations, yet they were pursuing their personal goals. The two reporting a failed HSCT had reverted back to having SCD, and their subscale scores were among the lowest. Our results show that HSCT success, ability to pursue goals, and HRQOL align in predictable ways.
Collapse
Affiliation(s)
| | | | | | - Lewis L Hsu
- 1 University of Illinois at Chicago, IL, USA
| | | | | |
Collapse
|
7
|
The in vitro growth of a cord blood-derived cell population enriched for CD34 + cells is influenced by its cell cycle status and treatment with hydroxyurea. Cytotherapy 2018; 20:1345-1354. [PMID: 30322708 DOI: 10.1016/j.jcyt.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/18/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Cell cycle plays a fundamental role in the physiology of hematopoietic stem and progenitor cells. In the present study we used a negative selection system to obtain an immature cell population-enriched for cord blood-derived CD34+ cells-and we determined its proliferation, expansion and differentiation patterns as a function of the cell cycle status. The effects of hydroxyurea (HU) were also assessed. RESULTS As compared with cells in synthesis (S)/Gap2 (G2)/mitosis (M), cells in quiescent state (G0)/Gap1 (G1) showed a higher proliferation potential in vitro. At culture onset, G0, G1 and S/G2/M cells corresponded with 63%, 33% and 4%, respectively. Treatment with HU before culture resulted in an increase in the proportion of cells in G1 with a concomitant decrease in S/G2/M cells, without affecting the proportion of cells in G0. After 3 days of culture in the presence of recombinant cytokines, the vast majority of the cells (90%) were in G1, and by day 8, G0, G1 and S/G2/M cells corresponded with 18%, 67% and 15%, respectively. HU also induced an increase in colony-forming cell (CFC) frequency, in the proliferation and expansion capacities of cultured cells under myeloid conditions, and favored the development of the erythroid lineage. CONCLUSION Our results show that the in vitro proliferation, expansion and differentiation potentials of immature hematopoietic cells are determined, at least in part, by their cell cycle status and that the cell cycle modifier HU significantly influences the growth of human hematopoietic cells. These results are of potential relevance for the development of ex vivo expansion protocols.
Collapse
|
8
|
Rivers A, Vaitkus K, Jagadeeswaran R, Ruiz MA, Ibanez V, Ciceri F, Cavalcanti F, Molokie RE, Saunthararajah Y, Engel JD, DeSimone J, Lavelle D. Oral administration of the LSD1 inhibitor ORY-3001 increases fetal hemoglobin in sickle cell mice and baboons. Exp Hematol 2018; 67:60-64.e2. [PMID: 30125603 DOI: 10.1016/j.exphem.2018.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 11/18/2022]
Abstract
Increased levels of fetal hemoglobin (HbF) lessen the severity of symptoms and increase the life span of patients with sickle cell disease (SCD). More effective strategies to increase HbF are needed because the current standard of care, hydroxyurea, is not effective in a significant proportion of patients. Treatment of the millions of patients projected worldwide would best be accomplished with an orally administered drug therapy that increased HbF. LSD1 is a component of corepressor complexes that repress γ-globin gene expression and are a therapeutic target for HbF reactivation. We have shown that subcutaneous administration of RN-1, a pharmacological LSD1 inhibitor, increased γ-globin expression in SCD mice and baboons, which are widely acknowledged as the best animal model in which to test the activity of HbF-inducing drugs. The objective of this investigation was to test the effect of oral administration of a new LSD1 inhibitor, ORY-3001. Oral administration of ORY-3001 to SCD mice (n = 3 groups) increased γ-globin expression, Fetal Hemoglobin (HbF)-containing (F) cells, and F reticulocytes (retics). In normal baboons (n = 7 experiments) treated with ORY-3001, increased F retics, γ-globin chain synthesis, and γ-globin mRNA were observed. Experiments in anemic baboons (n = 2) showed that ORY-3001 increased F retics (PA8695, predose = 24%, postdose = 66.8%; PA8698: predose = 13%, postdose = 93.6%), γ-globin chain synthesis (PA8695: predose = 0.07 γ/γ+β, postdose = 0.20 γ/γ+β; PA8698: predose = 0.02 γ/γ+β, postdose = 0.44 γ/γ+β), and γ-globin mRNA (PA8695: predose = 0.06 γ/γ+β, postdose = 0.18 γ/γ+β; PA8698: predose = 0.03 γ/γ+β, postdose = 0.33 γ/γ+β). We conclude that oral administration of ORY-3001 increases F retics, γ-globin chain synthesis, and γ-globin mRNA in baboons and SCD mice, supporting further efforts toward the development of this drug for SCD therapy.
Collapse
Affiliation(s)
- Angela Rivers
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Kestis Vaitkus
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ramasamy Jagadeeswaran
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Maria Armila Ruiz
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Vinzon Ibanez
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Robert E Molokie
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Joseph DeSimone
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Donald Lavelle
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Detterich JA. Simple chronic transfusion therapy, a crucial therapeutic option for sickle cell disease, improves but does not normalize blood rheology: What should be our goals for transfusion therapy? Clin Hemorheol Microcirc 2018; 68:173-186. [PMID: 29614631 DOI: 10.3233/ch-189006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sickle cell anemia is characterized by a mutation resulting in the formation of an abnormal beta-hemoglobin called hemoglobin S. Hemoglobin S polymerizes upon deoxygenation, causing impaired red blood cell deformability and increased blood viscosity at equivalent hematocrits. Thus, sickle cell disease is a hemorheologic disease that results in various pathologic processes involving multiple organ systems including the lungs, heart, kidneys and brain. Red blood cell mechanics and the perturbations on blood flow-endothelial interaction underlie much of the pathology found in sickle cell disease. Transfusion therapy is one of the few therapeutic options available to patients, acting as both primary and secondary prevention of stroke. Transfusion therapy, both simple and exchange, is also used for unremitting and frequent pain crises and pulmonary hypertension. Therefore, understanding basic rheologic changes following transfusion inform other therapeutic options that aim to mitigate this diffuse pathologic process. This review will aim to highlight transfusion effects on blood rheology.
Collapse
Affiliation(s)
- Jon A Detterich
- Division of Cardiology, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.,Department of Biophysics and Physiology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
10
|
Li B, Zhu X, Hossain MA, Guy CR, Xu H, Bungert J, Pace BS. Fetal hemoglobin induction in sickle erythroid progenitors using a synthetic zinc finger DNA-binding domain. Haematologica 2018; 103:e384-e387. [PMID: 29622657 DOI: 10.3324/haematol.2017.185967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Biaoru Li
- Department of Pediatrics, Augusta University, GA
| | - Xingguo Zhu
- Department of Pediatrics, Augusta University, GA
| | - Mir A Hossain
- Department of Biochemistry and Molecular Biology, College of Medicine, Health Cancer Center, Center for Epigenetics, Genetics Institute, University of Florida, Gainesville, FL
| | - Cameron R Guy
- Department of Biochemistry and Molecular Biology, College of Medicine, Health Cancer Center, Center for Epigenetics, Genetics Institute, University of Florida, Gainesville, FL
| | - Hongyan Xu
- Department of Biostatistics and Epidemiology, Augusta University, GA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, Health Cancer Center, Center for Epigenetics, Genetics Institute, University of Florida, Gainesville, FL
| | - Betty S Pace
- Department of Pediatrics, Augusta University, GA .,Department of Biochemistry and Molecular Biology, Augusta University, GA, USA
| |
Collapse
|