1
|
Salana S, Verma V. Review of in vitro studies evaluating respiratory toxicity of aerosols: impact of cell types, chemical composition, and atmospheric processing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1922-1954. [PMID: 39291816 DOI: 10.1039/d4em00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent decades, several cell-based and acellular methods have been developed to evaluate ambient particulate matter (PM) toxicity. Although cell-based methods provide a more comprehensive assessment of PM toxicity, their results are difficult to comprehend due to the diversity in cellular endpoints, cell types, and assays and the interference of PM chemical components with some of the assays' techniques. In this review, we attempt to clarify some of these issues. We first discuss the morphological and immunological differences among various macrophage and epithelial cells, belonging to the respiratory systems of human and murine species, used in the in vitro studies evaluating PM toxicity. Then, we review the current state of knowledge on the role of different PM chemical components and the relevance of atmospheric processing and aging of aerosols in the respiratory toxicity of PM. Our review demonstrates the need to adopt more physiologically relevant cellular models such as epithelial (or endothelial) cells instead of macrophages for oxidative stress measurement. We suggest limiting macrophages for investigating other cellular responses (e.g., phagocytosis, inflammation, and DNA damage). Unlike monocultures (of macrophages and epithelial cells), which are generally used to study the direct effects of PM on a given cell type, the use of co-culture systems should be encouraged to investigate a more comprehensive effect of PM in the presence of other cells. Our review has identified two major groups of toxic PM chemical species from the existing literature, i.e., metals (Fe, Cu, Mn, Cr, Ni, and Zn) and organic compounds (PAHs, ketones, aliphatic and chlorinated hydrocarbons, and quinones). However, the relative toxicities of these species are still a matter of debate. Finally, the results of the existing studies investigating the effect of aging on PM toxicity are ambiguous, with varying results due to different cell types, different aging conditions, and the presence/absence of specific oxidants. More systematic studies are necessary to understand the role of different SOA precursors, interactions between different PM components, and aging conditions in the overall toxicity of PM. We anticipate that our review will guide future investigations by helping researchers choose appropriate cell models, resulting in a more meaningful interpretation of cell-based assays and thus ultimately leading to a better understanding of the health effects of PM exposure.
Collapse
Affiliation(s)
- Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| |
Collapse
|
2
|
Fu X, Wang H, Gai M, Dai Y, Chang J, Zhang H. Integrating network pharmacology with experimental validation to investigate the mechanism of Wuwei Zishen formula in improving perimenopausal syndrome. Am J Transl Res 2024; 16:2190-2211. [PMID: 39006282 PMCID: PMC11236650 DOI: 10.62347/rqhy5963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/22/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVES To investigate the role of the Wuwei Zishen formula (WWZSF) in treating and preventing perimenopausal syndrome (PMS) and to understand its mechanism. METHODS Network pharmacology and molecular docking was used to predict active compounds, potential targets, and pathways for PMS treatment using WWZSF. Female Sprague-Dawley (SD) rats were induced with D-galactose (D-gal) to establish a PMS model and treated with Kunbao pill (KBP) and WWZSF. Estrus cycles were observed using vaginal smears. Serum sex hormones were measured using the enzyme-linked immunosorbent assay (ELISA). Histological changes in the uterus and ovaries were evaluated using hematoxylin-eosin staining (HE). Western blot was used to assess the protein expression levels of Cleaved Caspase-3, p62, BAX/Bcl-2, p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR in the uterus and ovaries. RESULTS A total of 70 active compounds and 440 potential targets were screened out. Important targets and pathways, including AKT1, Bcl-2, Caspase-3, mTOR, and the PI3K/AKT/mTOR pathways, and molecular docking verified their high affinities to key WWZSF components. In vivo experiments showed that WWZSF can ameliorate the morphological abnormalities of the uterus and ovaries, increase sex hormone levels and organ index, and restore the estrus cycles in PMS rats. Moreover, the western blot results showed decreased Cleaved Caspase-3 and BAX/Bcl-2 protein levels in the ovarian and uterine tissues after WWZSF therapy. Concurrently, there was an increase in the expression of p62 and the ratios of p-AKT/AKT, p-mTOR/mTOR, and p-PI3K/PI3K. CONCLUSION The PI3K/AKT/mTOR signaling pathway-mediated apoptosis and autophagy pathways may be how WWZSF efficiently reduces PMS.
Collapse
Affiliation(s)
- Xuewen Fu
- Changchun University of Chinese MedicineChangchun 130117, Jilin, China
| | - Hui Wang
- The Affiliated Hospital to Changchun University of Chinese MedicineChangchun 130021, Jilin, China
| | - Meichen Gai
- Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing 100053, China
| | - Yuanhua Dai
- Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing 100053, China
| | - Jun Chang
- Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing 100053, China
| | - Hong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing 100053, China
| |
Collapse
|
3
|
Sharma P, Chaturvedi S, Khan MA, Rai Y, Bhatt AN, Najmi AK, Akhtar M, Mishra AK. Nanoemulsion potentiates the anti-cancer activity of Myricetin by effective inhibition of PI3K/AKT/mTOR pathway in triple-negative breast cancer cells. Med Oncol 2024; 41:56. [PMID: 38218749 DOI: 10.1007/s12032-023-02274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 01/15/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous tumor with a poor prognosis and high metastatic potential, resulting in poor clinical outcomes, necessitating investigation to devise effective therapeutic strategies. Multiple studies have substantiated the anti-cancer properties of the naturally occurring flavonoid "Myricetin" in various malignancies. However, the therapeutic application of Myricetin is impeded by its poor water solubility and low oral bioavailability. To overcome this limitation, we aimed to develop nanoemulsion of Myricetin (Myr-NE) and evaluate its advantage over Myricetin alone in TNBC cells. The nanoemulsion was formulated using Capryol 90 (oil), Tween 20 (surfactant), and Transcutol HP (co-surfactant). The optimized nano-formulation underwent an evaluation to determine its size, zeta potential, morphology, stability, drug encapsulation efficiency, and in vitro release properties. The anti-cancer activity of Myr-NE was further studied to examine its distinct impact on intracellular drug uptake, cell-viability, anti-tumor signaling, oxidative stress, clonogenicity, and cell death, compared with Myricetin alone in MDA-MB-231 (TNBC) cells. The in vitro drug release and intracellular drug uptake of Myricetin was significantly increased in Myr-NE formulation as compared to Myricetin alone. Moreover, Myr-NE exhibited significant inhibition of cell proliferation, clonogenicity, and increased apoptosis with ~ 2.5-fold lower IC50 as compared to Myricetin. Mechanistic investigation revealed that nanoemulsion augmented the anti-cancer efficacy of Myricetin, most likely by inhibiting the PI3K/AKT/mTOR pathway, eventually leading to enhanced cell death in TNBC cells. The study provides substantial experimental evidence to support the notion that the Myr-NE formulation has the potential to be an effective therapeutic drug for TNBC treatment.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Yogesh Rai
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Anant Narayan Bhatt
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India.
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India.
| |
Collapse
|
4
|
Egbuna C, Patrick‐Iwuanyanwu KC, Onyeike EN, Khan J, Palai S, Patel SB, Parmar VK, Kushwaha G, Singh O, Jeevanandam J, Kumarasamy S, Uche CZ, Narayanan M, Rudrapal M, Odoh U, Chikeokwu I, Găman M, Saravanan K, Ifemeje JC, Ezzat SM, Olisah MC, Chikwendu CJ, Adedokun KA, Imodoye SO, Bello IO, Twinomuhwezi H, Awuchi CG. Phytochemicals and bioactive compounds effective against acute myeloid leukemia: A systematic review. Food Sci Nutr 2023; 11:4191-4210. [PMID: 37457145 PMCID: PMC10345688 DOI: 10.1002/fsn3.3420] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023] Open
Abstract
This systematic review identified various bioactive compounds which have the potential to serve as novel drugs or leads against acute myeloid leukemia. Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy that arises from the dysregulation of cell differentiation, proliferation, and cell death. The risk factors associated with the onset of AML include long-term exposure to radiation and chemicals such as benzene, smoking, genetic disorders, blood disorders, advancement in age, and others. Although novel strategies to manage AML, including a refinement of the conventional chemotherapy regimens, hypomethylating agents, and molecular targeted drugs, have been developed in recent years, resistance and relapse remain the main clinical problems. In this study, three databases, PubMed/MEDLINE, ScienceDirect, and Google Scholar, were systematically searched to identify various bioactive compounds with antileukemic properties. A total of 518 articles were identified, out of which 59 were viewed as eligible for the current report. From the data extracted, over 60 bioactive compounds were identified and divided into five major groups: flavonoids, alkaloids, organosulfur compounds, terpenes, and terpenoids, and other known and emerging bioactive compounds. The mechanism of actions of the analyzed individual bioactive molecules differs remarkably and includes disrupting chromatin structure, upregulating the synthesis of certain DNA repair proteins, inducing cell cycle arrest and apoptosis, and inhibiting/regulating Hsp90 activities, DNA methyltransferase 1, and histone deacetylase 1.
Collapse
Affiliation(s)
- Chukwuebuka Egbuna
- Africa Centre of Excellence for Public Health and Toxicological Research (ACE‐PUTOR)University of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityAnambraNigeria
| | - Kingsley C. Patrick‐Iwuanyanwu
- Africa Centre of Excellence for Public Health and Toxicological Research (ACE‐PUTOR)University of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
| | - Eugene N. Onyeike
- Africa Centre of Excellence for Public Health and Toxicological Research (ACE‐PUTOR)University of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAl MajmaahSaudi Arabia
| | - Santwana Palai
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal HusbandryOUATOdishaBhubaneswarIndia
| | - Sandip B. Patel
- Department of PharmacologyL.M. College of Pharmacy, NavrangpuraAhmedabadIndia
| | | | - Garima Kushwaha
- Department of BiotechnologyIndian Institute of TechnologyRoorkeeIndia
| | - Omkar Singh
- Department of Chemical EngineeringIndian Institute of Technology MadrasChennaiIndia
| | - Jaison Jeevanandam
- CQM—Centro de Química da MadeiraUniversidade da Madeira, Campus da PenteadaFunchalPortugal
| | | | - Chukwuemelie Zedech Uche
- Department of Medical Biochemistry and Molecular Biology, Faculty of Basic Medical SciencesUniversity of NigeriaEnuguNsukkaNigeria
| | - Mathiyazhagan Narayanan
- Division of Research and InnovationDepartment of Biotecnology, Saveetha School of Engineering SIMATSTamil NaduChennaiIndia
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical SciencesVignan’s Foundation for Science, Technology & ResearchGunturIndia
| | - Uchenna Odoh
- Department of Pharmacognosy and Environmental Medicines, Faculty of Pharmaceutical SciencesUniversity of NigeriaNsukkaNigeria
| | - Ikenna Chikeokwu
- Department of PharmacognosyEnugu State University of Science and Technology (ESUT)Agbani Enugu StateEnuguNigeria
| | - Mihnea‐Alexandru Găman
- Faculty of Medicine"Carol Davila" University of Medicine and PharmacyBucharestRomania
- Department of HematologyCenter of Hematology and Bone Marrow TransplantationBucharestRomania
| | - Kaliyaperumal Saravanan
- PG and Research Department of ZoologyNehru Memorial College (Autonomous), Puthanampatti (Affiliated to Bharathidasan University)Tamil NaduTiruchirappalliIndia
| | - Jonathan C. Ifemeje
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityAnambraNigeria
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of PharmacyCairo UniversityCairoEgypt
- Department of Pharmacognosy, Faculty of PharmacyOctober University for Modern Sciences and Arts (MSA)GizaEgypt
| | - Michael C. Olisah
- Department of Medical Biochemistry, Faculty of Basic Medical SciencesChukwuemeka Odumegwu Ojukwu University, Uli CampusAnambraNigeria
| | - Chukwudi Jude Chikwendu
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityAnambraNigeria
| | - Kamoru A. Adedokun
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterNew YorkBuffaloUSA
| | - Sikiru O. Imodoye
- Department of Oncological Sciences, Huntsman Cancer InstituteUniversity of UtahUtahSalt Lake CityUSA
| | - Ibrahim O. Bello
- Department of Biological SciencesSouthern Illinois University EdwardsvilleIllinoisEdwardsvilleUSA
| | - Hannington Twinomuhwezi
- Department of ChemistryKyambogo University, KyambogoKampalaUganda
- School of Natural and Applied SciencesKampala International UniversityKampalaUganda
| | | |
Collapse
|
5
|
Sun J, Du L, Qu Z, Wang H, Dong S, Li X, Zhao H. Integrated metabolomics and proteomics analysis to study the changes in Scutellaria baicalensis at different growth stages. Food Chem 2023; 419:136043. [PMID: 37027979 DOI: 10.1016/j.foodchem.2023.136043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Scutellaria baicalensis is a functional food that has the potential to treat various diseases. Scutellaria baicalensis can be divided into two types: Ziqin (strip types) and (rotten xylem). Ziqin is used to clear lower energizer large intestine heat syndrome, while Kuqin is used for the treatment of upper energizer lung heat syndrome. At present, the substance basis of the differences between Ziqin and Kuqin is not clear. The changes in metabolite accumulation and protein expression between them were analyzed by the non-targeted metabolomic technique in combination with the label-free proteomics approach. The results showed that the differentially accumulated metabolites and abundant proteins were mainly enriched in the pathways of phenylalanine, tyrosine and tryptophan biosynthesis, phenylpropanoid biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, isoflavonoid biosynthesis, and anthocyanin biosynthesis. Collectively, these results reveal the changes of Scutellaria baicalensis in different growth years and provide a reference for selecting the appropriate harvest period.
Collapse
|
6
|
El Samarji M, Younes M, El Khoury M, Haykal T, Elias N, Gasilova N, Menin L, Houri A, Machaka-Houri N, Rizk S. The Antioxidant and Proapoptotic Effects of Sternbergia clusiana Bulb Ethanolic Extract on Triple-Negative and Estrogen-Dependent Breast Cancer Cells In Vitro. PLANTS (BASEL, SWITZERLAND) 2023; 12:529. [PMID: 36771614 PMCID: PMC9920827 DOI: 10.3390/plants12030529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Sternbergia clusiana belongs to the Amaryllidaceae family and is recognized for the valuable biological activity of its major bioactive compounds. The aim of the current is to evaluate the anticancer effects of the ethanolic bulb extract of Sternbergia clusiana (ScBEE) on breast cancer cells in vitro and to further reveal the underlying cellular mechanism. METHODS An MTS cell viability assay was performed on MDA-MB-231 and MCF-7 cells, along with cell cycle analysis, cell death ELISA, Western blot analysis and an ROS production assay to decipher the mechanism of death. LC-MS/MS was also performed to identify the chemical composition of this ethanolic extract. RESULTS The results show a selective antiproliferative effect on both cell lines with no effect on normal mesenchymal stem cells. Further analysis suggested the activation of the apoptotic pathway as reflected by the increase in cellular and DNA fragmentation and alterations in apoptotic proteins such as Bax, Bcl-2 and c-PARP. ScBEE was also found to exhibit antioxidant effect, as shown by a decrease in ROS production. The underlying mechanism of action was explained by the presence of several bioactive compounds identified by LC-MS/MS, including alkaloids, terpenoids and phenols, which are elaborated in the manuscript. CONCLUSION This study highlights the antioxidant and anticancerous properties of S.clusiana for breast cancer treatment.
Collapse
Affiliation(s)
- Mona El Samarji
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Marianne El Khoury
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Tony Haykal
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Nazira Elias
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Natalia Gasilova
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laure Menin
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ahmad Houri
- Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Nisrine Machaka-Houri
- Department of Life and Earth Science, Faculty of Sciences, Saint Joseph University, Ras Maska 1104-2020, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
7
|
Bromelain mediates apoptosis in HeLa cells via ROS-independent pathway. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Deleterious effect of bone marrow-resident macrophages on hematopoietic stem cells in response to total body irradiation. Blood Adv 2022; 6:1766-1779. [PMID: 35100346 PMCID: PMC8941479 DOI: 10.1182/bloodadvances.2021005983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/29/2022] [Indexed: 11/20/2022] Open
Abstract
Bone marrow resident macrophages interact with a population of long-term hematopoietic stem cell (LT-HSC) but their role on LT-HSC properties after stress is not well defined. Here, we show that a 2 Gy total body irradiation (TBI)-mediated death of LT-HSC is associated with increased percentages of LT-HSC with reactive oxygen species (ROS) and of bone marrow resident macrophages producing nitric oxide (NO), resulting in an increased percentage of LT-HSC with endogenous cytotoxic peroxynitrites. Pharmacological or genetic depletion of bone marrow resident macrophages impairs the radio-induced increases in the percentage of both ROS+ LT-HSC and peroxynitrite+ LT-HSC and results in a complete recovery of a functional pool of LT-HSC. Finally, we show that after a 2 Gy-TBI, a specific decrease of NO production by bone marrow resident macrophages improves the LT-HSC recovery, whereas an exogenous NO delivery decreases the LT-HSC compartment. Altogether, these results show that bone marrow resident macrophages are involved in the response of LT-HSC to a 2 Gy-TBI and suggest that regulation of NO production can be used to modulate some deleterious effects of a TBI on LT-HSC.
Collapse
|
9
|
Apoptotic mechanisms of myricitrin isolated from Madhuca longifolia leaves in HL-60 leukemia cells. Mol Biol Rep 2021; 48:5327-5334. [PMID: 34156605 DOI: 10.1007/s11033-021-06500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Myricitrin, a naturally occurring flavonoid in Madhuca longifolia, possesses several medicinal properties. Even though our earlier work revealed its role against the proliferation of acute myelogenous leukemia cells (HL-60), its molecular mechanisms have not yet been revealed. The current study aims to explore the molecular mechanisms of myricitrin (isolated from an ethnomedicinal drug Madhuca longifolia) to induce apoptosis in HL-60 cells. Treatment with IC-50 dose of myricitrin (353 µM) caused cellular shrinkage and cell wall damage in HL-60 cells compared to untreated control cells. Myricitrin treatment reduced the mitochondrial membrane potential (22.95%), increased DNA fragmentation (90.4%), inhibited the cell survival proteins (RAS, B-RAF, & BCL-2) and also induced pro-apoptotic proteins (p38, pro-caspase-3, pro-caspase-9 and caspase-3) in the HL-60 cells. The present study provides scientific evidence for the apoptosis caused by myricitrin in HL-60 leukemia cells. Hence, the phytochemical myricitrin could be considered as a potential candidate to develop an anticancer drug after checking its efficacy through suitable pre-clinical and clinical studies.
Collapse
|
10
|
Wang D, Yin Z, Ma L, Han L, Chen Y, Pan W, Gong K, Gao Y, Yang X, Chen Y, Han J, Duan Y. Polysaccharide MCP extracted from Morchella esculenta reduces atherosclerosis in LDLR-deficient mice. Food Funct 2021; 12:4842-4854. [PMID: 33950051 DOI: 10.1039/d0fo03475d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pharmaceutical application of fungal polysaccharides has been extensively studied based on their multiple biological activities. However, the effect of Morchella esculenta polysaccharides on the development of atherosclerosis remains unknown. This study aims to investigate the anti-atherosclerotic effect of a novel polysaccharide (MCP) extracted from Morchella esculenta. The average molecular weight of MCP is 1.69 × 105 Da, and it is composed of glucose, mannose and galactose in the molar ratio of 1 : 1.9 : 0.51. LDLR-deficient (LDLR-/-) mice were fed high-fat diet (HFD) and administered intragastrically (i.g.) with saline or MCP dissolved in saline for 15 weeks. We found that MCP inhibited en face and sinus lesions. Moreover, serum levels of total and low-density lipoprotein cholesterol and triglyceride were decreased by MCP. The HFD-induced hepatic lipid accumulation was also attenuated by MCP. The underlying molecular mechanisms of anti-atherogenic and lipogenic effects of MCP might be attributed to reduced cholesterol synthesis by activating AMPKα signaling pathway and inhibiting SREBP2 expression. In addition, MCP-decreased serum triglyceride level is related to inhibiting LXRα expression. Taken together, these results indicate that MCP markedly alleviates atherosclerosis and M. esculenta can be used as a functional food additive to benefit patients with atherosclerosis.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Afrasiabi M, Seydi E, Rahimi S, Tahmasebi G, Jahanbani J, Pourahmad J. The selective toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) on oral squamous cell carcinoma (OSCC) by targeting their mitochondria. J Biochem Mol Toxicol 2021; 35:1-8. [PMID: 33704875 DOI: 10.1002/jbt.22769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 01/06/2023]
Abstract
In recent years, many researchers have made tremendous efforts into using nanotechnology in biomedical applications and science, such as magnetic resonance imaging, drug delivery, and in particular, oncological therapeutic via superparamagnetic iron oxide nanoparticles (SPIONs). Head and neck squamous cell carcinoma (HNSCC) and especially oral squamous cell carcinoma (OSCC) have been a serious and ongoing concern. There are many strong emphases on the importance of toxic mechanisms due to oxidative stress and specifically, the changed cellular response. Therefore, our study was designed to evaluate the effects of SPIONs on OSCC mitochondria because of the usefulness of the application of these nanoparticles in cancer treatment and diagnosis. An increased level of reactive oxygen species (ROS) is one of the substantial mechanisms found for SPIONs in this study, and initially originated from disruption of the electron transfer chain shown by a decrease in mitochondrial succinate dehydrogenase activity. Increased ROS formation subsequently followed a decline of mitochondrial membrane potential, the release of mitochondrial cytochrome complex, and mitochondrial swelling in the OSCC mitochondria compared with almost no effect in normal mitochondria. In addition, the SPIONs decreased cell viability and increased lipid peroxidation level and caspase-3 activity in OSCC cells. The results represented that the exposure to the SPIONs induced selective toxicity only on the OSCC but not normal mitochondria. Based on our findings, we finally concluded that the SPIONs may be considered as a potential therapeutic candidate for the treatment of OSCC.
Collapse
Affiliation(s)
- Mona Afrasiabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Shabnam Rahimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Tahmasebi
- Department of Physics, Iran University of Science and Technology, Tehran, Iran
| | - Jahanfar Jahanbani
- Department of Oral & Maxillofacial Pathology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Ma H, Song X, Huang P, Zhang W, Ling X, Yang X, Wu W, Xu H, Wang W. Myricetin protects natural killer cells from arsenite induced DNA damage by attenuating oxidative stress and retaining poly(ADP-Ribose) polymerase 1 activity. Mutat Res 2021; 865:503337. [PMID: 33865543 DOI: 10.1016/j.mrgentox.2021.503337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
Environmental exposure to arsenite (As+3) is known to induce immunotoxicity. Natural killer (NK) cells are innate lymphoid cells act as professional killers of tumor cells. Our previous report indicated that 500 ppb As+3 drinking water exposure induced significant DNA damage in the NK cells of C57BL/6 mice. Myricetin is a plant-derived flavonoid known as a strong antioxidant. In this study, daily administration of myricetin at 20 mg/kg was found to alleviate the cell population decrease and DNA damage in the NK cells of BALB/c mice exposed to 500 and 1000 ppb As+3 via drinking water. Oxidative stress and poly(ADP-ribose) polymerase 1 (PARP-1) inhibition were induced by As+3 at 1 and 2 μM in isolated mouse NK cells in vitro, which were attenuated by 20 μM myricetin. The mitigatory effect of myricetin on the PARP-1 inhibition in NK cells treated with As+3 was also found to be the result of its prevention of the zinc loss induced by As+3 on PARP-1. Collectively, these results demonstrated, for the first time, that myricetin could protect NK cells from As+3 induced DNA through attenuating oxidative stress and retaining PARP-1 activity, indicating that myricetin may be utilized for the prevention of the immunotoxicity induced by As+3 in NK cells.
Collapse
Affiliation(s)
- Huijuan Ma
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xiaodong Song
- Medical Laboratory Department, Hua Shan Hospital North, Fudan University, Shanghai, 201907, China
| | - Ping Huang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Weiwei Zhang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xinyue Ling
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xiaoning Yang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Wenwei Wu
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Huan Xu
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China.
| | - Wei Wang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China; Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA.
| |
Collapse
|
13
|
Liu RX, Luo RY, Tang MT, Liu YC, Chen ZF, Liang H. The first copper(I) complex of anthrahydrazone with potential ROS scavenging activity showed significant in vitro anticancer activity by inducing apoptosis and autophagy. J Inorg Biochem 2021; 218:111390. [PMID: 33721719 DOI: 10.1016/j.jinorgbio.2021.111390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/26/2022]
Abstract
Based on the anticancer pharmacophore of anthrahydrazone and quinoline, a new quinolylanthrahydrazone ligand, 9-AQH (anthracene-9-quinolylhydrazone), was synthesized to further afford four metal complexes, [CoII(9-AQH)(NO3)2(H2O)] (1), [NiII(9-AQH)2(H2O)2]·2NO3 (2), [CuI(9-AQH)2]·NO3 (3), [ZnII(9-AQH)2(NO3)]·NO3 (4), determined by X-ray single crystal diffraction analysis. The reaction of Cu(NO3)2 with 9-AQH formed the stable and repeatable copper(I) complex 3. In vitro screening demonstrated only 3 showed significant and broad-spectrum anticancer activity, indicating that Cu(I) played a key role in exerting the anticancer activity. In solution, Cu(I) was not naturally oxidized to Cu(II) suggested by 1H-NMR (Nuclear Magnetic Resonance) and EPR (Electron Paramagnetic Resonance) analysis. The presence of 3 could also catalyze the H2O2 system to give hydroxyl free radicals, suggested by further EPR and electrophoresis assay. At the cellular level, although no obvious Cu(II) signals were detected and the total ROS (Reactive Oxygen Species) scavenging in the tumor cells treated with 3, the potential redox property between Cu(I)/Cu(II), as a key role, should not be denied for the significant anticancer activity of 3, considering the much complicated circumstance and other reductive substances in cells. The anticancer mechanism of 3 on the most sensitive MGC-803 cells pointed to significant cell apoptosis through mitochondrial pathway, rather than cell cycle arrest. While the autophagy observed in tumor cells treated by 3 suggested its complicated anticancer mechanism, and whether there was an intrinsic correlation still needed to be further investigated.
Collapse
Affiliation(s)
- Rui-Xue Liu
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Ru-Yi Luo
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Meng-Ting Tang
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yan-Cheng Liu
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| | - Zhen-Feng Chen
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Hong Liang
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
14
|
Hackman GL, Collins M, Lu X, Lodi A, DiGiovanni J, Tiziani S. Predicting and Quantifying Antagonistic Effects of Natural Compounds Given with Chemotherapeutic Agents: Applications for High-Throughput Screening. Cancers (Basel) 2020; 12:cancers12123714. [PMID: 33322034 PMCID: PMC7763027 DOI: 10.3390/cancers12123714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Natural products have been used for centuries to treat various human ailments. In recent decades, multi-drug combinations that utilize natural products to synergistically enhance the therapeutic effects of cancer drugs have been identified and have shown success in improving treatment outcomes. While drug synergy research is a burgeoning field, there are disagreements on the definitions and mathematical parameters that prevent the standardization and proper usage of the terms synergy, antagonism, and additivity. This contributes to the relatively small amount of data on the antagonistic effects of natural products on cancer drugs that can diminish their therapeutic efficacy and prevent cancer regression. The ability of natural products to potentially degrade or reverse the molecular activity of cancer therapeutics represents an important but highly under-emphasized area of research that is often overlooked in both pre-clinical and clinical studies. This review aims to evaluate the body of work surrounding the antagonistic interactions between natural products and cancer therapeutics and highlight applications for high-throughput screening (HTS) and deep learning techniques for the identification of natural products that antagonize cancer drug efficacy.
Collapse
Affiliation(s)
- G. Lavender Hackman
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (G.L.H.); (M.C.); (X.L.); (A.L.)
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA;
| | - Meghan Collins
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (G.L.H.); (M.C.); (X.L.); (A.L.)
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA;
| | - Xiyuan Lu
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (G.L.H.); (M.C.); (X.L.); (A.L.)
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA;
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (G.L.H.); (M.C.); (X.L.); (A.L.)
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA;
| | - John DiGiovanni
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA;
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (G.L.H.); (M.C.); (X.L.); (A.L.)
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA;
- Department of Oncology, Dell Medical School, LiveSTRONG Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA
- Correspondence: ; Tel.: +1-512-495-4706
| |
Collapse
|
15
|
Sumanth B, Lakshmeesha TR, Ansari MA, Alzohairy MA, Udayashankar AC, Shobha B, Niranjana SR, Srinivas C, Almatroudi A. Mycogenic Synthesis of Extracellular Zinc Oxide Nanoparticles from Xylaria acuta and Its Nanoantibiotic Potential. Int J Nanomedicine 2020; 15:8519-8536. [PMID: 33173290 PMCID: PMC7646447 DOI: 10.2147/ijn.s271743] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose The study aimed to find an effective method for fungal-mediated synthesis of zinc oxide nanoparticles using endophytic fungal extracts and to evaluate the efficiency of synthesized ZnO NPs as antimicrobial and anticancerous agents. Methods Zinc oxide nanoparticles (ZnO NPs) were produced from zinc nitrate hexahydrate with fungal filtrate by the combustion method. The spectroscopy and microscopy techniques, such as ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM) with selected area electron diffraction (SAED), were used to characterize the obtained product. Antibacterial activity on Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) samples was tested by broth microplate dilution technique. ZnO NPs antifungal activity was determined against plant pathogenic and regular contaminating fungi using the food-poison method. The anticancerous assay of the synthesized ZnO NPs was also investigated by cell uptake, MTT assay, and apoptosis assay. Results The fungal synthesized ZnO NPs were pure, mainly hexagonal in shape and size range of 34–55 nm. The biosynthesized ZnO NPs could proficiently inhibit both Gram-positive and Gram-negative bacteria. ZnO NPs synthesized from fungal extract exhibited antifungal activity in a dose-dependent manner with a high percentage of mycelial inhibition. The cell uptake analysis of ZnO NPs suggests that a significant amount of ZnO NPs (1 μg/mL) was internalized without disturbing cancer cells’ morphology. As a result, the synthesized ZnO NPs showed significant anticancer activity against cancer cells at 1 μg/mL concentration. Conclusion This fungus-mediated synthesis of ZnO NPs is a simple, eco-friendly, and non-toxic method. Our results show that the synthesized ZnO NPs are an excellent novel antimicrobial and anticancer agent. Further studies are required to understand the mechanism of the antimicrobial, anticancerous action of ZnO NPs and their possible genotoxicity.
Collapse
Affiliation(s)
- Basavaraju Sumanth
- Department of Microbiology & Biotechnology, Jnana Bharathi Campus, Bangalore University, Bangalore 560056, India
| | | | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahaman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | | | - Balagangadharaswamy Shobha
- Department of Microbiology & Biotechnology, Jnana Bharathi Campus, Bangalore University, Bangalore 560056, India
| | | | - Chowdappa Srinivas
- Department of Microbiology & Biotechnology, Jnana Bharathi Campus, Bangalore University, Bangalore 560056, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| |
Collapse
|
16
|
Wang F, Roh YS. Mitochondrial connection to ginsenosides. Arch Pharm Res 2020; 43:1031-1045. [PMID: 33113096 DOI: 10.1007/s12272-020-01279-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in energy synthesis and supply, thereby maintaining cellular function, survival, and energy homeostasis via mitochondria-mediated pathways, including apoptosis and mitophagy. Ginsenosides are responsible for most immunological and pharmacological activities of ginseng, a highly beneficial herb with antioxidant, anti-inflammatory, anti-apoptotic, and neuroprotective properties. Studies have shown that ginsenosides assist in regulating mitochondrial energy metabolism, oxidative stress, biosynthesis, apoptosis, mitophagy, and the status of membrane channels, establishing mitochondria as one of their most important targets. This article reviews the regulatory effects of ginsenosides on the mitochondria and highlights their beneficial role in treating mitochondrial diseases.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pharmacy, College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, 28160, South Korea
| | - Yoon Seok Roh
- Department of Pharmacy, College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, 28160, South Korea.
| |
Collapse
|
17
|
Perdomo RT, Defende CP, da Silva Mirowski P, Freire TV, Weber SS, Garcez WS, da Rosa Guterres Z, de Fátima Cepa Matos M, Garcez FR. Myricitrin from Combretum lanceolatum Exhibits Inhibitory Effect on DNA-Topoisomerase Type II α and Protective Effect Against In Vivo Doxorubicin-Induced Mutagenicity. J Med Food 2020; 24:273-281. [PMID: 32543997 DOI: 10.1089/jmf.2020.0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Flavonoids-compounds abundant in balanced daily diets-have been extensively investigated for biological activity. The pronounced antiproliferative effects of flavonoids have prompted studies to elucidate their mode of action against tumor cells. The anticancer properties of myricetin, a 3',4',5'-tri-hydroxylated flavonol, have been confirmed for a number of neoplasms, but myricitrin, its 3-O-rhamnoside derivative found in fruits and other parts of edible plants, has been scarcely investigated as a chemopreventive agent. This study evaluated the antiproliferative potential of myricitrin obtained from Combretum lanceolatum (Combretaceae) against MCF7 (breast), PC-3 (prostate), HT-29 (colon), 786-0 (kidney), and HL-60 (acute promyelocytic leukemia) cancer cell lines, using the sulforhodamine B and tetrazolium salt assays. Myricitrin proved most effective in inhibiting growth of HL-60 cells (GI50 = 53.4 μmol·L-1), yet showed weak antiproliferative activity against other cell lines. Possible cytotoxic mechanisms involving inhibition of topoisomerases I and IIα by myricitrin were also evaluated, revealing inhibitory activity only against topoisomerase IIα. The results suggested that topoisomerase IIα inhibition is the probable mechanism responsible for the antiproliferative activity of myricitrin. In vivo mutagenicity by myricitrin and its possible antimutagenic effect on doxorubicin-induced DNA damage were also investigated by performing the somatic mutation and recombination test (SMART) on Drosophila melanogaster. Myricitrin proved nonmutagenic to the offspring of standard (ST) and high-bioactivation (HB) crosses, while cotreatments with doxorubicin revealed the antimutagenic properties of myricitrin, even under conditions of high metabolic activation.
Collapse
Affiliation(s)
- Renata Trentin Perdomo
- Laboratory of Molecular Biology and Cell Culture, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Camila Pineze Defende
- Laboratory of Molecular Biology and Cell Culture, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Talita Vilalva Freire
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Simone Schneider Weber
- Laboratory of Molecular Biology and Cell Culture, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil.,Institute of Exact Sciences and Technology, Federal University of Amazonas, Itacoatiara, AM, Brazil
| | - Walmir Silva Garcez
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Zaira da Rosa Guterres
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Maria de Fátima Cepa Matos
- Laboratory of Molecular Biology and Cell Culture, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | |
Collapse
|
18
|
Myricetin induces apoptosis mediated by oxidative stress in 4T1 and E0771 mammary cancer cells. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00089-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Kunjiappan S, Govindaraj S, Parasuraman P, Sankaranarayanan M, Arunachalam S, Palanisamy P, Mohan UP, Babkiewicz E, Maszczyk P, Vellaisamy S, Panneerselvam T. Design, in silico modelling and functionality theory of folate-receptor-targeted myricetin-loaded bovine serum albumin nanoparticle formulation for cancer treatment. NANOTECHNOLOGY 2020; 31:155102. [PMID: 31775133 DOI: 10.1088/1361-6528/ab5c56] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Targeted drug delivery systems are a promising field of research. Nano-engineered material-mediated drug delivery possesses remarkable potential for the treatment of various malignancies. Here, folic acid (FA)-conjugated bovine serum albumin (BSA) nanoparticles (NPs) were used to encapsulate myricetin (Myr). Subsequently, the delivery of Myr via naturally overexpressed folate receptor (FR) to FR-positive breast cancer cells was studied. Myr-loaded BSA NPs were assembled by modified desolvation cross-linking technique. An FA-conjugated carrier, N-hydroxysuccinimide (NHS)-FA ester, was successfully synthesized. Its functional and structural characteristics were confirmed by ultraviolet, Fourier-transform infrared, and proton nuclear magnetic resonance spectroscopy. Biocompatible FA-conjugated, Myr-loaded BSA NPs (FA-Myr-BSA NPs) were successfully formulated using a carbonate/bicarbonate buffer. Their morphology, size, shape, physiological stability, and drug release kinetics were studied. Molecular docking studies revealed that FA-Myr-BSA NPs readily bound non-covalently to folate receptors and facilitated active drug endocytosis. FA-Myr-BSA NPs could trigger fast release of Myr in an acidic medium (pH 5.4), and showed high biocompatibility in a physiological medium. FA-Myr-BSA NPs effectively decreased the viability of MCF-7 cells after 24 h with 72.45 μg ml-1 IC50 value. In addition, FA-Myr-BSA NPs enhanced the uptake of Myr in MCF-7 cells. After incubation, a typical apoptotic morphology of condensed nuclei and distorted membrane bodies was observed. The NPs also targeted mitochondria of MCF-7 cells, significantly increasing reactive oxygen species release and contributing to the loss of mitochondrial membrane integrity. The observed results confirm that the newly developed FA-Myr-BSA NPs can serve as a potential carrier for Myr to increase the anticancer activity of this chemotherapeutic.
Collapse
Affiliation(s)
- Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamilnadu, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jing SQ, Wang SS, Zhong RM, Zhang JY, Wu JZ, Tu YX, Pu Y, Yan LJ. Neuroprotection of Cyperus esculentus L. orientin against cerebral ischemia/reperfusion induced brain injury. Neural Regen Res 2020; 15:548-556. [PMID: 31571667 PMCID: PMC6921342 DOI: 10.4103/1673-5374.266063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Orientin is a flavonoid monomer. In recent years, its importance as a source of pharmacological active substance is growing rapidly due to its properties such as anti-myocardial ischemia, anti-apoptosis, anti-radiation, anti-tumor, and anti-aging. However, the neuroprotective effects of Orientin on stroke injury have not been comprehensively evaluated. The aim of the present study was thus to investigate the neuroprotective capacity and the potential mechanisms of Cyperus esculentus L. orientin (CLO) from Cyperus esculentus L. leaves against ischemia/reperfusion (I/R) injury using standard orientin as control. For in vitro studies, we treated HT22 cells with CoCl2 as an in vitro ischemic injury model. HT22 cells in the control group were treated with CoCl2. For in vivo studies, we used rat models of middle cerebral artery occlusion, and animals that received sham surgery were used as controls. We found that CLO protected CoCl2-induced HT22 cells against ischemia/reperfusion injury by lowering lipid peroxidation and reactive oxygen species formation as well as decreasing protein oxidation. However, CLO did not reduce the release of lactate dehydrogenase nor increase the activity of superoxide dismutase. Results showed that CLO could decrease neurological deficit score, attenuate brain water content, and reduce cerebral infarct volume, leading to neuroprotection during cerebral ischemia-reperfusion injury. Our studies indicate that CLO flavonoids can be taken as a natural antioxidant and bacteriostastic substance in food and pharmaceutical industry. The molecular mechanisms of CLO could be at least partially attributed to the antioxidant properties and subsequently inhibiting activation of casepase-3. All experimental procedures and protocols were approved on May 16, 2016 by the Experimental Animal Ethics Committee of Xinjiang Medical University of China (approval No. IACUC20160516-57).
Collapse
Affiliation(s)
- Si-Qun Jing
- Yingdong College of Food Science and Engineering, Shaoguan University, Shaoguan, Guangdong Province, China
| | - Sai-Sai Wang
- School of Bioengineering, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Rui-Min Zhong
- Yingdong College of Food Science and Engineering, Shaoguan University, Shaoguan, Guangdong Province, China
| | - Jun-Yan Zhang
- Yingdong College of Food Science and Engineering, Shaoguan University, Shaoguan, Guangdong Province, China
| | - Jin-Zi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Yi-Xian Tu
- College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yan Pu
- College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
21
|
Campos L, López-Gresa MP, Fuertes D, Bellés JM, Rodrigo I, Lisón P. Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus. BMC PLANT BIOLOGY 2019; 19:450. [PMID: 31655554 PMCID: PMC6815406 DOI: 10.1186/s12870-019-2063-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/09/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Secondary metabolites play an important role in the plant defensive response. They are produced as a defence mechanism against biotic stress by providing plants with antimicrobial and antioxidant weapons. In higher plants, the majority of secondary metabolites accumulate as glycoconjugates. Glycosylation is one of the commonest modifications of secondary metabolites, and is carried out by enzymes called glycosyltransferases. RESULTS Here we provide evidence that the previously described tomato wound and pathogen-induced glycosyltransferase Twi1 displays in vitro activity toward the coumarins scopoletin, umbelliferone and esculetin, and the flavonoids quercetin and kaempferol, by uncovering a new role of this gene in plant glycosylation. To test its activity in vivo, Twi1-silenced transgenic tomato plants were generated and infected with Tomato spotted wilt virus. The Twi1-silenced plants showed a differential accumulation of Twi1 substrates and enhanced susceptibility to the virus. CONCLUSIONS Biochemical in vitro assays and transgenic plants generation proved to be useful strategies to assign a role of tomato Twi1 in the plant defence response. Twi1 glycosyltransferase showed to regulate quercetin and kaempferol levels in tomato plants, affecting plant resistance to viral infection.
Collapse
Affiliation(s)
- Laura Campos
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - María Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Diana Fuertes
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - José María Bellés
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
22
|
Tavsan Z, Kayali HA. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed Pharmacother 2019; 116:109004. [DOI: 10.1016/j.biopha.2019.109004] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
|
23
|
Kim CS, Kim J, Kim YS, Jo K, Lee YM, Jung DH, Lee IS, Kim JH, Kim JS. Improvement in Diabetic Retinopathy through Protection against Retinal Apoptosis in Spontaneously Diabetic Torii Rats Mediated by Ethanol Extract of Osteomeles schwerinae C.K. Schneid. Nutrients 2019; 11:nu11030546. [PMID: 30836664 PMCID: PMC6470872 DOI: 10.3390/nu11030546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Retinal apoptosis plays a critical role in the progression of diabetic retinopathy (DR), a common diabetic complication. Currently, the tight control of blood glucose levels is the standard approach to prevent or delay the progression of DR. However, prevalence of DR among diabetic patients remains high. Focusing on natural nutrients or herbal medicines that can prevent or delay the onset of diabetic complications, we administered an ethanol extract of the aerial portion of Osteomeles schwerinae (OSSCE), a Chinese herbal medicine, over a period of 17 weeks to spontaneously diabetic Torii (SDT) rats. OSSCE was found to ameliorate retinal apoptosis through the regulation of advanced glycation end product (AGE) accumulation, oxidative stress, and mitochondrial function via the inhibition of NF-κB activity, in turn, through the downregulation of PKCδ, P47phox, and ERK1/2. We further demonstrated in 25 mM glucose-treated human retinal microvascular endothelial cells (HRMECs) that hyperoside (3-O-galactoside-quercetin), quercitrin (3-O-rhamnoside-quercetin), and 2″-O-acetylvitexin (8-C-(2″-O-acetyl-glucoside)-apigenin) were the active components of OSSCE that mediated its pharmacological action. Our results provide evidence that OSSCE is a powerful agent that may directly mediate a delay in the development or disease improvement in patients of DR.
Collapse
Affiliation(s)
- Chan-Sik Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- Korean Convergence Medicine, University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Junghyun Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Korea.
| | - Young Sook Kim
- Korean Convergence Medicine, University of Science and Technology (UST), Daejeon 34113, Korea.
- Clinical Research Coordination Team, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Kyuhyung Jo
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Yun Mi Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Dong Ho Jung
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Ik Soo Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Joo-Hwan Kim
- Department of Life Science. Gachon University, 1342, Seongnamdaero, Seongnam, Gyeonggido 13120, Korea.
| | - Jin Sook Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|
24
|
Naserzadeh P, Taghizadeh G, Atabaki B, Seydi E, Pourahmad J. A comparison of mitochondrial toxicity of mephedrone on three separate parts of brain including hippocampus, cortex and cerebellum. Neurotoxicology 2019; 73:40-49. [PMID: 30802467 DOI: 10.1016/j.neuro.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/19/2019] [Accepted: 02/20/2019] [Indexed: 11/18/2022]
Abstract
Mephedrone (4-methylmethcathinone) is a new and popular drug of abuse and also widely available on the internet and still legal in some parts of the world. The central nervous system is the target of mephedrone and recent evidence suggested that mephedrone could affect mitochondria in brain tissue. However, the underlying mechanisms of mephedrone toxicity in brain mitochondria have not yet been well understood. In this study, mitochondria from three separate parts of rat brain hippocampus, cortex, and cerebellum were obtained using differential centrifugation and were incubated with different concentrations of mephedrone (3, 6 and 12 μM). Then, the mitochondrial parameters toxicity were determined. The results showed that mephedrone (3, 6 and 12 μM) induced impairment in the activity of the mitochondrial complex II and IV. Also, mephedrone (3, 6 and 12 μM) increased mitochondrial reactive oxygen species (ROS) level, collapsed mitochondria membrane potential (MMP), induced swelling in the mitochondria and damaged the mitochondrial outer membrane (MOM) in the mitochondria obtained from hippocampus, cortex, and cerebellum, which in all cases is associated with the cytochrome c release. Furthermore, increased disturbance in oxidative phosphorylation was also shown by the decrease in ATP level in mephedrone-treated mitochondria indicating mitochondrial dysfunction in separate parts of the brain. This study suggests that mephedrone via increasing oxidative stress and impairment of the mitochondrial respiratory chain in the hippocampus, cortex, and cerebellum may play a key role in the neurotoxicity.
Collapse
Affiliation(s)
- Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Ghorban Taghizadeh
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran; Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Atabaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Enayatollah Seydi
- Department of Occupational Health Engineering, Alborz University of Medical Sciences, Karaj, Iran; Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran.
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Lee H, Lee DG. The Potential of Gold and Silver Antimicrobials: Nanotherapeutic Approach and Applications. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
26
|
Saraei R, Marofi F, Naimi A, Talebi M, Ghaebi M, Javan N, Salimi O, Hassanzadeh A. Leukemia therapy by flavonoids: Future and involved mechanisms. J Cell Physiol 2018; 234:8203-8220. [PMID: 30500074 DOI: 10.1002/jcp.27628] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Flavonoids are a varied family of phytonutrients (plant chemicals) usually are detected in fruits and vegetables. In this big family, there exist more than 10,000 members that is separated into six chief subtypes: isoflavonols, flavonoenes, flavones, flavonols, anthocyanins, and chalcones. The natural compounds, such as fruits, have visible positive effects in regulating of survival involved signaling pathways that performance as the regulator of cell survival, growth, and proliferation. Researchers have established that commonly consumption up flavonoids decreases incidence and development risk of certain cancers, especially leukemia. Flavonoids have been able to induce apoptosis and stimulate cell cycle arrest in cancer cells via different pathways. Similarly, they have antiangiogenesis and antimetastasis capability, which were shown in wide ranges of cancer cells, particularly, leukemia. It seems that flavonoid because of their widespread approval, evident safety and low rate of side effects, have hopeful anticarcinogenic potential for leukemia therapy. Based on the last decade reports, the most important acting mechanisms of these natural compounds in leukemia cells are stimulating of apoptosis pathways by upregulation of caspase 3, 8, 9 and poly ADP-ribose polymerase (PARP) and proapoptotic proteins, particularly Bax activation. As well, they can induce cell cycle arrest in target cells not only via increasing of activated levels of p21 and p53 but also by inhibition of cyclins and cyclin-dependent kinases. Furthermore, attenuation of neclear factor-κB and signal transducer and activator of transcription 3 activation, suppression of signaling pathway and downregulation of intracellular antiapoptotic proteins are other significant antileukemic function mechanism of flavonoids. Overall, it appears that flavonoids are promising and effective compounds in the field of leukemia therapy. In this review, we tried to accumulate and revise most promising flavonoids and finally declared their major working mechanisms in leukemia cells.
Collapse
Affiliation(s)
- Raedeh Saraei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Naimi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Javan
- Department of Clinical Biochemistry and Laboratories Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Salimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Seydi E, Fatahi M, Naserzadeh P, Pourahmad J. The effects of para-phenylenediamine (PPD) on the skin fibroblast cells. Xenobiotica 2018; 49:1143-1148. [PMID: 30474463 DOI: 10.1080/00498254.2018.1541264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. Para-phenylenediamine (PPD) is the commonest and most well-known component of hair dyes. PPD is found in more than 1000 hair dye formulations and is the most frequently used permanent hair dye component in Europe, North America and East Asia. PPD containing hair dyes have been associated with cancer and mutagenicity. Apart from that, PPD has potential toxicity which includes acute toxicity such as allergic contact dermatitis and subacute toxicity. 2. In this study, we examined the effects of the PPD composition on the skin-isolated fibroblast cells. Fibroblast cells were isolated from the skin and cell viability, reactive oxygen species (ROS) production, the collapse of mitochondrial membrane potential (MMP), lipid peroxidation (LPO), damage to the lysosome release of lactate dehydrogenase (LDH) and finally release of cytochrome c were examined following the exposure to various concentrations of PPD. 3. Our results showed that exposure to PPD increased ROS generation, LPO, the collapse of MMP, LDH release and cytochrome c release. Our results suggest that PPD can induce damage to the lysosomal membrane. 4. These results showed that PPD composition has a selective toxicity on skin fibroblasts cell and mitochondria are considered one of the goals of its toxicity.
Collapse
Affiliation(s)
- Enayatollah Seydi
- a Department of Occupational Health and Safety Engineering School of Health , Alborz University of Medical Sciences , Karaj , Iran
| | - Mohsen Fatahi
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Parvaneh Naserzadeh
- c Pharmaceutical Sciences Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Jalal Pourahmad
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
28
|
Jo H, Oh JH, Park DW, Lee C, Min CK. Oleanolic acid 3-acetate, a minor element of ginsenosides, induces apoptotic cell death in ovarian carcinoma and endometrial carcinoma cells via the involvement of a reactive oxygen species-independent mitochondrial pathway. J Ginseng Res 2018; 44:96-104. [PMID: 32095097 PMCID: PMC7033343 DOI: 10.1016/j.jgr.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 02/08/2023] Open
Abstract
Objectives Oleanolic acid, a minor element of ginsenosides, and its derivatives have been shown to have cytotoxicity against some tumor cells. The impact of cytotoxic effect of oleanolic acid 3-acetate on ovarian cancer SKOV3 cells and endometrial cancer HEC-1A cells were examined both in vivo and in vitro to explore the underlying mechanisms. Methods Cytotoxic effects of oleanolic acid 3-acetate were assessed by cell viability, phosphatidylserine exposure on the cell surface, mitochondrial release of cytochrome C, nuclear translocation of apoptosis-inducing factor, depolarization of mitochondrial transmembrane potential (ΔΨm), and generation of reactive oxygen species (ROS). In vivo inhibition of tumor growth was also assessed with xenografts in immunocompromised mice. Results Oleanolic acid 3-acetate exhibited potent cytotoxicity toward SKOV3 and HEC-1A cells by decreasing cell viability in a concentration-dependent manner. Importantly, oleanolic acid 3-acetate effectively suppressed the growth of SKOV3 cell tumor xenografts in immunocompromised mice. Furthermore, oleanolic acid 3-acetate induced apoptotic cell death as revealed by loss of ΔΨm, release of cytochrome c, and nuclear translocation of apoptosis-inducing factor with a concomitant activation of many proapoptotic cellular components including poly(ADP-ribose) polymerase, Bcl-2, and caspases-8, caspase-3, and caspase-7. Oleanolic acid 3-acetate, however, caused a decrease in ROS production, suggesting the involvement of an ROS-independent pathway in oleanolic acid 3-acetate–induced apoptosis in SKOV3 and HEC-1A cells. Conclusion These findings support the notion that oleanolic acid 3-acetate could be used as a potent anticancer supplementary agent against ovarian and endometrial cancer. Oleanolic acid 3-acetate exerts its proapoptotic effects through a rather unique molecular mechanism that involves an unconventional ROS-independent but mitochondria-mediated pathway.
Collapse
Affiliation(s)
- Hantae Jo
- Department of Biological Sciences, Ajou University, Suwon, Republic of Korea
| | - Jeong-Hyun Oh
- Oncology Business Unit, MSD-Korea, Seoul, Republic of Korea
| | - Dong-Wook Park
- Laboratory of Reproductive Medicine, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, Republic of Korea
| | - Changho Lee
- Department of Pharmacology and Biomedical Science, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Churl K Min
- Department of Biological Sciences, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
29
|
Gurunathan S, Kang MH, Kim JH. Combination Effect of Silver Nanoparticles and Histone Deacetylases Inhibitor in Human Alveolar Basal Epithelial Cells. Molecules 2018; 23:molecules23082046. [PMID: 30111752 PMCID: PMC6222610 DOI: 10.3390/molecules23082046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/15/2023] Open
Abstract
Although many treatment strategies have been reported for lung disease, the mechanism of combination therapy using silver nanoparticles (AgNPs) and histone deacetylases inhibitors (HDACi) remains unclear. Therefore, innovative treatment strategies are essential for addressing the therapeutic challenges of this highly aggressive lung cancer. AgNPs and HDACi seem to be the best candidates for anticancer therapy because of their anti-proliferative effect in a variety of cancer cells. First, we synthesized AgNPs using wogonin as a reducing and stabilizing agent, following which the synthesized AgNPs were characterized by various analytical techniques. The synthesized AgNPs exhibited dose- and size-dependent toxicity towards A549 cells. Interestingly, the combination of AgNPs and MS-275 significantly induces apoptosis, which was accompanied by an increased level of reactive oxygen species (ROS); leakage of lactate dehydrogenase (LDH); secretion of TNFα; dysfunction of mitochondria; accumulation autophagosomes; caspase 9/3 activation; up and down regulation of pro-apoptotic genes and anti-apoptotic genes, respectively; and eventually, induced DNA-fragmentation. Our findings suggest that AgNPs and MS-275 induce cell death in A549 lung cells via the mitochondrial-mediated intrinsic apoptotic pathway. Finally, our data show that the combination of AgNPs and MS-275 is a promising new approach for the treatment of lung cancer and our findings contribute to understanding the potential roles of AgNPs and MS-275 in pulmonary disease. However, further study is warranted to potentiate the use of this combination therapy in cancer therapy trials.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
30
|
Knickle A, Fernando W, Greenshields AL, Rupasinghe HPV, Hoskin DW. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food Chem Toxicol 2018; 118:154-167. [PMID: 29742465 DOI: 10.1016/j.fct.2018.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/30/2022]
Abstract
Myricetin is a dietary phytochemical with anticancer activity; however, the effect of myricetin on breast cancer cells remains unclear. Here, we show that myricetin inhibited the growth of triple-negative breast cancer (TNBC) cells but was less inhibitory for normal cells. The effect of myricetin was comparable to epigallocatechin gallate and doxorubicin, and greater than resveratrol and cisplatin. Myricetin-treated TNBC cells showed evidence of early and late apoptosis/necrosis, which was associated with intracellular reactive oxygen species (ROS) accumulation, extracellular regulated kinase 1/2 and p38 mitogen-activated protein kinase activation, mitochondrial membrane destabilization and cytochrome c release, and double-strand DNA breaks. The antioxidant N-acetyl-cysteine protected myricetin-treated TNBC cells from cytotoxicity due to DNA damage. Myricetin also induced hydrogen peroxide (H2O2) production in cell-free culture medium, as well as in the presence of TNBC cells and normal cells. In addition, deferiprone-mediated inhibition of intracellular ROS generation via the iron-dependent Fenton reaction and inhibition of extracellular ROS accumulation with superoxide dismutase plus catalase prevented myricetin-induced cytotoxicity in TNBC cell cultures. We conclude that the cytotoxic effect of myricetin on TNBC cells was due to oxidative stress initiated by extracellular H2O2 formed by autoxidation of myricetin, leading to intracellular ROS production via the Fenton reaction.
Collapse
Affiliation(s)
- Allison Knickle
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Anna L Greenshields
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - H P Vasantha Rupasinghe
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - David W Hoskin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Surgery, Faculty of Medicine, Dalhousie University, Nova Scotia, Canada.
| |
Collapse
|
31
|
p66Shc Mediates Mitochondrial Dysfunction Dependent on PKC Activation in Airway Epithelial Cells Induced by Cigarette Smoke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5837123. [PMID: 29849902 PMCID: PMC5925171 DOI: 10.1155/2018/5837123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/08/2018] [Accepted: 02/28/2018] [Indexed: 12/02/2022]
Abstract
Airway epithelial mitochondrial injury plays a critical role in the pathogenesis of chronic obstructive pulmonary disease (COPD). The p66Shc adaptor protein is a newly recognized mediator of mitochondrial dysfunction. However, little is known about the effect of p66Shc on airway epithelial damage in the development of COPD. The aim of the present study is to investigate the roles of p66Shc and its upstream regulators in the mitochondrial injury of airway epithelial cells (Beas-2b) induced by cigarette smoke extract (CSE). Our present study revealed that CSE increased p66Shc expression and its mitochondrial translocation in concentration and time-dependent manners in airway epithelial cells. And p66Shc siRNA significantly attenuated mitochondrial dysfunction and cell injury when airway epithelial cells were stimulated with 7.5% CSE. The total and phosphorylated expression of PKCβ and PKCδ was significantly increased associated with mitochondrial dysfunction and cell injury when airway epithelial cells were exposed to 7.5% CSE. The pretreatments with pharmacological inhibitors of PKCβ and PKCδ could notably suppress p66Shc phosphorylation and its mitochondrial translocation and protect the mitochondria and cells against oxidative damage when airway epithelial cells were incubated with 7.5% CSE. These data suggest that a novel PKCβ/δ-p66Shc signaling pathway may be involved in the pathogenesis of COPD and other oxidative stress-associated pulmonary diseases and provide a potential therapeutic target for these diseases.
Collapse
|
32
|
Plant-Derived Anticancer Agents: Lessons from the Pharmacology of Geniposide and Its Aglycone, Genipin. Biomedicines 2018; 6:biomedicines6020039. [PMID: 29587429 PMCID: PMC6027249 DOI: 10.3390/biomedicines6020039] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
For centuries, plants have been exploited by mankind as sources of numerous cancer chemotherapeutic agents. Good examples of anticancer compounds of clinical significance today include the taxanes (e.g., taxol), vincristine, vinblastine, and the podophyllotoxin analogues that all trace their origin to higher plants. While all these drugs, along with the various other available therapeutic options, brought some relief in cancer management, a real breakthrough or cure has not yet been achieved. This critical review is a reflection on the lessons learnt from decades of research on the iridoid glycoside geniposide and its aglycone, genipin, which are currently used as gold standard reference compounds in cancer studies. Their effects on tumour development (carcinogenesis), cancer cell survival, and death, with particular emphasis on their mechanisms of actions, are discussed. Particular attention is also given to mechanisms related to the dual pro-oxidant and antioxidant effects of these compounds, the mitochondrial mechanism of cancer cell killing through reactive oxygen species (ROS), including that generated through the uncoupling protein-2 (UCP-2), the inflammatory mechanism, and cell cycle regulation. The implications of various studies for the evaluation of glycosidic and aglycone forms of natural products in vitro and in vivo through pharmacokinetic scrutiny are also addressed.
Collapse
|
33
|
Reactive oxygen species-independent apoptotic pathway by gold nanoparticles in Candida albicans. Microbiol Res 2018; 207:33-40. [DOI: 10.1016/j.micres.2017.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/28/2017] [Accepted: 11/04/2017] [Indexed: 11/23/2022]
|
34
|
Kumar D, Haldar S, Gorain M, Kumar S, Mulani FA, Yadav AS, Miele L, Thulasiram HV, Kundu GC. Epoxyazadiradione suppresses breast tumor growth through mitochondrial depolarization and caspase-dependent apoptosis by targeting PI3K/Akt pathway. BMC Cancer 2018; 18:52. [PMID: 29310608 PMCID: PMC5759831 DOI: 10.1186/s12885-017-3876-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022] Open
Abstract
Background Breast cancer is one of the most commonly diagnosed invasive cancers among women around the world. Among several subtypes, triple negative breast cancer (TNBC) is highly aggressive and chemoresistant. Treatment of TNBC patients has been challenging due to heterogeneity and devoid of well-defined molecular targets. Thus, identification of novel effective and selective agents against TNBC is essential. Methods We used epoxyazadiradione to assess the cell viability, mitochondrial potential, ROS level, cell migration, apoptosis and protein expression in cell culture models of TNBC MDA-MB-231 and ER+ MCF-7 breast cancer cells. The molecular mechanism was examined in two different type of breast cancer cells in response to epoxyazadiradione. We have also analyzed the effect of epoxyazadiradione on breast tumor growth using in vivo mice model. Results In this study, we for the first time investigated that out of 10 major limonoids isolated from Azadirachta indica, epoxyazadiradione exhibits most potent anti-cancer activity in both TNBC and ER+ breast cancer cells. Epoxyazadiradione induces apoptosis and inhibits PI3K/Akt-mediated mitochondrial potential, cell viability, migration and angiogenesis. It also inhibits the expression of pro-angiogenic and pro-metastatic genes such as Cox2, OPN, VEGF and MMP-9 in these cells. Furthermore, epoxyazadiradione attenuates PI3K/Akt-mediated AP-1 activation. Our in vivo data revealed that epoxyazadiradione suppresses breast tumor growth and angiogenesis in orthotopic NOD/SCID mice model. Conclusion Our findings demonstrate that epoxyazadiradione inhibits PI3K/Akt-dependent mitochondrial depolarisation, induces apoptosis and attenuates cell migration, angiogenesis and breast tumor growth suggesting that this compound may act as a potent therapeutic agent for the management of breast cancer. Electronic supplementary material The online version of this article (10.1186/s12885-017-3876-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Saikat Haldar
- Chemical Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Santosh Kumar
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington D.C., 20057, USA
| | - Fayaj A Mulani
- Chemical Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Lucio Miele
- Department of Genetics, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | | | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India.
| |
Collapse
|
35
|
Tan G, Uson-Lopez RA, Rahman MM, Hosokawa T, Saito T, Kurasaki M. Myricetin enhances on apoptosis induced by serum deprivation in PC12 cells mediated by mitochondrial signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:175-180. [PMID: 29278807 DOI: 10.1016/j.etap.2017.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/24/2017] [Accepted: 12/16/2017] [Indexed: 05/05/2023]
Abstract
Polyphenols have many beneficial effects and an effective disease therapeutic auxiliary drug. Previously, myricetin, a polyphenol, had been reported to possess various biological effects on human physiology. However, mechanism of myricetin on apoptosis induced in PC12 cells is still unclear. PC12 cells were treated with myricetin in two concentration levels comprising 0.1 and 1 μM under serum-free condition. As a result, morphological changes were observed using trypan blue assay. DNA fragmentation was determined by DNA ladder assay to evaluate DNA damage levels. Western blotting results showed that cytosolic cytochrome c which was released from mitochondria. Subsequently, tumor suppressor gene p53, pro-apoptotic and anti-apoptotic Bcl-2 family proteins Bax and Bcl-2 were expressed. The caspase cascade reaction was induced through caspase 3 and 9 expression. From these results, it is suggested that myricetin significantly enhanced the apoptosis induced by serum deprivation in a dose-dependent manner in PC12 cells.
Collapse
Affiliation(s)
- Gongxun Tan
- Environmental Adaption Science, Division of Environmental Science Development, Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Rachael A Uson-Lopez
- Environmental Adaption Science, Division of Environmental Science Development, Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Md Mostafizur Rahman
- Environmental Adaption Science, Division of Environmental Science Development, Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Toshiyuki Hosokawa
- Research Division of Higher Education, Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0817, Japan
| | - Takeshi Saito
- Laboratory of Environmental Health Sciences, Faculty of Health Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Masaaki Kurasaki
- Environmental Adaption Science, Division of Environmental Science Development, Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan; Group of Environmental Adaption Science, Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
36
|
Fakhri A, Omranipour R, Fakhri S, Mirshamsi M, Zangeneh F, Vatanpour H, Pourahmad J. Naja Naja Oxiana Venom Fraction Selectively Induces ROS-Mediated Apoptosis in Human Colorectal Tumor Cells by Directly Targeting Mitochondria. Asian Pac J Cancer Prev 2017; 18:2201-2208. [PMID: 28843256 PMCID: PMC5697481 DOI: 10.22034/apjcp.2017.18.8.2201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: To investigate the selective effect of Naja naja oxiana crude venom and its fractions on human colorectal cancer mitochondria to activate apoptosis signaling. Methods: Cells and mitochondria isolated from human cancerous and normal colorectal tissues exposed to N. oxiana crude venom and its fractions obtained from size-exclusion chromatography and then mitochondrial parameters related to up-stream cell death signalling such as reactive oxygen species formation, MMP, mitochondrial swelling, cytochrome c release and ATP content as mitochondrial parameters and activation of caspase3 and finally apoptosis/necrosis % were then assayed as cellular parameters. Result: Our findings indicated that crude venom (15, 30 and 60 µg/ml) and fraction 3; F3; (10, 20 and 40 µg/ml) of N. Oxiana venom induced a significant (p<0.05) increase of reactive oxygen species level, swelling of mitochondria, collapse of mitochondrial membrane potential (MMP), release of cytochrome c, activated caspase3 and decrease ATP content only in colon cancer tissue group but not from the healthy colon tissue group. Our results also showed that fraction 3 of venom decreased the percentage of viable cells and induced apoptosis in cancerous colorectal cells. Conclusion: F3 fraction of N. Oxiana venom is a suitable candidate for further studies as a new drug treatment of colorectal cancer due to its high capacity for induction of apoptosis signaling via mitochondrial pathway.
Collapse
Affiliation(s)
- Amir Fakhri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,
| | | | | | | | | | | | | |
Collapse
|
37
|
Ghanbari F, Nasarzadeh P, Seydi E, Ghasemi A, Taghi Joghataei M, Ashtari K, Akbari M. Mitochondrial oxidative stress and dysfunction induced by single- and multiwall carbon nanotubes: A comparative study. J Biomed Mater Res A 2017; 105:2047-2055. [PMID: 28296041 DOI: 10.1002/jbm.a.36063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 01/02/2023]
Abstract
With the ever-increasing use of carbon nanotubes (CNTs) in health-related and engineering applications, the hazardous risks of this material have become a major concern. It is well known that CNTs accumulate with cytotoxic and genotoxic levels within vital organs. It has also been shown that treating cell cultures with CNTs resulted in cell-cycle arrest and increased apoptosis/necrosis. The goal of this pilot study is to perform a comprehensive comparative study on the toxicity of single-wall (SW) and multiwall (MW) CNTs in rat skin cells. Our results confirm a dose-dependent toxicity of SWCNTs and MWCNTs due to the loss of mitochondrial activity, increase in mitochondrial reactive oxygen species (ROS) formation, and mitochondrial membrane potential collapse before mitochondrial swelling. Moreover, disturbance in the oxidative phosphorylation is observed by a decrease in ATP level. These events induced the release of cytochrome c via outer membrane rupture or MPT pore opening and subsequently programmed cell death of all doses compared to control group. Our results demonstrate that although MWCNTs can be very toxic, SWCNTs cause more mitochondrial damage to the cells. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2047-2055, 2017.
Collapse
Affiliation(s)
- Fatemeh Ghanbari
- Department of Chemistry, Mahabad Branch, Islamic Azad University, Mahabad, Iran
- Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvaneh Nasarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Enayatollah Seydi
- Department of Occupational Health Engineering, Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
| | - Alireza Ghasemi
- Department of Chemistry, University Campus 2, University of Guilan, Rasht, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Department, Faculty of Advanced Technology in Medicine, Iran university of Medical Sciences, Tehran, Iran
| | - Khadijeh Ashtari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Center for Biomedical Research (CBR), University of Victoria, Victoria, Canada
- Center for Advanced Materials and Related Technologies (CAMTEC), Victoria, Canada
| |
Collapse
|
38
|
Menezes JCJMDS, Orlikova B, Morceau F, Diederich M. Natural and Synthetic Flavonoids: Structure-Activity Relationship and Chemotherapeutic Potential for the Treatment of Leukemia. Crit Rev Food Sci Nutr 2017; 56 Suppl 1:S4-S28. [PMID: 26463658 DOI: 10.1080/10408398.2015.1074532] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Flavonoids and their derivatives are polyphenolic secondary metabolites with an extensive spectrum of pharmacological activities, including antioxidants, antitumor, anti-inflammatory, and antiviral activities. These flavonoids can also act as chemopreventive agents by their interaction with different proteins and can play a vital role in chemotherapy, suggesting a positive correlation between a lower risk of cancer and a flavonoid-rich diet. These agents interfere with the main hallmarks of cancer by various individual mechanisms, such as inhibition of cell growth and proliferation by arresting the cell cycle, induction of apoptosis and differentiation, or a combination of these mechanisms. This review is an effort to highlight the therapeutic potential of natural and synthetic flavonoids as anticancer agents in leukemia treatment with respect to the structure-activity relationship (SAR) and their molecular mechanisms. Induction of cell death mechanisms, production of reactive oxygen species, and drug resistance mechanisms, including p-glycoprotein efflux, are among the best-described effects triggered by the flavonoid polyphenol family.
Collapse
Affiliation(s)
| | - Barbora Orlikova
- b Department of Pharmacy , College of Pharmacy, Seoul National University , Gwanak-gu, Seoul , South Korea.,c Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg , Luxembourg , Luxembourg
| | - Franck Morceau
- c Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg , Luxembourg , Luxembourg
| | - Marc Diederich
- b Department of Pharmacy , College of Pharmacy, Seoul National University , Gwanak-gu, Seoul , South Korea
| |
Collapse
|
39
|
Arast Y, Seyed Razi N, Seydi E, Naserzadeh P, Nazemi M, Pourahmad J. Selective Toxicity of Non Polar Bioactive Compounds of Persian Gulf Sea Squirt Phallusia Nigra on Skin Mitochondria Isolated from Rat Model of Melanoma. Asian Pac J Cancer Prev 2017; 18:811-818. [PMID: 28441791 PMCID: PMC5464504 DOI: 10.22034/apjcp.2017.18.3.811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Skin cancer is the most prevalent cancer and one of the major causes of mortality worldwide. Marin animals have attracted much attention in recent years as useful substances having application in medicine. It was shown that Phallusia nigra (P. nigra) known as sea squirt could play an important role in cancer therapy. Methods: This study was designed to figure out the probable selective toxicity of n-hexane, diethyl ether, methanolic and aqueous extracts of P. nigra on cancerous mitochondria isolated from the skin of melanoma induced rats. In our study, mitochondria were isolated from the skin tissue of both melanoma induced and normal healthyrats. Different concentrations of four different extracts of P. nigra (250, 500 and 1000 µg/ml) were added to mitochondrial samples obtained from both groups, separately. Results: Our results showed that n-hexane, diethyl ether and methanolic extracts (but not aqueous extract) of P. nigra in all concentrations applied (250, 500 and 1000 µg/ml) significantly induced toxic alterations only in the cancerous but not normal healthy skin mitochondria including; increased reactive oxygen species (ROS) formation, mitochondrial swelling, decreased mitochondrial membrane potential (MMP) and cytochrome c release. Flow-cytometry analysis demonstrated that n-hexane, diethyl ether and methanolic extracts of P. nigra progressively induced apoptosis and necrosis only on melanoma cells but not healthy skin cells. Conclusions: Our results suggest that non polar bioactive compounds in P. nigra may be hopeful candidates for further studies including molecular identification, confirmatory in vivo experiments and finally clinical trials designed for new drug treatment of melanoma skin cancer.
Collapse
Affiliation(s)
- Yalda Arast
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
40
|
Subramani R, Lakshmanaswamy R. Complementary and Alternative Medicine and Breast Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:231-274. [DOI: 10.1016/bs.pmbts.2017.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Sak K, Everaus H. Established Human Cell Lines as Models to Study Anti-leukemic Effects of Flavonoids. Curr Genomics 2016; 18:3-26. [PMID: 28503087 PMCID: PMC5321770 DOI: 10.2174/1389202917666160803165447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the extensive work on pathological mechanisms and some recent advances in the treatment of different hematological malignancies, leukemia continues to present a significant challenge being frequently considered as incurable disease. Therefore, the development of novel therapeutic agents with high efficacy and low toxicity is urgently needed to improve the overall survival rate of patients. In this comprehensive review article, the current knowledge about the anticancer activities of flavonoids as plant secondary polyphenolic metabolites in the most commonly used human established leukemia cell lines (HL-60, NB4, KG1a, U937, THP-1, K562, Jurkat, CCRF- CEM, MOLT-3, and MOLT-4) is compiled, revealing clear anti-proliferative, pro-apoptotic, cell cycle arresting, and differentiation inducing effects for certain compounds. Considering the low toxicity of these substances in normal blood cells, the presented data show a great potential of flavonoids to be developed into novel anti-leukemia agents applicable also in the malignant cells resistant to the current conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Katrin Sak
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| | - Hele Everaus
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| |
Collapse
|
42
|
Ivanova D, Zhelev Z, Aoki I, Bakalova R, Higashi T. Overproduction of reactive oxygen species - obligatory or not for induction of apoptosis by anticancer drugs. Chin J Cancer Res 2016; 28:383-96. [PMID: 27647966 PMCID: PMC5018533 DOI: 10.21147/j.issn.1000-9604.2016.04.01] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Many studies demonstrate that conventional anticancer drugs elevate intracellular level of reactive oxygen species (ROS) and alter redox-homeostasis of cancer cells. It is widely accepted that anticancer effect of these chemotherapeutics is due to induction of oxidative stress and ROS-mediated apoptosis in cancer. On the other hand, the harmful side effects of conventional anticancer chemotherapy are also due to increased production of ROS and disruption of redox-homeostasis of normal cells and tissues. This article describes the mechanisms for triggering and modulation of apoptosis through ROS-dependent and ROS-independent pathways. We try to answer the question: "Is it possible to induce highly specific apoptosis only in cancer cells, without overproduction of ROS, as well as without harmful effects on normal cells and tissues?" The review also suggests a new therapeutic strategy for selective killing of cancer cells, without significant impact on viability of normal cells and tissues, by combining anticancer drugs with redox-modulators, affecting specific signaling pathways and avoiding oxidative stress.
Collapse
Affiliation(s)
- Donika Ivanova
- Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria
| | - Zhivko Zhelev
- Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria; Institute of Biophysics & Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Rumiana Bakalova
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Medical Faculty, Sofia University, Sofia 1407, Bulgaria
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
43
|
Khan F, Ahmed F, Pushparaj PN, Abuzenadah A, Kumosani T, Barbour E, AlQahtani M, Gauthaman K. Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest. PLoS One 2016; 11:e0158963. [PMID: 27441372 PMCID: PMC4956039 DOI: 10.1371/journal.pone.0158963] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 06/26/2016] [Indexed: 12/30/2022] Open
Abstract
Introduction Phoenix dactylifera L (Date palm) is a native plant of the Kingdom of Saudi Arabia (KSA) and other Middle Eastern countries. Ajwa date has been described in the traditional and alternative medicine to provide several health benefits including anticholesteremic, antioxidant, hepatoprotective and anticancer effects, but most remains to be scientifically validated. Herein, we evaluated the anticancer effects of the Methanolic Extract of Ajwa Date (MEAD) on human breast adenocarcinoma (MCF7) cells in vitro. Methods MCF7 cells were treated with various concentrations (5, 10, 15, 20 and 25 mg/ml) of MEAD for 24, 48 and 72 h and changes in cell morphology, cell cycle, apoptosis related protein and gene expression were studied. Results Phase contrast microscopy showed various morphological changes such as cell shrinkage, vacuolation, blebbing and fragmentation. MTT (2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay demonstrated statistically significant dose-dependent inhibitions of MCF7 cell proliferation from 35% to 95%. Annexin V-FITC and TUNEL assays showed positive staining for apoptosis of MCF7 cells treated with MEAD (15 mg and 25 mg for 48 h). Flow cytometric analyses of MCF7 cells with MEAD (15 mg/ml and 20 mg/ml) for 24 h demonstrated cell cycle arrest at 'S' phase; increased p53, Bax protein expression; caspase 3activation and decreased the mitochondrial membrane potential (MMP). Quantitative real time PCR (qRT-PCR) analysis showed up-regulation of p53, Bax, Fas, and FasL and down-regulation of Bcl-2. Conclusions MEAD inhibited MCF7 cells in vitro by the inducing cell cycle arrest and apoptosis. Our results indicate the anticancer effects of Ajwa dates, which therefore may be used as an adjunct therapy with conventional chemotherapeutics to achieve a synergistic effect against breast cancer.
Collapse
Affiliation(s)
- Fazal Khan
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel Abuzenadah
- Center of Innovation in Personalized Medicine, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taha Kumosani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elie Barbour
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut (AUB), Beirut, Lebanon
| | - Mohammed AlQahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kalamegam Gauthaman
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| |
Collapse
|
44
|
Martínez-Pérez C, Ward C, Turnbull AK, Mullen P, Cook G, Meehan J, Jarman EJ, Thomson PIT, Campbell CJ, McPhail D, Harrison DJ, Langdon SP. Antitumour activity of the novel flavonoid Oncamex in preclinical breast cancer models. Br J Cancer 2016; 114:905-16. [PMID: 27031849 PMCID: PMC4984802 DOI: 10.1038/bjc.2016.6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/17/2015] [Accepted: 12/16/2015] [Indexed: 12/28/2022] Open
Abstract
Background: The natural polyphenol myricetin induces cell cycle arrest and apoptosis in preclinical cancer models. We hypothesised that myricetin-derived flavonoids with enhanced redox properties, improved cell uptake and mitochondrial targeting might have increased potential as antitumour agents. Methods: We studied the effect of a second-generation flavonoid analogue Oncamex in a panel of seven breast cancer cell lines, applying western blotting, gene expression analysis, fluorescence microscopy and immunohistochemistry of xenograft tissue to investigate its mechanism of action. Results: Proliferation assays showed that Oncamex treatment for 8 h reduced cell viability and induced cytotoxicity and apoptosis, concomitant with increased caspase activation. Microarray analysis showed that Oncamex was associated with changes in the expression of genes controlling cell cycle and apoptosis. Fluorescence microscopy showed the compound's mitochondrial targeting and reactive oxygen species-modulating properties, inducing superoxide production at concentrations associated with antiproliferative effects. A preliminary in vivo study in mice implanted with the MDA-MB-231 breast cancer xenograft showed that Oncamex inhibited tumour growth, reducing tissue viability and Ki-67 proliferation, with no signs of untoward effects on the animals. Conclusions: Oncamex is a novel flavonoid capable of specific mitochondrial delivery and redox modulation. It has shown antitumour activity in preclinical models of breast cancer, supporting the potential of this prototypic candidate for its continued development as an anticancer agent.
Collapse
Affiliation(s)
- Carlos Martínez-Pérez
- Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Carol Ward
- Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Arran K Turnbull
- Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Peter Mullen
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Graeme Cook
- Antoxis Limited, IMS Building, Foresterhill Health and Research Complex, Aberdeen AB25 2ZD, UK
| | - James Meehan
- Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Edward J Jarman
- Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Patrick I T Thomson
- EaSTCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, UK
| | - Colin J Campbell
- EaSTCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, UK
| | - Donald McPhail
- Antoxis Limited, IMS Building, Foresterhill Health and Research Complex, Aberdeen AB25 2ZD, UK
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Simon P Langdon
- Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| |
Collapse
|
45
|
Seydi E, Rasekh HR, Salimi A, Mohsenifar Z, Pourahmad J. Myricetin Selectively Induces Apoptosis on Cancerous Hepatocytes by Directly Targeting Their Mitochondria. Basic Clin Pharmacol Toxicol 2016; 119:249-58. [DOI: 10.1111/bcpt.12572] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/15/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Enayatollah Seydi
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Hamid Reza Rasekh
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Pharmacology and Toxicology; School of Pharmacy; Ardabil University of Medical Sciences; Ardabil Iran
| | - Zhaleh Mohsenifar
- Faculty of Medicine; Ayatollah Taleghani Educational Hospital; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
46
|
Zhang N, Huang L, Tian J, Chen X, Ke F, Zheng M, Xu J, Wu L. A novel synthetic novobiocin analog, FM-Nov17, induces DNA damage in CML cells through generation of reactive oxygen species. Pharmacol Rep 2015; 68:423-8. [PMID: 26922548 DOI: 10.1016/j.pharep.2015.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/14/2015] [Accepted: 11/02/2015] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To investigate the cytotoxicity of FM-Nov17 against chronic myeloid leukemia (CML) cells, we explored its underlying mechanisms mediating the induction of DNA damage and apoptotic cell death by reactive oxygen species (ROS). METHODS MTT assays were used to measure the proliferation-inhibition ratio of K562 and K562/G01 cells. Flow cytometry (FCM) was used to test the level of extracellular ROS, DNA damage, cell cycle progression and apoptosis. Western blotting was used to verify the amount of protein. RESULTS FM-Nov17 significantly inhibited the proliferation of K562 cells, with an IC50 of 58.28±0.304μM, and K562/G01 cells, with an IC50 of 62.36±0.136μM. FM-Nov17 significantly stimulated the generation of intracellular ROS, followed by the induction of DNA damage and the activation of the ATM-p53-r-H2AX pathway and checkpoint-related signals Chk1/Chk2, which led to increased numbers of cells in the S and G2/M phases of the cell cycle. Furthermore, FM-Nov17 induced apoptotic cell death by decreasing mitochondrial membrane potential and activating caspase-3 and PARP. The above effects were all prevented by the ROS scavenger N-acetylcysteine. CONCLUSIONS FM-Nov17-induces DNA damage and mitochondria-dependent cellular apoptosis in CML cells. The process is mediated by the generation of ROS.
Collapse
Affiliation(s)
- Nanwen Zhang
- Dept. of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Institute of Materia Medica, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China
| | - Lisen Huang
- Dept. of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Institute of Materia Medica, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China
| | - Jue Tian
- Dept. of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Institute of Materia Medica, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China
| | - Xianling Chen
- Fujian Institute of Hematology, Union Hospital, FMU, Fuzhou, PR China
| | - Fang Ke
- Department of Pharmacochemistry, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China
| | - Ming Zheng
- Department of Anatomy, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China
| | - Jianhua Xu
- Dept. of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Institute of Materia Medica, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China
| | - Lixian Wu
- Dept. of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Institute of Materia Medica, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China.
| |
Collapse
|
47
|
Chen TC, Yu MC, Chien CC, Wu MS, Lee YC, Chen YC. Nilotinib reduced the viability of human ovarian cancer cells via mitochondria-dependent apoptosis, independent of JNK activation. Toxicol In Vitro 2015; 31:1-11. [PMID: 26549707 DOI: 10.1016/j.tiv.2015.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 09/12/2015] [Accepted: 11/04/2015] [Indexed: 11/25/2022]
Abstract
Nilotinib (AMN) induces apoptosis in various cancer cells; however the effect of AMN on human ovarian cancer cells is still unclear. A reduction in cell viability associated with the occurrence of apoptotic characteristics was observed in human SKOV-3 ovarian cancer cells under AMN but not sorafenib (SORA) or imatinib (STI) stimulation. Activation of apoptotic pathway including increased caspase (Casp)-3 and poly(ADP-ribose) polymerase 1 (PARP1) protein cleavage by AMN was detected with disrupted mitochondrial membrane potential (MMP) accompanied by decreased Bcl-2 protein and increased cytosolic cytochrome (Cyt) c/cleaved Casp-9 protein expressions was found, and AMN-induced cell death was inhibited by peptidyl Casp inhibitors, VAD, DEVD and LEHD. Increased phosphorylated c-Jun N-terminal kinase (JNK) protein expression was detected in AMN- but not SORA- or STI-treated SKOV-3 cells, and the JNK inhibitors, SP600125 and JNKI, showed slight but significant enhancement of AMN-induced cell death in SKOV-3 cells. The intracellular peroxide level was elevated by AMN and H2O2, and N-acetylcysteine (NAC) prevented H2O2- but not AMN-induced peroxide production and apoptosis in SKOV-3 cells. AMN induction of apoptosis with increased intracellular peroxide production and JNK protein phosphorylation was also identified in human A2780 ovarian cancer cells, cisplatin-resistant A2780CP cells, and clear ES-2 cells. The evidence supporting AMN effectively reducing the viability of human ovarian cancer cells via mitochondrion-dependent apoptosis is provided.
Collapse
Affiliation(s)
- Tze-Chien Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ming-Chih Yu
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chiang Chien
- Department of Nephrology, Chi-Mei Medical Center, Tainan, Taiwan; Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Yu-Chieh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
48
|
Wu L, Chen X, Huang L, Tian J, Ke F, Xu J, Chen Y, Zheng M. A Novobiocin Derivative, XN4, Inhibits the Proliferation of Chronic Myeloid Leukemia Cells by Inducing Oxidative DNA Damage. PLoS One 2015; 10:e0123314. [PMID: 25928540 PMCID: PMC4415758 DOI: 10.1371/journal.pone.0123314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
XN4 might induce DNA damage and apoptotic cell death through reactive oxygen species (ROS). The inhibition of proliferation of K562 and K562/G01 cells was measured by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide). The mRNA levels of NADPH oxidase 1-5 (Nox1-5) genes were evaluated by qRT-PCR. The levels of extracellular reactive oxygen species (ROS), DNA damage, apoptosis, and cell cycle progression were examined by flow cytometry (FCM). Protein levels were analyzed by immunoblotting. XN4 significantly inhibited the proliferation of K562 and K562/G01 cells, with IC50 values of 3.75±0.07 µM and 2.63±0.43 µM, respectively. XN4 significantly increased the levels of Nox4 and Nox5 mRNA, stimulating the generation of intracellular ROS, inducing DNA damage and activating ATM-γ-H2AX signaling, which increased the number of cells in the S and G2/M phase of the cell cycle. Subsequently, XN4 induced apoptotic cell death by activating caspase-3 and PARP. Moreover, the above effects were all reversed by the ROS scavenger N-acetylcysteine (NAC). Additionally, XN4 can induce apoptosis in progenitor/stem cells isolated from CML patients’ bone marrow. In conclusion, XN4-induced DNA damage and cell apoptosis in CML cells is mediated by the generation of ROS.
Collapse
Affiliation(s)
- Lixian Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P. R.China
- Institute of Materia Medica, FMU, Fuzhou, P. R.China
- Fuijan Key Laboratory of Natural Medicine pharmacology, FMU, Fuzhou, P. R.China
- * E-mail: (LW); (MZ)
| | - Xianling Chen
- Fujian Institute of Hematology, Union Hospital, FMU, Fuzhou, P. R.China
| | - Lisen Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P. R.China
- Institute of Materia Medica, FMU, Fuzhou, P. R.China
- Fuijan Key Laboratory of Natural Medicine pharmacology, FMU, Fuzhou, P. R.China
| | - Jue Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P. R.China
- Institute of Materia Medica, FMU, Fuzhou, P. R.China
- Fuijan Key Laboratory of Natural Medicine pharmacology, FMU, Fuzhou, P. R.China
| | - Fang Ke
- Department of Pharmacochemistry, School of Pharmacy, FMU, Fuzhou, P. R.China
| | - Jianhua Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P. R.China
- Institute of Materia Medica, FMU, Fuzhou, P. R.China
- Fuijan Key Laboratory of Natural Medicine pharmacology, FMU, Fuzhou, P. R.China
| | - Yuanzhong Chen
- Fujian Institute of Hematology, Union Hospital, FMU, Fuzhou, P. R.China
| | - Ming Zheng
- Department of Anatomy, School of Basic Medicine, FMU, Fuzhou, P. R.China
- * E-mail: (LW); (MZ)
| |
Collapse
|
49
|
Qin QP, Liu YC, Wang HL, Qin JL, Cheng FJ, Tang SF, Liang H. Synthesis and antitumor mechanisms of a copper(ii) complex of anthracene-9-imidazoline hydrazone (9-AIH). Metallomics 2015; 7:1124-36. [DOI: 10.1039/c5mt00027k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A copper(ii) complex of anthracene-9-imidazoline hydrazone induced cell apoptosis by suppressing mutant p53 expression and activating caspase cascade pathway.
Collapse
Affiliation(s)
- Qi-Pin Qin
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004, P. R. China
| | - Yan-Cheng Liu
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004, P. R. China
| | - Hai-Lu Wang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004, P. R. China
| | - Jiao-Lan Qin
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004, P. R. China
| | - Feng-Jie Cheng
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004, P. R. China
| | - Shang-Feng Tang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004, P. R. China
| | - Hong Liang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004, P. R. China
| |
Collapse
|
50
|
Sak K, Everaus H. Multi-Target Cytotoxic Actions of Flavonoids in Blood Cancer Cells. Asian Pac J Cancer Prev 2015; 16:4843-4847. [PMID: 26163601 DOI: 10.7314/apjcp.2015.16.12.4843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
To date, cytotoxic effects of flavonoids in various cancer cells are well accepted. However, the intracellular signaling cascades triggered by these natural compounds remain largely unknown and elusive. In this mini- review, the multiplicity of molecular targets of flavonoids in blood cancer cells is discussed by demonstrating the involvement of various signaling pathways in induction of apoptotic responses. Although these data reveal a great potential of flavonoids for the development of novel agents against different types of hematological malignancies, the pleiotropic nature of these compounds in modulation of cellular processes and their interactions certainly need unraveling and further investigation.
Collapse
Affiliation(s)
- Katrin Sak
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia E-mail :
| | | |
Collapse
|