1
|
Poli A, Agostoni C, Visioli F. Dietary Fatty Acids and Inflammation: Focus on the n-6 Series. Int J Mol Sci 2023; 24:ijms24054567. [PMID: 36901998 PMCID: PMC10003459 DOI: 10.3390/ijms24054567] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Among the polyunsaturated fatty acids (PUFAs), those belonging to the n-3 (or ω3) series, i.e., alpha-linolenic (ALA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids have been studied for decades from a pharma-nutritional viewpoint, namely in relation to cardiovascular health. More recent research is focusing on n-6 PUFAs, e.g., linoleic acid (LA), whose levels of consumption are much higher than those of n-3 and that cannot be used "pharmacologically". Perhaps because of this, the biological actions of n-6 PUFAs have not been investigated in details as those of their n-3 counterparts. However, an increasing body of evidence underscores their healthful actions on the cardiovascular system. Among the critiques to n-6 PUFAs and, particularly, LA there is the fact that they are precursors of pro-inflammatory eicosanoids. Hence, the hypothesis posits that we should reduce their intakes precisely to avoid increasing systemic, low-grade inflammation, i.e., one of the major etiological agents in degenerative diseases. In this narrative review, we address the issue of whether n-6 PUFAs are indeed pro-inflammatory, we discuss the most recent evidence of their role(s) in human health and prognosis, and we conclude that adequate intakes of n-6 fatty acids are associated with better cardiovascular health and child development.
Collapse
Affiliation(s)
- Andrea Poli
- Nutrition Foundation of Italy, 20124 Milano, Italy
| | - Carlo Agostoni
- Pediatric Area, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
- IMDEA-Food, CEI UAM + CSIC, 28049 Madrid, Spain
- Correspondence: ; Tel.: +39-0498276107
| |
Collapse
|
2
|
An increase in cell membrane permeability in the in situ extractive fermentation improves the production of antroquinonol from Antrodia camphorata S-29. ACTA ACUST UNITED AC 2020; 47:197-207. [DOI: 10.1007/s10295-020-02258-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Abstract
The goals of this study were to increase the production of antroquinonol (AQ) and to elucidate the response mechanism of the cell membrane during the in situ extractive fermentation (ISEF) of Antrodia camphorata S-29. Through ISEF, the concentration of AQ reached a maximum of 146.1 ± 2.8 mg/L, which was approximately (7.4 ± 0.1)-fold that of the control (coenzyme Q0-induced fermentation). Transcriptome sequencing showed that four genes (FAD2, fabG, SCD, and FAS1) related to fatty acid biosynthesis were upregulated. FAD2 and SCD may regulate the increase in oleic acid (C18:1) and linoleic acid (C18:2) in the cell membrane of A. camphorata S-29, resulting in an increase in cell membrane permeability. AQ was successfully transferred to the n-tetradecane phase through the cell membrane, reducing product feedback inhibition and improving the production of AQ from A. camphorata S-29.
Collapse
|
3
|
Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 2019; 292:90-98. [PMID: 31785494 DOI: 10.1016/j.atherosclerosis.2019.11.018] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/28/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022]
Abstract
This narrative review aims to discuss the more relevant evidence on the role of linoleic acid (LA), a n-6 essential fatty acid that constitutes the predominant proportion of dietary polyunsaturated fatty acids (PUFA), in cardiovascular health. Although LA can be metabolized into Arachidonic Acid (AA), a 20 carbon PUFA which is the precursor of eicosanoids, including some with proinflammatory or prothrombotic-vasoconstrictor action, the large majority of experimental and clinical studies have assessed the potential benefit of increasing dietary intake of LA. Overall, data from clinical studies and meta-analyses suggest an association between high dietary intakes or tissue levels of n-6 PUFA, and specifically LA, and the improvement of cardiovascular risk (mainly of the plasma lipid profile), as well as long-term glycaemic control and insulin resistance. Most observational data show that elevated/increased dietary intake or tissue levels of LA is associated with a reduced incidence of cardiovascular diseases (mainly coronary artery diseases) and of new onset metabolic syndrome or type 2 diabetes. The effects of LA (or n-6 PUFA) in other physio-pathological areas are less clear. High quality clinical trials are needed to assess both the actual amplitude and the underlying mechanisms of the health effects related to dietary intake of this essential fatty acid.
Collapse
|
4
|
Fatty acid desaturase 2 is up-regulated by the treatment with statin through geranylgeranyl pyrophosphate-dependent Rho kinase pathway in HepG2 cells. Sci Rep 2019; 9:10009. [PMID: 31292513 PMCID: PMC6620338 DOI: 10.1038/s41598-019-46461-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
Statins have been reported to increase the plasma concentration of arachidonic acid (AA), an omega-6 long chain polyunsaturated fatty acid (LCPUFA) in several clinical studies indicating that statins affect the endogenous synthesis of LCUFAs. In the present study, we investigated the roles of the intrinsic mevalonate cascade and Rho-dependent pathway in LCPUFA synthesis, especially focusing on fatty acid desaturases (Fads) 2, using the human hepatocellular carcinoma cell line HepG2. Cell number and the activity of caspase-3 and 7 (caspase-3/7) was measured using a commercial kit. Gene expression was analyzed by quantitative real-time PCR. Protein expression was detected by Western blot analysis. Atorvastatin decreased cell viability and increased caspase-3/7 activity in a dose-dependent manner. At lower concentrations, atorvastatin stimulated both mRNA and protein expression of Fads2, and increased mRNA expression of FADS1 and ELVOL5. Both mevalonate and geranylgeranyl-pyrophosphate (GGPP), but not cholesterol, fully reversed atorvastatin-induced upregulation of Fads2, and mevalonate-effected reversal was inhibited by treatment with the Rho-associated protein kinase inhibitor Y-27632. These data clearly demonstrated that in human HepG2 cells, statins affect the endogenous synthesis of LCPUFAs by regulation of not only Fads2, but also Fads1 and Elovl5, through the GGPP-dependent Rho kinase pathway.
Collapse
|
5
|
|
6
|
Ishihara N, Suzuki S, Tanaka S, Watanabe Y, Nagayama D, Saiki A, Tanaka T, Tatsuno I. Atorvastatin increases Fads1, Fads2 and Elovl5 gene expression via the geranylgeranyl pyrophosphate-dependent Rho kinase pathway in 3T3-L1 cells. Mol Med Rep 2017; 16:4756-4762. [PMID: 28765914 PMCID: PMC5647059 DOI: 10.3892/mmr.2017.7141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/21/2017] [Indexed: 01/29/2023] Open
Abstract
Numerous clinical studies have reported that statins increase the plasma concentration of arachidonic acid, which is an ω-6 long-chain polyunsaturated fatty acid (LCPUFA), and decrease the concentrations of eicosapentaenoic acid and docosahexaenoic acid, which are ω‑3 LCPUFAs. These findings indicate that statins may affect the endogenous synthesis of LCPUFAs, which is regulated by fatty acid desaturases (FADSs) and elongation of very long‑chain fatty acids proteins (ELOVLs). The present study aimed to investigate the roles of the intrinsic mevalonate cascade and Rho‑dependent pathway in statin‑induced regulation of these desaturases and elongases, as well as cell viability using mouse 3T3‑L1 cells. mRNA expression was analyzed by quantitative polymerase chain reaction. Treatment with atorvastatin decreased cell viability and increased the mRNA expression levels of Fads1, Fads2 and ELOVL fatty acid elongase 5 (Elovl5) in a dose‑dependent manner. Mevalonate and geranylgeranyl pyrophosphate (GGPP), but not cholesterol, fully reversed the atorvastatin‑induced downregulation of cell viability and upregulation of gene expression; however, mevalonate itself did not affect cell viability and gene expression. The Rho‑associated protein kinase inhibitor Y‑27632 inhibited the mevalonate‑ and GGPP‑mediated reversal of atorvastatin‑induced upregulation of Fads1, Fads2 and Elovl5. These findings indicated that statins may affect the endogenous synthesis of LCPUFAs by regulating Fads1, Fads2 and Elovl5 gene expression via the GGPP‑dependent Rho kinase pathway in mouse 3T3-L1 cells.
Collapse
Affiliation(s)
- Noriko Ishihara
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center, Sakura, Chiba 285‑8741, Japan
| | - Sawako Suzuki
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260‑8670, Japan
| | - Shou Tanaka
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center, Sakura, Chiba 285‑8741, Japan
| | - Yasuhiro Watanabe
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center, Sakura, Chiba 285‑8741, Japan
| | - Daiji Nagayama
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center, Sakura, Chiba 285‑8741, Japan
| | - Atsuhito Saiki
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center, Sakura, Chiba 285‑8741, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Chiba 260‑8670, Japan
| | - Ichiro Tatsuno
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center, Sakura, Chiba 285‑8741, Japan
| |
Collapse
|
7
|
Das UN. Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus? Front Endocrinol (Lausanne) 2017; 8:182. [PMID: 28824543 PMCID: PMC5539435 DOI: 10.3389/fendo.2017.00182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain-derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone) and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats). Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid (which are unsaturated fatty acids) and their anti-inflammatory metabolites: lipoxin A4, resolvins, protectins, and maresins, may have antidiabetic actions. These bioactive lipids have anti-inflammatory actions, enhance eNO, BDNF production, restore hypothalamic dysfunction, enhance vagal tone, modulate production and action of ghrelin, leptin and adiponectin, and influence gut microbiota that may explain their antidiabetic action. These pieces of evidence suggest that methods designed to selectively deliver bioactive lipids to pancreatic β cells, gut, liver, and muscle may prevent type 1 and type 2 DM.
Collapse
Affiliation(s)
- Undurti N. Das
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, India
- UND Life Sciences, Battle Ground, WA, United States
| |
Collapse
|
8
|
Effect of dietary n-3 fatty acids supplementation on fatty acid metabolism in atorvastatin-administered SHR.Cg-Lepr cp/NDmcr rats, a metabolic syndrome model. Biomed Pharmacother 2016; 85:372-379. [PMID: 27939244 DOI: 10.1016/j.biopha.2016.11.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
The effects of cholesterol-lowering statins, which substantially benefit future cardiovascular events, on fatty acid metabolism have remained largely obscured. In this study, we investigated the effects of atorvastatin on fatty acid metabolism together with the effects of TAK-085 containing highly purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ethyl ester on atorvastatin-induced n-3 polyunsaturated fatty acid lowering in SHR.Cg-Leprcp/NDmcr (SHRcp) rats, as a metabolic syndrome model. Supplementation with 10mg/kg body weight/day of atorvastatin for 17 weeks significantly decreased plasma total cholesterol and very low density lipoprotein cholesterol. Atorvastatin alone caused a subtle change in fatty acid composition particularly of EPA and DHA in the plasma, liver or erythrocyte membranes. However, the TAK-085 consistently increased both the levels of EPA and DHA in the plasma, liver and erythrocyte membranes. After confirming the reduction of plasma total cholesterol, 300mg/kg body weight/day of TAK-085 was continuously administered for another 6 weeks. Supplementation with TAK-085 did not decrease plasma total cholesterol but significantly increased the EPA and DHA levels in both the plasma and liver compared with rats administered atorvastatin only. Supplementation with atorvastatin alone significantly decreased sterol regulatory element-binding protein-1c, Δ5- and Δ6-desaturases, elongase-5, and stearoyl-coenzyme A (CoA) desaturase-2 levels and increased 3-hydroxy-3-methylglutaryl-CoA reductase mRNA expression in the liver compared with control rats. TAK-085 supplementation significantly increased stearoyl-CoA desaturase-2 mRNA expression. These results suggest that long-term supplementation with atorvastatin decreases the EPA and DHA levels by inhibiting the desaturation and elongation of n-3 fatty acid metabolism, while TAK-085 supplementation effectively replenishes this effect in SHRcp rat liver.
Collapse
|
9
|
Chaudhary R, Saadin K, Bliden KP, Harris WS, Dinh B, Sharma T, Tantry US, Gurbel PA. Risk factors associated with plasma omega-3 fatty acid levels in patients with suspected coronary artery disease. Prostaglandins Leukot Essent Fatty Acids 2016; 113:40-45. [PMID: 27720039 DOI: 10.1016/j.plefa.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 01/05/2023]
Abstract
INTRODUCTION We sought to determine the associations between plasma eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels and various cardiovascular risk factors and with the use of fish oil supplements (FOS). PATIENTS AND METHODS Patients with suspected coronary artery disease (CAD) undergoing cardiac catheterization (n=433) were studied. Serum fatty acid (FA) composition, the concentrations of lipids and biomarkers of oxidative stress, and dietary/lifestyle factors were measured. RESULTS FOS use was associated with a higher plasma EPA+DHA levels (3.7±1.5 vs. 2.6±1.1%, p<0.0001). However, there was no relationship between FOS dose (mg/day) and EPA+DHA levels in 76 patients reporting FOS use (r=-0.21, p=0.07). Lower levels were inversely associated with risk factor profiles including lower ApoB100/ApoA1 ratios (p<0.001). DISCUSSION AND CONCLUSIONS Higher EPA+DHA levels characterized patients with lower CAD risk. The lack of relations between FOS dose and plasma EPA+DHA levels likely reflects uncaptured variability in EPA+DHA content of supplements.
Collapse
Affiliation(s)
| | - Katayoon Saadin
- Inova Heart and Vascular Institute, Fairfax, VA, United States
| | - Kevin P Bliden
- Inova Heart and Vascular Institute, Fairfax, VA, United States
| | - William S Harris
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States; OmegaQuant Analytics LLC, Sioux Falls, SD, United States.
| | - Bao Dinh
- Inova Heart and Vascular Institute, Fairfax, VA, United States
| | - Tushar Sharma
- Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Udaya S Tantry
- Inova Heart and Vascular Institute, Fairfax, VA, United States
| | - Paul A Gurbel
- Inova Heart and Vascular Institute, Fairfax, VA, United States
| |
Collapse
|
10
|
de Lorgeril M, Salen P, Defaye P, Rabaeus M. Recent findings on the health effects of omega-3 fatty acids and statins, and their interactions: do statins inhibit omega-3? BMC Med 2013; 11:5. [PMID: 23289647 PMCID: PMC3571733 DOI: 10.1186/1741-7015-11-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 01/04/2013] [Indexed: 12/23/2022] Open
Abstract
Early randomized controlled trials (RCTs) demonstrated the health benefits of omega-3 fatty acids (n-3), whereas recent RCTs were negative. We now address the issue, focusing on the temporal changes having occurred: most patients in recent RCTs are no longer n-3 deficient and the vast majority are now treated with statins. Recent RCTs testing n-3 against arrhythmias suggest that n-3 reduce the risk only in patients not taking a statin. Other recent RCTs in secondary prevention were negative although, in a post-hoc analysis separating statin users and non-users, non-significant protection of n-3 was observed among statin non-users whereas statin users had no effect. Recent RCTs testing statins - after the implementation of the New Clinical Trial Regulation in 2007 - are negative (or flawed) suggesting that the lack of effect of n-3 cannot be attributed to a parallel protection by statins. Finally, statins favor the metabolism of omega-6 fatty acids (n-6), which in turn inhibits n-3 and, contrary to n-3, they increase insulin resistance and the risk of diabetes. Thus, n-3 and statins are counteractive at several levels and statins appear to inhibit n-3.
Collapse
Affiliation(s)
- Michel de Lorgeril
- Laboratoire Coeur et Nutrition, TIMC-IMAG CNRS 5525, Université Joseph Fourier, Faculté de Médecine de Grenoble, 38054 La Tronche, France.
| | | | | | | |
Collapse
|
11
|
Harris WS, Pottala JV, Vasan RS, Larson MG, Robins SJ. Changes in erythrocyte membrane trans and marine fatty acids between 1999 and 2006 in older Americans. J Nutr 2012; 142:1297-303. [PMID: 22623386 PMCID: PMC3374668 DOI: 10.3945/jn.112.158295] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/06/2012] [Accepted: 04/11/2012] [Indexed: 11/14/2022] Open
Abstract
Over the last several years, national programs to lower the content of industrially produced (IP) C18:1 and C18:2 trans fatty acids in foods have been implemented, but whether this has resulted in lower blood trans fatty acid levels is unknown. Likewise, an increased perception of the health benefits of fish oils rich in EPA and DHA may have resulted in an increase in consumption and blood levels of these fatty acids. To explore these issues, we analyzed the changes in RBC fatty acid composition between the 7th (1998-2001) and 8th (2005-2007) examination cycles in a random sample of the Framingham Offspring cohort. This was a retrospective cohort study of 291 participants from whom blood was drawn at both examinations and for whom complete covariate data were available. Overall, the proportion of trans fatty acids in RBC changed by -23% (95% CI: -26 to -21%). RBC EPA+DHA proportions increased by 41% (95% CI: 31 to 52%) in 38 individuals who were taking fish oil supplements at examination 8, but in 253 participants not taking fish oil, the proportion of RBC EPA+DHA did not change. In conclusion, in a random subsample of Framingham Offspring participants with serial observations over 6.7 y, the proportion of trans fatty acids in RBC decreased. Those of EPA+DHA increased in people taking fish oil supplements. These changes could potentially translate into a lower risk for cardiovascular disease.
Collapse
Affiliation(s)
- William S. Harris
- Sanford Research, and
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| | | | - Ramachandran S. Vasan
- Framingham Heart Study, Framingham, MA; and
- Sections of Preventive Medicine and Cardiology, Department of Medicine, School of Medicine, and
| | - Martin G. Larson
- Framingham Heart Study, Framingham, MA; and
- Department of Mathematics and Statistics, Boston University, Boston, MA
| | | |
Collapse
|
12
|
Wu T, Fujihara M, Tian J, Jovanovic M, Grayson C, Cano M, Gehlbach P, Margaron P, Handa JT. Apolipoprotein B100 secretion by cultured ARPE-19 cells is modulated by alteration of cholesterol levels. J Neurochem 2010; 114:1734-44. [PMID: 20598021 DOI: 10.1111/j.1471-4159.2010.06884.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cholesteryl ester rich apolipoprotein B100 (apoB100) lipoproteins accumulate in Bruch's membrane before the development of age-related macular degeneration. It is not known if these lipoproteins come from the circulation or local ocular tissue. Emerging, but incomplete evidence suggests that the retinal pigmented epithelium (RPE) can secrete lipoproteins. The purpose of this investigation was to determine (i) whether human RPE cells synthesize and secrete apoB100, and (ii) whether this secretion is driven by cellular cholesterol, and if so, (iii) whether statins inhibit this response. The established, human derived ARPE-19 cells challenged with 0-0.8 mM oleic acid accumulated cellular cholesterol, but not triglycerides. Oleic acid increased the amount of apoB100 protein recovered from the medium by both western blot analysis and (35) S-radiolabeled immunoprecipitation while negative stain electron microscopy showed lipoprotein-like particles. Of nine statins evaluated, lipophilic statins induced HMG-CoA reductase mRNA expression the most. The lipophilic Cerivastatin (5 μM) reduced cellular cholesterol by 39% and abrogated apoB100 secretion by 3-fold. In contrast, the hydrophilic statin Pravastatin had minimal effect on apoB100 secretion. These data suggest that ARPE-19 cells synthesize and secrete apoB100 lipoproteins, that this secretion is driven by cellular cholesterol, and that statins can inhibit apoB100 secretion by reducing cellular cholesterol.
Collapse
Affiliation(s)
- Tinghuai Wu
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang L, Ramtohul Y, Gagné S, Styhler A, Wang H, Guay J, Huang Z. A multiplexed cell assay in HepG2 cells for the identification of delta-5, delta-6, and delta-9 desaturase and elongase inhibitors. ACTA ACUST UNITED AC 2010; 15:169-76. [PMID: 20086206 DOI: 10.1177/1087057109356208] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A multiplexed cell assay has been optimized to measure the activities of fatty acyl-CoA elongase, delta-5 desaturase (Delta5D), delta-6 desaturase (Delta6D), and delta-9 desaturase (Delta9D) together using (14)C-labeled tracers in HepG2 cells, which express the human stearoyl-CoA desaturase-1 isoform (SCD1) exclusively. The Delta5 and Delta9 desaturase activities are indexed by the efficient conversion of [1-(14)C]-eicosatrienoic acid (C20:3, cis-8,11,14) to (14)C-arachidonic acid (C20:4, cis-5,8,11,14) and the conversion of [1-(14)C]-stearic acid to (14)C-oleic acid (C18:1, cis-9), respectively. CP-74006 potently blocks the Delta5D activity with an IC(50) value of 20 nM and simplifies the metabolism of [1-(14)C]-alpha-linolenate (C18:3, cis-9,12,15) by accumulating (14)C-eicosatetraenoic acid (C20:4, cis-8,11,14,17) as the major (14)C-eicosatrienoic acid (C20:3, cis-11,14,17) and (14)C-docosatetraenoic acid (C22:4, cis-10,13,16,19) as the minor metabolites through Delta6 desaturation and elongation. This simplified metabolite spectrum enables the delineation of the Delta6D activity by comparing the combined Delta6D/elongase activity index of the (14)C-(C20:4/C18:3) ratio with the corresponding elongation index of the (14)C-(C20:3/C18:3) ratio following compound treatment. SC-26196 and sterculic acid specifically inhibit the Delta6D and Delta9D activities with an IC(50) value of 0.1 microM and 0.9 microM, respectively. This medium-throughput cell assay provides an efficient tool in the identification of specific desaturase and elongase inhibitors.
Collapse
Affiliation(s)
- Lei Zhang
- Merck Frosst Center for Therapeutic Research, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Risé P, Ghezzi S, Manzoni C, Colombo C, Galli C. The in vitro effects of cigarette smoke on fatty acid metabolism are partially counteracted by simvastatin. Prostaglandins Leukot Essent Fatty Acids 2009; 80:71-5. [PMID: 19128950 DOI: 10.1016/j.plefa.2008.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 09/22/2008] [Accepted: 11/14/2008] [Indexed: 11/28/2022]
Abstract
BACKGROUND Statins enhance the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) from their precursors both in vitro and in vivo. In particular, an increased conversion of linoleic acid (LA) and of alpha-linolenic acid to their derivatives is observed in cultured cells. On the contrary, cigarette smoke (CS) negatively and dose-dependently affects the LC-PUFA production. AIM To evaluate the effects of CS alone or with simvastatin, on [1-(14)C] LA metabolism in THP-1 cells. RESULTS CS inhibits LA conversion; after co-incubation, simvastatin nullifies the effects of CS, maintaining LA conversion comparable to controls. However, at the highest CS concentration, simvastatin is unable to counteract the effects of CS. Changes of LA conversion reflect the modulation of desaturase activities by simvastatin and CS. CONCLUSION CS decreases PUFA conversion and its effects are modulated by the opposite effect of statins. It can be speculated that statin treatments in smoking patients may provide some beneficial effects on PUFA metabolism in addition to lowering cholesterol levels.
Collapse
Affiliation(s)
- P Risé
- Department of Pharmacological Sciences, University of Milano-via Balzaretti 9, 20133 Milano, Italy.
| | | | | | | | | |
Collapse
|
15
|
Atorvastatin decreases stearoyl-CoA desaturase gene expression in THP-1 macrophages incubated with oxidized LDL. Lipids 2008; 44:115-23. [PMID: 18982375 DOI: 10.1007/s11745-008-3255-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
Statins, inhibitors of HMG-CoA reductase, reduce plasma low-density lipoprotein (LDL) cholesterol levels decreasing the incidence of coronary events. However, the observed benefit of statins appears to extend beyond their lipid-lowering effects. Previous studies by our group have demonstrated that atorvastatin in oxidized LDL incubated macrophages modifies the gene expression profile of certain enzymes involved in fatty acid metabolism, mainly stearoyl-CoA desaturase (SCD). SCD is a rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids and its expression is mediated by sterol regulatory element-binding protein-1 (SREBP-1). The aim of this study was to determine whether atorvastatin might affect the fatty acid composition in macrophages and if their SCD gene expression profile could explain this effect. Therefore, THP-1 macrophages were treated with atorvastatin and native or oxidized LDL, their fatty acid composition was determined by gas-chromatography, and the SCD and SREBP-1 gene expression profile was analysed using quantitative RT-PCR. We found that atorvastatin reduces the percentage of palmitoleic and oleic acids in THP-1 cells incubated with oxLDL, which could be explained by the inhibition of SCD and SREBP-1 gene expression. The observed results were reversed when mevalonate was added to THP-1 macrophages. This would suggest that inhibition of SCD in THP-1 macrophages incubated with oxLDL and the change in fatty acid composition is an important effect of atorvastatin.
Collapse
|
16
|
Risé P, Ghezzi S, Carissimi R, Mastromauro F, Petroni A, Galli C. Delta5 desaturase mRNA levels are increased by simvastatin via SREBP-1 at early stages, not via PPARalpha, in THP-1 cells. Eur J Pharmacol 2007; 571:97-105. [PMID: 17655842 DOI: 10.1016/j.ejphar.2007.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 06/05/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
In addition to inhibiting cholesterol biosynthesis, statins increase the conversion of linoleic acid to its derivatives, in particular to arachidonic acid, both in vivo and in vitro. Desaturases are the rate-limiting enzymes in this metabolic process and statins markedly enhance delta5 desaturase activity. To evaluate the delta5 desaturase gene expression and the transcription factors involved, THP-1 cells (a monocytic cell line) were incubated with 5 microM simvastatin for different time periods. The activity of the enzyme, evaluated as product/precursor ratio in the metabolic pathway (starting from [1-(14)C] linoleic acid), increased in treated cells with respect to controls after 24 h, whereas, mRNA levels of the delta5 desaturase increased after 12 h of incubation with simvastatin. Fatty acid desaturase genes are regulated by both sterol regulatory element binding proteins (SREBPs) and peroxisome proliferators activated receptors (PPARs). Both PPARalpha (WY 14643 and fenofibrate) and PPARgamma (ciglitazone) agonists did not affect linoleic acid conversion and the delta5 desaturase activity at any time considered (8-48 h), but they increased the delta5 desaturase mRNA levels, after 48 h; only fenofibrate showed a synergistic effect with simvastatin at this time, with a concomitantly increase in PPARalpha expression and beta-oxidation. Simvastatin alone increased SREBP-1 levels with respect to controls, starting from 8 h of incubation, whereas PPARalpha and linoleic acid beta-oxidation (a PPARalpha mediated process) were not affected after 48 h of incubation. These results taken together suggest that SREBP-1 is involved in the early regulation of delta5 desaturase gene by simvastatin, in THP-1 cells.
Collapse
Affiliation(s)
- Patrizia Risé
- Department of Pharmacological Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Ghezzi S, Risé P, Ceruti S, Galli C. Effects of Cigarette Smoke on Cell Viability, Linoleic Acid Metabolism and Cholesterol Synthesis, in THP−1 Cells. Lipids 2007; 42:629-36. [PMID: 17551762 DOI: 10.1007/s11745-007-3070-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 04/24/2007] [Indexed: 02/04/2023]
Abstract
Cigarette smoke (CS) contains thousands of substances, mainly free radicals that have as a target the polyunsaturated fatty acids (PUFA). Long chain PUFA are produced through elongation and desaturation reactions from their precursors; the desaturation reactions are catalyzed by different enzymes: the conversion of 18:2n-6 (linoleic acid, LA) to 18:3n-6 by Delta6 desaturase, while that of 20:3n-6 to 20:4n-6 by Delta5 desaturase. The aim of this work is to evaluate the effect of serum exposed to cigarette smoke (SE-FBS) on (1) cell viability and proliferation, (2) [1-(14)C] LA conversion and desaturase activities in THP-1 cells, a monocytic cell line. In THP-1, CS inhibits cell proliferation dose-dependently, by producing a modification in the cell cycle with a reduced number of cells in synthesis and mitosis phases at higher concentrations. CS also decreases [1-(14)C] LA conversion to its derivatives in a concentration-dependent manner, inhibiting the activities of Delta6 and mainly Delta5 desaturase. In addition, CS does not modify the incorporation of LA into various lipid classes but it reduces cholesterol synthesis from radiolabelled acetate, and increases free fatty acid, TG and CE levels. In conclusion, CS affects lipid metabolism, inhibiting LA conversion and desaturase activities. CS also shifts the "de novo" lipid synthesis from free cholesterol to TG and CE, where LA is preferentially esterified.
Collapse
Affiliation(s)
- Silvia Ghezzi
- Department of Pharmacological Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | | | | | | |
Collapse
|
18
|
Galli C, Risé P. Origin of fatty acids in the body: endogenous synthesisversus dietary intakes. EUR J LIPID SCI TECH 2006. [DOI: 10.1002/ejlt.200600056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|