1
|
Cao Z, Hou Y, Zhao Z, Zhang H, Tian L, Zhang Y, Dong C, Guo F, Tan L, Han Y, Wang W, Jiao S, Tang Y, An L, Zhou Z. Reactivating Hippo by drug compounds to suppress gastric cancer and enhance chemotherapy sensitivity. J Biol Chem 2024; 300:107311. [PMID: 38657866 PMCID: PMC11126936 DOI: 10.1016/j.jbc.2024.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
The Hippo signaling pathway plays an essential role in organ size control and tumorigenesis. Loss of Hippo signal and hyper-activation of the downstream oncogenic YAP signaling are commonly observed in various types of cancers. We previously identified STRN3-containing PP2A phosphatase as a negative regulator of MST1/2 kinases (i.e., Hippo) in gastric cancer (GC), opening the possibility of selectively targeting the PP2Aa-STRN3-MST1/2 axis to recover Hippo signaling against cancer. Here, we further discovered 1) disulfiram (DSF), an FDA-approved drug, which can similarly block the binding of STRN3 to PP2A core enzyme and 2) CX-6258 (CX), a chemical inhibitor, that can disrupt the interaction between STRN3 and MST1/2, both allowing reactivation of Hippo activity to inhibit GC. More importantly, we found these two compounds, via an MST1/2 kinase-dependent manner, inhibit DNA repair to sensitize GC towards chemotherapy. In addition, we identified thiram, a structural analog of DSF, can function similarly to inhibit cancer cell proliferation or enhance chemotherapy sensitivity. Interestingly, inclusion of copper ion enhanced such effects of DSF and thiram on GC treatment. Overall, this work demonstrated that pharmacological targeting of the PP2Aa-STRN3-MST1/2 axis by drug compounds can potently recover Hippo signal for tumor treatment.
Collapse
Affiliation(s)
- Zhifa Cao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Yu Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhangting Zhao
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Luyang Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Chao Dong
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fenghua Guo
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Han
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Tang
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China.
| | - Liwei An
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China; Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Kaya A, Arafat B, Chichger H, Tolaymat I, Pierscionek B, Khoder M, Najlah M. Preparation and Characterisation of Zinc Diethyldithiocarbamate-Cyclodextrin Inclusion Complexes for Potential Lung Cancer Treatment. Pharmaceutics 2023; 16:65. [PMID: 38258076 PMCID: PMC10819758 DOI: 10.3390/pharmaceutics16010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Zinc diethyldithiocarbamate (Zn (DDC)2), a disulfiram metabolite (anti-alcoholism drug), has shown a strong anti-cancer activity in vitro. However, its application was limited by its low aqueous solubility and rapid metabolism. In this study, the solubility enhancement of Zn (DDC)2 is investigated by forming inclusion complexes with cyclodextrins. The inclusion complexes were prepared using two different types of beta-cyclodextrins, SBE-CD and HP-CD. Phase solubility diagrams for the resulting solutions were assessed; subsequently, the solutions were freeze-dried for further characterisation studies using DSC, TGA, XRD, and FTIR. The cytotoxic activity of the produced inclusion complexes was evaluated on human lung carcinoma cells using the MTT assay. The solubility of Zn (DDC)2 increased significantly upon adding beta-cyclodextrins, reaching approximately 4 mg/mL for 20% w/w CD solutions. The phase solubility diagram of Zn (DDC)2 was of the Ap-type according to the Higuchi and Connors model. Characterisation studies confirmed the inclusion of the amorphous drug in the CD-Zn (DDC)2 complexes. The cytotoxicity of Zn (DDC)2 was enhanced 10-fold by the inclusion complexes compared to the free drug. Overall, the resulting CD-Zn (DDC)2 inclusion complexes have a potential for treatment against lung cancer.
Collapse
Affiliation(s)
- Ayşe Kaya
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK (B.P.)
| | - Basel Arafat
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK (B.P.)
| | - Havovi Chichger
- Biomedical Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Ibrahim Tolaymat
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK (B.P.)
| | - Barbara Pierscionek
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK (B.P.)
| | - Mouhamad Khoder
- Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| | - Mohammad Najlah
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK (B.P.)
| |
Collapse
|
3
|
Wang P, Luo Q, Zhang L, Qu X, Che X, Cai S, Liu Y. A disulfiram/copper gluconate co-loaded bi-layered long-term drug delivery system for intraperitoneal treatment of peritoneal carcinomatosis. Colloids Surf B Biointerfaces 2023; 231:113558. [PMID: 37776774 DOI: 10.1016/j.colsurfb.2023.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
To develop a long-term drug delivery system for the treatment of primary and metastatic peritoneal carcinoma (PC) by intraperitoneal (IP) injection, a disulfiram (DSF)/copper gluconate (Cu-Glu)-co-loaded bi-layered poly (lactic acid-coglycolic acid) (PLGA) microspheres (Ms) - thermosensitive hydrogel system (DSF-Ms-Cu-Glu-Gel) was established. Rate and mechanisms of drug release from DSF-Ms-Cu-Glu-Gel were explored. The anti-tumor effects of DSF-Ms-Cu-Glu-Gel by IP injection were evaluated using H22 xenograft tumor model mice. The accumulative release of DSF from Ms on the 10th day was 83.79% without burst release. When Ms were dispersed into B-Gel, burst release at 24 h decreased to 14.63%. The results showed that bis (diethyldithiocarbamate)-copper (Cu(DDC)2) was formed in DSF-Ms-Cu-Glu-Gel and slowly released from B-Gel. In a pharmacodynamic study, the mount of tumor nodes and ascitic fluid decreased in the DSF-Ms-Cu-Glu-Gel group. This was because: (1) DSF-Ms-Cu-Glu-Gel system co-loaded DSF and Cu-Glu, and physically isolated DSF and Cu-Glu before injection to protect DSF; (2) space and water were provided for the formation of Cu(DDC)2; (3) could provide an effective drug concentration in the abdominal cavity for a long time; (4) both DSF and Cu(DDC)2 were effective anti-tumor drugs, and the formation of Cu(DDC)2 occurred in the abdominal cavity, which further enhanced the anti-tumor activity. Thus, the DSF-Ms-Cu-Glu-Gel system can be potentially used for the IP treatment of PC in the future.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China
| | - Qiuhua Luo
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China
| | - Ling Zhang
- Department of Biotherapy, Cancer Research Institute, the First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China
| | - Shuang Cai
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China.
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China.
| |
Collapse
|
4
|
Hamidi N, Feizi F, Azadmehr A, Zabihi E, Khafri S, Zarei-Behjani Z, Babazadeh Z. Disulfiram ameliorates bleomycin induced pulmonary inflammation and fibrosis in rats. Biotech Histochem 2023; 98:584-592. [PMID: 37779489 DOI: 10.1080/10520295.2023.2261367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Bleomycin (BL) is a widely used anticancer drug that can cause pulmonary fibrosis due to increased fibroblast proliferation and increased secretion of extracellular matrix. RASSF1A is a tumor suppressor gene that is down-regulated by DNA methylation during fibrosis. Disulfiram (DSF), a noncytosine DNA methyltransferase inhibitor, can revert epigenetic biomarkers and re-express silenced genes. We investigated anti-inflammatory and anti-fibrotic effects of DSF on regulation of epigenetic molecules and histopathology in a rat model of BL induced pulmonary fibrosis. We used six groups of rats: sesame oil (SO) control (Co) group, BL group, BL + SO group and three BL + DSF groups administered 1 mg/kg DSF (BL + DSF), 10 mg/kg DSF (BL + DSF10) or 100 mg/kg DSF (BL + DSF100), respectively. BL was administered intratracheally to induce pulmonary fibrosis. DSF and SO were injected intraperitoneally (i.p.) 2 days before BL administration; these injections were continued for 3 weeks. At the end of the study, lung tissues were removed for molecular and histopathologic studies. Administration of 10 or 100 mg/kg DSF after BL induced pulmonary inflammation and fibrosis, and up-regulated RASSF1A and down-regulated TNF-α and IL-1 β compared to the BL and BL + SO groups. A RASSF1A unmethylated band was observed using the methylation-specific PCR technique in rats that had been administered 10 and 100 mg/kg DSF, which indicated partial DNA demethylation. Histopathologic evaluation revealed that fibrosis and all inflammatory scores were decreased significantly in the BL + DSF10 and BL + DSF100 groups compared to the BL group. Our findings indicate that DSF modified DNA methylation by up-regulating RASSF1A, which reduced inflammation and fibrosis in BL induced pulmonary inflammation and fibrosis.
Collapse
Affiliation(s)
- Negar Hamidi
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
- Department of Anatomical Science, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
- Department of Anatomical Science, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
- Department of Immunology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
| | - Soraya Khafri
- Department of Biostatistics and Epidemiology, Faculty of Medicine, Babol University of Medical Science, Babol, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Babazadeh
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
- Department of Anatomical Science, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
5
|
Mohi-Ud-Din R, Chawla A, Sharma P, Mir PA, Potoo FH, Reiner Ž, Reiner I, Ateşşahin DA, Sharifi-Rad J, Mir RH, Calina D. Repurposing approved non-oncology drugs for cancer therapy: a comprehensive review of mechanisms, efficacy, and clinical prospects. Eur J Med Res 2023; 28:345. [PMID: 37710280 PMCID: PMC10500791 DOI: 10.1186/s40001-023-01275-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Cancer poses a significant global health challenge, with predictions of increasing prevalence in the coming years due to limited prevention, late diagnosis, and inadequate success with current therapies. In addition, the high cost of new anti-cancer drugs creates barriers in meeting the medical needs of cancer patients, especially in developing countries. The lengthy and costly process of developing novel drugs further hinders drug discovery and clinical implementation. Therefore, there has been a growing interest in repurposing approved drugs for other diseases to address the urgent need for effective cancer treatments. The aim of this comprehensive review is to provide an overview of the potential of approved non-oncology drugs as therapeutic options for cancer treatment. These drugs come from various chemotherapeutic classes, including antimalarials, antibiotics, antivirals, anti-inflammatory drugs, and antifungals, and have demonstrated significant antiproliferative, pro-apoptotic, immunomodulatory, and antimetastatic properties. A systematic review of the literature was conducted to identify relevant studies on the repurposing of approved non-oncology drugs for cancer therapy. Various electronic databases, such as PubMed, Scopus, and Google Scholar, were searched using appropriate keywords. Studies focusing on the therapeutic potential, mechanisms of action, efficacy, and clinical prospects of repurposed drugs in cancer treatment were included in the analysis. The review highlights the promising outcomes of repurposing approved non-oncology drugs for cancer therapy. Drugs belonging to different therapeutic classes have demonstrated notable antitumor effects, including inhibiting cell proliferation, promoting apoptosis, modulating the immune response, and suppressing metastasis. These findings suggest the potential of these repurposed drugs as effective therapeutic approaches in cancer treatment. Repurposing approved non-oncology drugs provides a promising strategy for addressing the urgent need for effective and accessible cancer treatments. The diverse classes of repurposed drugs, with their demonstrated antiproliferative, pro-apoptotic, immunomodulatory, and antimetastatic properties, offer new avenues for cancer therapy. Further research and clinical trials are warranted to explore the full potential of these repurposed drugs and optimize their use in treating various cancer types. Repurposing approved drugs can significantly expedite the process of identifying effective treatments and improve patient outcomes in a cost-effective manner.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, 190001, India
| | - Apporva Chawla
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Pooja Sharma
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Faheem Hyder Potoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 1982, 31441, Dammam, Saudi Arabia
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivan Reiner
- Department of Nursing Sciences, Catholic University of Croatia, Ilica 242, 10000, Zagreb, Croatia
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, 23100, Elazıg, Turkey
| | | | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
6
|
Zhang S, Zong Y, Chen L, Li Q, Li Z, Meng R. The immunomodulatory function and antitumor effect of disulfiram: paving the way for novel cancer therapeutics. Discov Oncol 2023; 14:103. [PMID: 37326784 DOI: 10.1007/s12672-023-00729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
More than 60 years ago, disulfiram (DSF) was employed for the management of alcohol addiction. This promising cancer therapeutic agent inhibits proliferation, migration, and invasion of malignant tumor cells. Furthermore, divalent copper ions can enhance the antitumor effects of DSF. Molecular structure, pharmacokinetics, signaling pathways, mechanisms of action and current clinical results of DSF are summarized here. Additionally, our attention is directed towards the immunomodulatory properties of DSF and we explore novel administration methods that may address the limitations associated with antitumor treatments based on DSF. Despite the promising potential of these various delivery methods for utilizing DSF as an effective anticancer agent, further investigation is essential in order to extensively evaluate the safety and efficacy of these delivery systems.
Collapse
Affiliation(s)
- Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Leichong Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Cheng FT, Geng YD, Liu YX, Nie X, Zhang XG, Chen ZL, Tang LQ, Wang LH, You YZ, Zhang L. Co-delivery of a tumor microenvironment-responsive disulfiram prodrug and CuO 2 nanoparticles for efficient cancer treatment. NANOSCALE ADVANCES 2023; 5:3336-3347. [PMID: 37325521 PMCID: PMC10262962 DOI: 10.1039/d3na00004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Disulfiram (DSF) has been used as a hangover drug for more than seven decades and was found to have potential in cancer treatment, especially mediated by copper. However, the uncoordinated delivery of disulfiram with copper and the instability of disulfiram limit its further applications. Herein, we synthesize a DSF prodrug using a simple strategy that could be activated in a specific tumor microenvironment. Poly amino acids are used as a platform to bind the DSF prodrug through the B-N interaction and encapsulate CuO2 nanoparticles (NPs), obtaining a functional nanoplatform Cu@P-B. In the acidic tumor microenvironment, the loaded CuO2 NPs will produce Cu2+ and cause oxidative stress in cells. At the same time, the increased reactive oxygen species (ROS) will accelerate the release and activation of the DSF prodrug and further chelate the released Cu2+ to produce the noxious copper diethyldithiocarbamate complex, which causes cell apoptosis effectively. Cytotoxicity tests show that the DSF prodrug could effectively kill cancer cells with only a small amount of Cu2+ (0.18 μg mL-1), inhibiting the migration and invasion of tumor cells. In vitro and in vivo experiments have demonstrated that this functional nanoplatform could kill tumor cells effectively with limited toxic side effects, showing a new perspective in DSF prodrug design and cancer treatment.
Collapse
Affiliation(s)
- Fen-Ting Cheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
| | - Ya-Di Geng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
| | - Yun-Xiao Liu
- Institute of Clinical Pharmacology, Anhui Medical University Hefei Anhui 230032 China
| | - Xuan Nie
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Xin-Ge Zhang
- Institute of Clinical Pharmacology, Anhui Medical University Hefei Anhui 230032 China
| | - Zhao-Lin Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
| | - Li-Qin Tang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
| | - Long-Hai Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Ye-Zi You
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
- Institute of Clinical Pharmacology, Anhui Medical University Hefei Anhui 230032 China
| |
Collapse
|
8
|
Kang X, Jadhav S, Annaji M, Huang CH, Amin R, Shen J, Ashby CR, Tiwari AK, Babu RJ, Chen P. Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems. Pharmaceutics 2023; 15:1567. [PMID: 37376016 DOI: 10.3390/pharmaceutics15061567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Disulfiram (DSF) is a thiocarbamate based drug that has been approved for treating alcoholism for over 60 years. Preclinical studies have shown that DSF has anticancer efficacy, and its supplementation with copper (CuII) significantly potentiates the efficacy of DSF. However, the results of clinical trials have not yielded promising results. The elucidation of the anticancer mechanisms of DSF/Cu (II) will be beneficial in repurposing DSF as a new treatment for certain types of cancer. DSF's anticancer mechanism is primarily due to its generating reactive oxygen species, inhibiting aldehyde dehydrogenase (ALDH) activity inhibition, and decreasing the levels of transcriptional proteins. DSF also shows inhibitory effects in cancer cell proliferation, the self-renewal of cancer stem cells (CSCs), angiogenesis, drug resistance, and suppresses cancer cell metastasis. This review also discusses current drug delivery strategies for DSF alone diethyldithocarbamate (DDC), Cu (II) and DSF/Cu (II), and the efficacious component Diethyldithiocarbamate-copper complex (CuET).
Collapse
Affiliation(s)
- Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Chung-Hui Huang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY 11431, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
9
|
Repurposing Disulfiram as an Antimicrobial Agent in Topical Infections. Antibiotics (Basel) 2022; 11:antibiotics11121752. [PMID: 36551409 PMCID: PMC9774419 DOI: 10.3390/antibiotics11121752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
Antimicrobial drugs applied topically offer several advantages. However, the widespread use of antibiotics has led to increasing antimicrobial resistance. One interesting approach in the drug discovery process is drug repurposing. Disulfiram, which was originally approved as an anti-alcoholism drug, offers an attractive alternative to treat topical multidrug resistance bacteria in skin human infections. This study aimed to evaluate the biopharmaceutical characteristics of the drug and the effects arising from its topical application in detail. Microdilution susceptibility testing showed antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Streptococcus pyogenes. Dermal absorption revealed no permeation in pig skin. The quantification of the drug retained in pig skin demonstrated concentrations in the stratum corneum and epidermis, enough to treat skin infections. Moreover, in vitro cytotoxicity and micro-array analyses were performed to better understand the mechanism of action and revealed the importance of the drug as a metal ion chelator. Together, our findings suggest that disulfiram has the potential to be repurposed as an effective antibiotic to treat superficial human skin infections.
Collapse
|
10
|
Zhong S, Shengyu Liu, Xin Shi, Zhang X, Li K, Liu G, Li L, Tao S, Zheng B, Sheng W, Ye Z, Xing Q, Zhai Q, Ren L, Wu Y, Bao Y. Disulfiram in glioma: Literature review of drug repurposing. Front Pharmacol 2022; 13:933655. [PMID: 36091753 PMCID: PMC9448899 DOI: 10.3389/fphar.2022.933655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most common malignant brain tumors. High-grade gliomas, represented by glioblastoma multiforme (GBM), have a poor prognosis and are prone to recurrence. The standard treatment strategy is tumor removal combined with radiotherapy and chemotherapy, such as temozolomide (TMZ). However, even after conventional treatment, they still have a high recurrence rate, resulting in an increasing demand for effective anti-glioma drugs. Drug repurposing is a method of reusing drugs that have already been widely approved for new indication. It has the advantages of reduced research cost, safety, and increased efficiency. Disulfiram (DSF), originally approved for alcohol dependence, has been repurposed for adjuvant chemotherapy in glioma. This article reviews the drug repurposing method and the progress of research on disulfiram reuse for glioma treatment.
Collapse
|
11
|
Akpan E, Oladipo SD, Quadri TW, Olasunkanmi LO, Nwanna EE, Omondi B, Ebenso EE. Formamidine-Based Thiuram Disulfides as Efficient Inhibitors of Acid Corrosion of Mild Steel: Electrochemical, Surface, and Density Functional Theory/Monte Carlo Simulation Studies. ACS OMEGA 2022; 7:26076-26091. [PMID: 35936469 PMCID: PMC9352172 DOI: 10.1021/acsomega.2c00985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/08/2022] [Indexed: 05/09/2023]
Abstract
Electrochemical, surface, and density functional theory (DFT)/Monte Carlo (MC) simulation studies were used in investigating the characteristics of N,N'-(disulfanne-1,2-dicarbonothioyl)bis(N,N'-bis(2,6-dimethylphenyl)formimidamide) (DS1), N,N'-(disulfanne-1,2-dicarbonothioyl)bis(N,N'-bis(2,6-diisopropylphenyl)formimidamide) (DS2), N,N'-(disulfanne-1,2-dicarbonothioyl)bis(N,N'-dimesitylformimidamide) (DS3), and N,N'-(disulfanne-1,2-dicarbonothioyl)bis(N,N'-bis(2,6-dichlorophenyl)formimidamide) (DS4) as inhibitors of acid corrosion of mild steel. The inhibitors were found to effectively reduce the rates of steel dissolution at the anode as well as cathodic hydrogen evolution. The order of inhibition efficiencies of studied compounds is DS1 (PDP/LPR/EIS: 98.60/97.98/96.94%) > DS2 (PDP/LPR/EIS: 98.36/96.86/96.90%) > DS3 (PDP/LPR/EIS: 94.66/87.44/94.30%) > DS4 (PDP/LPR/EIS: 83.57/77.02/75.17%) at 1.00 mM, and the overall efficiencies appeared to depend on the molecular and electronic structures of the compounds. The compounds offered high resistance to charge transfer across the electrode/electrolyte system by forming adsorbed film whose resistance increased with an increase in concentration. Findings suggested that the adsorption process involved combined chemisorption and physisorption. DFT calculations and MC simulations provided theoretical justifications for the experimental results.
Collapse
Affiliation(s)
- Ekemini
D. Akpan
- College
of Science, Engineering and Technology University of South Africa, Johannesburg 1710, South Africa
| | - Segun D. Oladipo
- School
of Chemistry and Physics, University of
Kwazulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
- Department
of Chemical Sciences, Olabisi Onabanjo University, P.M.B. 2002, Ago-Iwoye 120107, Nigeria
| | - Taiwo W. Quadri
- Department
of Chemistry, School of Physical and Chemical Sciences, Faculty of
Natural and Agricultural Sciences, North-West
University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | - Lukman O. Olasunkanmi
- Department
of Chemistry, Faculty of Science, Obafemi
Awolowo University, Ile-Ife 220005, Nigeria
- Department
of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg 2028, South Africa
| | - Esther E. Nwanna
- Department
of Biochemistry, Federal University of Technology, P.M.B 704, Akure 340110, Nigeria
| | - Bernard Omondi
- School
of Chemistry and Physics, University of
Kwazulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209, South
Africa
| | - Eno E. Ebenso
- College
of Science, Engineering and Technology University of South Africa, Johannesburg 1710, South Africa
| |
Collapse
|
12
|
Disulfiram/copper induces antitumor activity against gastric cancer cells in vitro and in vivo by inhibiting S6K1 and c-Myc. Cancer Chemother Pharmacol 2022; 89:451-458. [PMID: 35201421 DOI: 10.1007/s00280-022-04398-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Disulfiram (DSF) is an approved drug for the treatment of alcohol dependence. Accumulating evidence indicates that DSF, alone or in combination with copper (Cu), possesses strong antitumor activity in various malignancies. This study investigated the effects of DSF on gastric cancer (GC) and the potential mechanisms involved. METHODS GC cell proliferation and apoptosis upon treatment with DSF with or without copper were analyzed using CCK-8 assay, colony formation assay, and flow cytometry. Glucose metabolism was investigated using glucose consumption and lactate production assays. The expression of caspase-3, Bcl-2, LC-3, P62, S6K1, c-Myc, GLUT1, PKM2, and LDHA was analyzed using western blot assay. In vivo nude mice studies were performed to verify the findings from in vitro analyses. RESULTS Our study showed that DSF was highly toxic to GC cells in a Cu-dependent manner. Nontoxic concentrations of Cu enhanced the inhibitory effects of DSF on cell viability and colony formation. DSF also induced apoptotic and autophagic cell death in the presence of Cu. In addition, DSF/Cu inhibited glycolysis and xenograft growth of GC cells by suppressing the expression of S6K1, c-Myc, and their downstream molecules, including GLUT1, PKM2, and LDHA. CONCLUSION Our study demonstrated that DSF/Cu exerted antitumor activity against GC cells both in vitro and in vivo. DSF/Cu may represent a promising therapeutic strategy for the treatment of GC.
Collapse
|
13
|
Akdaş Reis Y, Tapisiz OL, Göktolga Ü, Şimşek G, Erten Ö, Kiykaç Altinbaş Ş, Erkaya S. The Effect of Disulfiram in the Prevention of Postoperative Adhesion Formation in an Experimental Rat Uterine Horn Model. Reprod Sci 2021; 28:2650-2660. [PMID: 33782899 DOI: 10.1007/s43032-021-00543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Postoperative adhesions can cause serious complications, including intestinal obstruction, chronic abdominopelvic pain, and infertility in women. Here we investigate the effects of disulfiram on the postoperative adhesion model. Female Wistar rats were used (n = 72). The animals were separated into six groups (12 rats per group): group 1 (control), group 2 (300 mg/kg disulfiram administered for 3 days preoperatively), group 3 (50 mg/kg disulfiram administered for 3 days preoperatively and 14 days postoperatively), group 4 (300 mg/kg disulfiram administered for 3 days preoperatively and 14 days postoperatively), group 5 (50 mg/kg disulfiram administered 14 days postoperatively only), and group 6 (300 mg/kg disulfiram administered 14 days postoperatively only). A histopathologic examination was performed. Immunohistochemical stainings for matrix metalloproteinase-2 and 9 (MMP-2, and MMP-9) and vascular endothelial growth factor (VEGF) were evaluated. The macroscopic adhesion scores were significantly lower in the disulfiram groups (groups 3, 4, and 6) compared to the control group (p < 0.05). Inflammation scores were lower in all groups receiving disulfiram, but only reached statistical significance in group 4 (p < 0.05). In the immunohistochemical evaluation of the groups, MMP-9 was significantly lower in group 5 than group 4 (p < 0.05). There was no significant difference between the groups for MMP-2 and VEGF. We found that disulfiram reduced postoperative adhesion formation. Disulfiram becomes more effective (by directly reducing inflammation) when initiated during the preoperative period at high doses.
Collapse
Affiliation(s)
- Yıldız Akdaş Reis
- Department of Obstetrics and Gynecology, Etlik Zübeyde Hanım Women's Health Training and Research Hospital, 06010, Ankara, Turkey.
| | - Omer Lutfi Tapisiz
- Department of Obstetrics and Gynecology, Etlik Zübeyde Hanım Women's Health Training and Research Hospital, 06010, Ankara, Turkey
| | - Ümit Göktolga
- Department of Obstetrics and Gynecology, Bahceci Health Group, Istanbul, Turkey
| | - Gülçin Şimşek
- Department of Pathology, Kecioren Education and Research Hospital, Ankara, Turkey
| | - Özlem Erten
- Department of Obstetrics and Gynecology, Evliya Celebi Training and Research Hospital, Kütahya University of Health Sciences, Kütahya, Turkey
| | - Şadıman Kiykaç Altinbaş
- Department of Obstetrics and Gynecology, Etlik Zübeyde Hanım Women's Health Training and Research Hospital, 06010, Ankara, Turkey
| | - Salim Erkaya
- Department of Obstetrics and Gynecology, Dr. Zekai Tahir Burak Women's Health Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
14
|
Rehman AU, Zhen G, Zhong B, Ni D, Li J, Nasir A, Gabr MT, Rafiq H, Wadood A, Lu S, Zhang J, Chen HF. Mechanism of zinc ejection by disulfiram in nonstructural protein 5A. Phys Chem Chem Phys 2021; 23:12204-12215. [PMID: 34008604 DOI: 10.1039/d0cp06360f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) is a notorious member of the Flaviviridae family of enveloped, positive-strand RNA viruses. Non-structural protein 5A (NS5A) plays a key role in HCV replication and assembly. NS5A is a multi-domain protein which includes an N-terminal amphipathic membrane anchoring alpha helix, a highly structured domain-1, and two intrinsically disordered domains 2-3. The highly structured domain-1 contains a zinc finger (Zf)-site, and binding of zinc stabilizes the overall structure, while ejection of this zinc from the Zf-site destabilizes the overall structure. Therefore, NS5A is an attractive target for anti-HCV therapy by disulfiram, through ejection of zinc from the Zf-site. However, the zinc ejection mechanism is poorly understood. To disclose this mechanism based on three different states, A-state (NS5A protein), B-state (NS5A + Zn), and C-state (NS5A + Zn + disulfiram), we have performed molecular dynamics (MD) simulation in tandem with DFT calculations in the current study. The MD results indicate that disulfiram triggers Zn ejection from the Zf-site predominantly through altering the overall conformation ensemble. On the other hand, the DFT assessment demonstrates that the Zn adopts a tetrahedral configuration at the Zf-site with four Cys residues, which indicates a stable protein structure morphology. Disulfiram binding induces major conformational changes at the Zf-site, introduces new interactions of Cys39 with disulfiram, and further weakens the interaction of this residue with Zn, causing ejection of zinc from the Zf-site. The proposed mechanism elucidates the therapeutic potential of disulfiram and offers theoretical guidance for the advancement of drug candidates.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China. and State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China and Department of Biochemistry, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Guodong Zhen
- Department of VIP Clinic, Changhai Hospital, Navy Military Medical University, Shanghai, 200433, China
| | - Bozitao Zhong
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China.
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Abdul Nasir
- Synthetic Protein Engineering Lab, Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Moustafa T Gabr
- Department of Radiology, Stanford University, Stanford, California 94305, USA
| | - Humaira Rafiq
- Department of Biochemistry, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China.
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China.
| | - Hai-Feng Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China. and Shanghai Center for Bioinformation Technology, Shanghai, 200235, China
| |
Collapse
|
15
|
Warrier S, Patil M, Bhansali S, Varier L, Sethi G. Designing precision medicine panels for drug refractory cancers targeting cancer stemness traits. Biochim Biophys Acta Rev Cancer 2020; 1875:188475. [PMID: 33188876 DOI: 10.1016/j.bbcan.2020.188475] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Cancer is one amongst the major causes of death today and cancer biology is one of the most well researched fields in medicine. The driving force behind cancer is considered to be a minor subpopulation of cells, the cancer stem cells (CSCs). Similar to other stem cells, these cells are self-renewing and proliferating but CSCs are also difficult to target by chemo- or radio-therapies. Cancer stem cells are known to be present in most of the cancer subgroups such as carcinoma, sarcoma, myeloma, leukemia, lymphomas and mixed cancer types. There is a wide gamut of factors attributed to the stemness of cancers, ranging from dysregulated signaling pathways, and activation of enzymes aiding immune evasion, to conducive tumor microenvironment, to name a few. The defining outcome of the increased presence of CSCs is tumor metastasis and relapse. Predictive medicine approach based on the plethora of CSC markers would be a move towards precision medicine to specifically identify CSC-rich tumors. In this review, we discuss the cancer subtypes and the role of different CSC specific markers in these varying subtypes. We also categorize the CSC markers based their defining trait contributing to stemness. This review thus provides a comprehensive approach to catalogue a predictive set of markers to identify the resistant and refractory cancer stem cell population within different tumor subtypes, so as to facilitate better prognosis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| | - Manasi Patil
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Sanyukta Bhansali
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117 600, Singapore
| |
Collapse
|
16
|
Formamidine-based thiuram disulfides: Synthesis, structural characterization, biological studies, and preliminary cheminformatics evaluation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Repurposing Disulfiram (Tetraethylthiuram Disulfide) as a Potential Drug Candidate against Borrelia burgdorferi In Vitro and In Vivo. Antibiotics (Basel) 2020; 9:antibiotics9090633. [PMID: 32971817 PMCID: PMC7557442 DOI: 10.3390/antibiotics9090633] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Lyme disease caused by the Borrelia burgdorferi (Bb or B. burgdorferi) is the most common vector-borne, multi-systemic disease in the USA. Although most Lyme disease patients can be cured with a course of the first line of antibiotic treatment, some patients are intolerant to currently available antibiotics, necessitating the development of more effective therapeutics. We previously found several drugs, including disulfiram, that exhibited effective activity against B. burgdorferi. In the current study, we evaluated the potential of repurposing the FDA-approved drug, disulfiram for its borreliacidal activity. Our results indicate disulfiram has excellent borreliacidal activity against both the log and stationary phase B. burgdorferi sensu stricto B31 MI. Treatment of mice with disulfiram eliminated the B. burgdorferi sensu stricto B31 MI completely from the hearts and urinary bladder by day 28 post infection. Moreover, disulfiram-treated mice showed reduced expressions of inflammatory markers, and thus they were protected from histopathology and cardiac organ damage. Furthermore, disulfiram-treated mice showed significantly lower amounts of total antibody titers (IgM and IgG) at day 21 and total IgG2b at day 28 post infection. FACS analysis of lymph nodes revealed a decrease in the percentage of CD19+ B cells and an increase in total percentage of CD3+ T cells, CD3+ CD4+ T helpers, and naive and effector memory cells in disulfiram-treated mice. Together, our findings suggest that disulfiram has the potential to be repurposed as an effective antibiotic for treating Lyme disease.
Collapse
|
18
|
Li H, Wang J, Wu C, Wang L, Chen ZS, Cui W. The combination of disulfiram and copper for cancer treatment. Drug Discov Today 2020; 25:1099-1108. [PMID: 32320854 DOI: 10.1016/j.drudis.2020.04.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
Disulfiram (DSF) is a thiuram derivative that was developed to treat alcoholism but was also found to have antitumor activity. Copper (Cu), as a trace metal, has important roles in the body. Numerous studies have shown that the combination of DSF and copper (DSF/Cu) greatly enhances its antitumor efficacy. Given that the efficacy of DSF is well established and its safety profile is understood, repurposing DSF as a new anticancer drug is a promising strategy. Here, we summarize the pharmacological effects of DSF and the role of Cu in cancer, and focus on the antitumor effect of DSF/Cu, especially the mechanisms involved in enhancing drug sensibility by targeting specific molecules. We also provide rational strategies for using DSF as a cancer therapy.
Collapse
Affiliation(s)
- Hong Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Jingyu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY 11439, USA.
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China.
| |
Collapse
|
19
|
Yang W, Xie J, Hou R, Chen X, Xu Z, Tan Y, Ren F, Zhang Y, Xu J, Chang J, Wang H. Disulfiram/cytarabine eradicates a subset of acute myeloid leukemia stem cells with high aldehyde dehydrogenase expression. Leuk Res 2020; 92:106351. [PMID: 32224355 DOI: 10.1016/j.leukres.2020.106351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 01/07/2023]
Abstract
Most patients with acute myeloid leukemia (AML) achieve complete remission (CR) after induction chemotherapy, however, in some patients, the disease subsequently relapses and may lead to death. Leukemia stem cells (LSC) have been identified as the main cause for recurrence. Increased aldehyde dehydrogenase (ALDHhigh) activity in a variety of cancer stem cells prevents effective action of chemotherapeutic drugs. In this study, we found that approximately 50.7% of AML patients had ALDHhigh, and the presence of ALDHhigh stem cells was associated with poor cytogenetic prognosis. Lentiviral vector transduced ALDHhigh leukemia cell lines are insensitive to the conventional chemotherapy drug cytarabine, and inhibition of ALDH activity by disulfiram (DSF) can increase the sensitivity of ALDHhigh leukemia cells to cytarabine. Unlike traditional chemotherapy drugs, DSF is not toxic to healthy umbilical cord blood stem cells. An ALDHhigh leukemia cell xenograft model was established using immunodeficient mice to mimic the disease environment, and DSF and cytarabine were found to eliminate the ALDHhigh leukemia cells in transplanted mice while not affecting the healthy blood cells of mice. These findings suggest that DSF may have therapeutic potential by inhibiting ALDH activity and thereby increasing chemosensitivity.
Collapse
Affiliation(s)
- Wanfang Yang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi University of Chinese Medicine, Jinzhong, China
| | - Juan Xie
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiuhua Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifang Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanhong Tan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fanggang Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yaofang Zhang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianmei Chang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
20
|
Xu Y, Zhou Q, Feng X, Dai Y, Jiang Y, Jiang W, Liu X, Xing X, Wang Y, Ni Y, Zheng C. Disulfiram/copper markedly induced myeloma cell apoptosis through activation of JNK and intrinsic and extrinsic apoptosis pathways. Biomed Pharmacother 2020; 126:110048. [PMID: 32145587 DOI: 10.1016/j.biopha.2020.110048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Disulfiram (DSF) is an FDA approved anti-alcoholism drug in use for more than 60 years. Recently, antitumor activity of the DSF/copper (DSF/Cu) complex has been identified. Its anti-multiple myeloma activity, however, has barely been investigated. In the present study, our results demonstrated that the DSF/Cu complex induced apoptosis of MM cells and MM primary cells. The results indicated that DSF/Cu significantly induced cell cycle arrest at the G2/M phase in MM.1S and RPMI8226 cells. Moreover, JC-1 and Western blot results showed that DSF/Cu disrupted mitochondrial membrane integrity and cleaved caspase-8 in MM cells, respectively, suggesting that it induced activation of extrinsic and intrinsic apoptosis pathways. Interestingly, DSF/Cu induced caspase-3 activation was partly blocked by Z-VAD-FMK (zVAD), a pan-caspase inhibitor, indicating at caspase-dependent and -independent paths involved in DSF/Cu induced myeloma cell apoptosis machinery. Additionally, activation of the c-Jun N-terminal kinase (JNK) signaling pathway was observed in DSF/Cu treated MM cells. More importantly, our results demonstrated that DSF/Cu significantly reduced tumor volumes and prolonged overall survival of MM bearing mice when compared with the controls. Taken together, our novel findings showed that DSF/Cu has potent anti-myeloma activity in vitro and in vivo highlighting valuable clinical potential of DSF/Cu in MM treatment.
Collapse
Affiliation(s)
- Yaqi Xu
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China
| | - Qian Zhou
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China; Haemal Internal Medicine, Linyi Central Hospital, Yishui Country, Linyi, Shandong 276400, China
| | - Xiaoli Feng
- Clinical Laboratory, The Second Hospital, Shandong University, Jinan, Shandong, China
| | - Yibo Dai
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China
| | - Yang Jiang
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China
| | - Wen Jiang
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China; Central Laboratory, The Second Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China
| | - Xiangling Xing
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Department of Medicine, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institutet and Karolinska University Hospital Solna, 17164, Solna, Sweden
| | - Yongjing Wang
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China
| | - Yihong Ni
- Department of Endocrine, the Second Hospital, Shandong University, Jinan, Shandong, China.
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China.
| |
Collapse
|
21
|
Ekinci E, Rohondia S, Khan R, Dou QP. Repurposing Disulfiram as An Anti-Cancer Agent: Updated Review on Literature and Patents. Recent Pat Anticancer Drug Discov 2020; 14:113-132. [PMID: 31084595 DOI: 10.2174/1574892814666190514104035] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite years of success of most anti-cancer drugs, one of the major clinical problems is inherent and acquired resistance to these drugs. Overcoming the drug resistance or developing new drugs would offer promising strategies in cancer treatment. Disulfiram, a drug currently used in the treatment of chronic alcoholism, has been found to have anti-cancer activity. OBJECTIVE To summarize the anti-cancer effects of Disulfiram through a thorough patent review. METHODS This article reviews molecular mechanisms and recent patents of Disulfiram in cancer therapy. RESULTS Several anti-cancer mechanisms of Disulfiram have been proposed, including triggering oxidative stress by the generation of reactive oxygen species, inhibition of the superoxide dismutase activity, suppression of the ubiquitin-proteasome system, and activation of the mitogen-activated protein kinase pathway. In addition, Disulfiram can reverse the resistance to chemotherapeutic drugs by inhibiting the P-glycoprotein multidrug efflux pump and suppressing the activation of NF-kB, both of which play an important role in the development of drug resistance. Furthermore, Disulfiram has been found to reduce angiogenesis because of its metal chelating properties as well as its ability to inactivate Cu/Zn superoxide dismutase and matrix metalloproteinases. Disulfiram has also been shown to inhibit the proteasomes, DNA topoisomerases, DNA methyltransferase, glutathione S-transferase P1, and O6- methylguanine DNA methyltransferase, a DNA repair protein highly expressed in brain tumors. The patents described in this review demonstrate that Disulfiram is useful as an anti-cancer drug. CONCLUSION For years the FDA-approved, well-tolerated, inexpensive, orally-administered drug Disulfiram was used in the treatment of chronic alcoholism, but it has recently demonstrated anti-cancer effects in a range of solid and hematological malignancies. Its combination with copper at clinically relevant concentrations might overcome the resistance of many anti-cancer drugs in vitro, in vivo, and in patients.
Collapse
Affiliation(s)
- Elmira Ekinci
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Sagar Rohondia
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Raheel Khan
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Qingping P Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
22
|
Rezaei N, Neshasteh-Riz A, Mazaheri Z, Koosha F, Hoormand M. The Combination of Metformin and Disulfiram-Cu for Effective Radiosensitization on Glioblastoma Cells. CELL JOURNAL 2019; 22:263-272. [PMID: 31863651 PMCID: PMC6947006 DOI: 10.22074/cellj.2020.6798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
Abstract
Objective Glioblastoma (GBM) is one of the devastating types of primary brain tumors with a negligible response to
standard therapy. Repurposing drugs, such as disulfiram (DSF) and metformin (Met) have shown antitumor properties
in different cell lines, including GBM. In the present study, we focused on the combinatory effect of Met and DSF-Cu on
the induction of apoptosis in U87-MG cells exposed to 6-MV X-ray beams.
Materials and Methods In this experimental study, the MTT assay was performed to evaluate the cytotoxicity of
each drug, along with the combinatory use of both. After irradiation, the apoptotic cells were assessed using the flow
cytometry, western blot, and real-time polymerase chain reaction (RT-PCR) to analyze the expression of some cell
death markers such as BAX and BCL-2.
Results The synergistic application of both Met and DSF had cytotoxic impacts on the U87-MG cell line and made
them sensitized to irradiation. The combinatory usage of both drugs significantly decreased the cells growth, induced
apoptosis, and caused the upregulation of BAX, P53, CASPASE-3, and it also markedly downregulated the expression
of the anti-apoptotic protein BCL-2 at the gene and protein levels.
Conclusion It seems that the synergistic application of both Met and DSF with the support of irradiation can remarkably
restrict the growth of the U87-MG cell line. This may trigger apoptosis via the stimulation of the intrinsic pathway. The
combinatory use of Met and DSF in the presence of irradiation could be applied for patients afflicted with GBM.
Collapse
Affiliation(s)
- Narges Rezaei
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Radiation Sciences, School of Paramedicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Neshasteh-Riz
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Radiation Sciences, School of Paramedicine, Iran University of Medical Sciences, Tehran, Iran. Electronic Address:
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Fereshteh Koosha
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Hoormand
- Department of Pharmacology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Li K, Guo W, Li Z, Wang Y, Sun B, Xu D, Ling J, Song H, Liao Y, Wang T, Jing B, Hu M, Kuang Y, Wang Q, Yao F, Sun A, Zhu L, Wang L, Deng J. ALDH2 Repression Promotes Lung Tumor Progression via Accumulated Acetaldehyde and DNA Damage. Neoplasia 2019; 21:602-614. [PMID: 31071657 PMCID: PMC6506700 DOI: 10.1016/j.neo.2019.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
The major role of aldehyde dehydrogenase 2 family (ALDH2) is to detoxify acetaldehyde (ACE) to non-toxic acetic acid. Many evidences suggest that ALDH2 dysfunction contributes to a variety of human diseases including cancer. However, the biological function and molecular mechanism of ALDH2 in tumor progression remain elusive. In this study, we found that ALDH2 repression was associated with poor prognosis in lung adenocarcinoma. Overexpression of ALDH2 inhibited malignant features of lung adenocarcinoma cells, such as proliferation, stemness and migration, whereas ALDH2 knockdown increased these features. Mechanistically, ALDH2 repression led to accumulation of ACE; whereas ACE enhanced the migration features of lung adenocarcinoma cells, which was associated with increased DNA damage. Importantly, accumulated ACE and increased DNA damage were identified in Aldh2-knockout (KO) mouse lung tissues in vivo. Consistent with this concept, treatment of lung adenocarcinoma cells with ALDH2 agonist Alda-1 suppressed the proliferation, stemness and migration features of lung adenocarcinoma cells. Thus, activating ALDH2, such as via its agonist, may provide a novel strategy for treatment of lung cancer.
Collapse
Key Words
- aldh2, aldehyde dehydrogenase 2
- ros, reactive oxygen species
- nc membranes, nitrocellulose membranes
- hrp, horseradish peroxidase
- hek293t, human embryonic kidney cells
- ihc, immunohistochemistry
- atcc, american type culture collection
- 16hbe, human bronchial epithelial cells
- ko, knockout
- fbs, fetal bovine serum
- gepia, gene expression profiling interactive analysis
- luad, lung adenocarcinoma
- lusc, lung squamous cel l carcinoma
- tcga, the cancer genome atlas
- thpa, the human protein atlas
- ace, acetaldehyde
- wt, wild-type
- ucsc xena dataset, university of california santa cruz xena dataset
Collapse
Affiliation(s)
- Kaimi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzheng Guo
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhanming Li
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai 201199, China
| | - Yang Wang
- Department of Pharmacology and Chemical Biology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Sun
- Translational Medical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dongliang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Ling
- Department of Pharmacology and Chemical Biology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyong Song
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueling Liao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Jing
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Hu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanbin Kuang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Aijun Sun
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lishun Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai 201199, China.
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Zhou X, Dai E, Song Q, Ma X, Meng Q, Jiang Y, Jiang W. In silico drug repositioning based on drug-miRNA associations. Brief Bioinform 2019; 21:498-510. [DOI: 10.1093/bib/bbz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/14/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract
Drug repositioning has become a prevailing tactic as this strategy is efficient, economical and low risk for drug discovery. Meanwhile, recent studies have confirmed that small-molecule drugs can modulate the expression of disease-related miRNAs, which indicates that miRNAs are promising therapeutic targets for complex diseases. In this study, we put forward and verified the hypothesis that drugs with similar miRNA profiles may share similar therapeutic properties. Furthermore, a comprehensive drug–drug interaction network was constructed based on curated drug-miRNA associations. Through random network comparison, topological structure analysis and network module extraction, we found that the closely linked drugs in the network tend to treat the same diseases. Additionally, the curated drug–disease relationships (from the CTD) and random walk with restarts algorithm were utilized on the drug–drug interaction network to identify the potential drugs for a given disease. Both internal validation (leave-one-out cross-validation) and external validation (independent drug–disease data set from the ChEMBL) demonstrated the effectiveness of the proposed approach. Finally, by integrating drug-miRNA and miRNA-disease information, we also explain the modes of action of drugs in the view of miRNA regulation. In summary, our work could determine novel and credible drug indications and offer novel insights and valuable perspectives for drug repositioning.
Collapse
Affiliation(s)
- Xu Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Enyu Dai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Qian Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Xueyan Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Qianqian Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Wei Jiang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
| |
Collapse
|
25
|
Banerjee P, Geng T, Mahanty A, Li T, Zong L, Wang B. Integrating the drug, disulfiram into the vitamin E-TPGS-modified PEGylated nanostructured lipid carriers to synergize its repurposing for anti-cancer therapy of solid tumors. Int J Pharm 2019; 557:374-389. [DOI: 10.1016/j.ijpharm.2018.12.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2018] [Accepted: 12/23/2018] [Indexed: 12/14/2022]
|
26
|
Laws K, Suntharalingam K. The Next Generation of Anticancer Metallopharmaceuticals: Cancer Stem Cell-Active Inorganics. Chembiochem 2018; 19:2246-2253. [PMID: 30109911 DOI: 10.1002/cbic.201800358] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are heavily linked to fatal incidences of cancer relapse and metastasis. Conventional cancer therapies such as surgery, chemotherapy and radiation are largely futile against CSCs. Therefore, highly original approaches are needed to overcome CSCs and to provide durable, long-term clinical outcomes. Many academia- and pharmaceutical-led studies aimed at developing chemical or biological anti-CSC agents are ongoing; however, the application of inorganic compounds is rare. In this minireview, we discuss how the chemical diversity and versatility offered by metals has been harnessed to develop an unprecedented, emerging class of metallopharmaceuticals: CSC-active inorganics. A detailed account of their mechanism(s) of action is provided, and possible future directions for exploration are also put forward.
Collapse
Affiliation(s)
- Kristine Laws
- Department of Chemistry, King's College London, Trinity Street, London, SE1 1DB, UK
| | | |
Collapse
|
27
|
Hastie R, Ye L, Hannan NJ, Brownfoot FC, Cannon P, Nguyen V, Tong S, Kaitu'u-Lino TJ. Disulfiram inhibits placental soluble FMS-like tyrosine kinase-1 and soluble endoglin secretion independent of the proteasome. Pregnancy Hypertens 2018; 14:125-130. [PMID: 30527099 DOI: 10.1016/j.preghy.2018.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/17/2018] [Accepted: 09/16/2018] [Indexed: 02/02/2023]
Abstract
Preeclampsia is associated with intermittent placental hypoxia, inflammation and the release of antiangiogenic factors, namely sFLT-1 and sEng. These factors cause maternal endothelial dysfunction and the manifestation of clinical disease. Disulfiram is a dehydrogenase inhibitor used to treat alcoholism and has been suggested as a proteasome inhibitor. Inhibiting the proteasome has been previously shown to reduce FLT-1 gene expression. Thus, we aim to investigate whether disulfiram alters the secretion of sFLT-1 and sEng and reduces endothelial dysfunction. METHODS AND RESULTS: We assessed the effects of disulfiram on primary cytotrophoblast and human umbilical vein endothelial cells (HUVECs). Disulfiram significantly reduced mRNA expression of membrane bound FLT-1 and sFLT-1 variants in primary cytotrophoblasts, which translated into a significant reduction in the protein secretion of sFLT-1. Additionally, sFLT-1 was reduced in primary HUVECs treated with disulfiram, whilst sEng was only reduced in primary cytotrophoblasts. Next, we investigated the effect of disulfiram on endothelial dysfunction using primary HUVECs treated with 5% preeclamptic serum ± disulfiram. Serum from preeclamptic women induced endothelial dysfunction evidenced by increased mRNA expression of vascular cell adhesion molecule-1 (VCAM-1) and adhesion of peripheral blood mononuclear cells (PBMCs) to HUVECs. The addition of disulfiram reduced VCAM-1 mRNA expression, however did not affect the adhesion of PBMCs to endothelial cells. Lastly, we assessed the effects of disulfiram on the 20S subunit of the proteasome and found disulfiram did not inhibit this subunit in either primary cytotrophoblast or HUVECs. CONCLUSIONS: Disulfiram quenches sFLT-1 and sEng via mechanisms independent of the 20S subunit of the proteasome. Understanding of the mechanisms by which disulfiram inhibits antiangiogenic secretion may reveal insights into the pathogenesis and potential therapeutic targets for preeclampsia.
Collapse
Affiliation(s)
- Roxanne Hastie
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia.
| | - Louie Ye
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Natalie J Hannan
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Fiona C Brownfoot
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Ping Cannon
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Vi Nguyen
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Stephen Tong
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| |
Collapse
|
28
|
Abstract
Cervical cancer is usually treated by surgery, with the more advanced cancers requiring adjuvant chemotherapy or radiotherapy. The location of the cervix makes it easily accessible through the vagina for the localised delivery of chemotherapeutic drugs. Localised delivery has the advantage of direct delivery to the site of action resulting in a lower dose having to be required and a reduction in systemic side effects. This approach would be advantageous for fertility sparing surgery, whereby localised delivery could be used to reduce tumour size allowing for a much smaller tumour to be removed, reducing the risk of preterm birth. Furthermore, localised delivery could be used after surgery to reduce the risk of recurrence, which is significantly higher in fertility sparing surgery compared to standard surgery. In this paper, we discuss the number of vaginal dosage forms that have investigated for this purpose, including tablets, rings, bioadhesive and cervical caps. APIs under investigation have ranged from well-established chemotherapeutic drugs to more experimental compounds.
Collapse
Affiliation(s)
- Ian Major
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Christopher McConville
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
29
|
Lenstra DC, Al Temimi AHK, Mecinović J. Inhibition of histone lysine methyltransferases G9a and GLP by ejection of structural Zn(II). Bioorg Med Chem Lett 2018. [PMID: 29519735 DOI: 10.1016/j.bmcl.2018.02.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Histone lysine methyltransferases G9a and GLP are validated targets for the development of new epigenetic drugs. Most, if not all, inhibitors of G9a and GLP target the histone substrate binding site or/and the S-adenosylmethionine cosubstrate binding site. Here, we report an alternative approach for inhibiting the methyltransferase activity of G9a and GLP. For proper folding and enzymatic activity, G9a and GLP contain structural zinc fingers, one of them being adjacent to the S-adenosylmethionine binding site. Our work demonstrates that targeting these labile zinc fingers with electrophilic small molecules results in ejection of structural zinc ions, and consequently inhibition of the methyltransferase activity. Very effective Zn(II) ejection and inhibition of G9a and GLP was observed with clinically used ebselen, disulfiram and cisplatin.
Collapse
Affiliation(s)
- Danny C Lenstra
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Abbas H K Al Temimi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Viola-Rhenals M, Patel KR, Jaimes-Santamaria L, Wu G, Liu J, Dou QP. Recent Advances in Antabuse (Disulfiram): The Importance of its Metal-binding Ability to its Anticancer Activity. Curr Med Chem 2018; 25:506-524. [PMID: 29065820 PMCID: PMC6873226 DOI: 10.2174/0929867324666171023161121] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Considerable evidence demonstrates the importance of dithiocarbamates especially disulfiram as anticancer drugs. However there are no systematic reviews outlining how their metal-binding ability is related to their anticancer activity. This review aims to summarize chemical features and metal-binding activity of disulfiram and its metabolite DEDTC, and discuss different mechanisms of action of disulfiram and their contributions to the drug's anticancer activity. METHODS We undertook a disulfiram-related search on bibliographic databases of peerreviewed research literature, including many historic papers and in vitro, in vivo, preclinical and clinical studies. The selected papers were carefully reviewed and summarized. RESULTS More than five hundreds of papers were obtained in the initial search and one hundred eighteen (118) papers were included in the review, most of which deal with chemical and biological aspects of Disulfiram and the relationship of its chemical and biological properties. Eighty one (81) papers outline biological aspects of dithiocarbamates, and fifty seven (57) papers report biological activity of Disulfiram as an inhibitor of proteasomes or inhibitor of aldehyde dehydrogenase enzymes, interaction with other anticancer drugs, or mechanism of action related to reactive oxygen species. Other papers reviewed focus on chemical aspects of dithiocarbamates. CONCLUSION This review confirms the importance of chemical features of compounds such as Disulfiram to their biological activities, and supports repurposing DSF as a potential anticancer agent.
Collapse
Affiliation(s)
- Maricela Viola-Rhenals
- Biochemistry and Cell Biology of Cancer Group, Exacts and Natural Science Faculty, University of Cartagena, Cartagena, Colombia
| | - Kush R. Patel
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
| | - Laura Jaimes-Santamaria
- Biochemistry and Cell Biology of Cancer Group, Exacts and Natural Science Faculty, University of Cartagena, Cartagena, Colombia
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
| | - Jinbao Liu
- Guangzhou Medical University, Protein Modification and Degradation Lab, Dongfeng Xi road 195#, Guangzhou, Guangdong 510182, China
| | - Q. Ping Dou
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
- Guangzhou Medical University, Protein Modification and Degradation Lab, Dongfeng Xi road 195#, Guangzhou, Guangdong 510182, China
| |
Collapse
|
31
|
Hassan I, Khan AA, Aman S, Qamar W, Ebaid H, Al-Tamimi J, Alhazza IM, Rady AM. Restrained management of copper level enhances the antineoplastic activity of imatinib in vitro and in vivo. Sci Rep 2018; 8:1682. [PMID: 29374195 PMCID: PMC5786010 DOI: 10.1038/s41598-018-19410-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
The present study was designed to investigate if elevated copper level can be targeted to enhance the efficacy of a significant anticancer drug, imatinib (ITB). The antineoplastic activity of this drug was assessed in the HepG2, HEK-293, MCF-7 and MDA-MD-231 cells targeting elevated copper level as their common drug target. The cell lines were treated with the different doses of copper chloride (Cu II) and disulfiram (DSF) alone as well as in their combinations with the drug for 24 h in standard culture medium and conditions. The treated cells were subjected to various assays including MTT, PARP, p-53, caspase-7, caspase-3, LDH and single cell electrophoresis. The study shows that DSF and Cu (II) synergizes the anticancer activity of ITB to a significant extent in a dose-specific way as evidenced by the combinations treated groups. Furthermore, the same treatment strategy was employed in cancer-induced rats in which the combinations of ITB-DSF and ITB-Cu II showed enhanced antineoplastic activity as compared to ITB alone. However, DSF was more effective than Cu (II) as an adjuvant to the drug. Hence, restrained manipulation of copper level in tumor cells can orchestrate the redox and molecular dispositions inside the cells favoring the induction of apoptosis.
Collapse
Affiliation(s)
- Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shazia Aman
- Department of Biochemistry, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, India
| | - Wajhul Qamar
- Biological Unit, Central Laboratory, Research Center, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.,Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jameel Al-Tamimi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ibrahim M Alhazza
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed M Rady
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
32
|
Jivan R, Peres J, Damelin LH, Wadee R, Veale RB, Prince S, Mavri-Damelin D. Disulfiram with or without metformin inhibits oesophageal squamous cell carcinoma in vivo. Cancer Lett 2017; 417:1-10. [PMID: 29274360 DOI: 10.1016/j.canlet.2017.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/30/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022]
Abstract
Oesophageal squamous cell carcinoma (OSCC) is highly prevalent in developing countries but there has been little recent progress into efficacious yet affordable treatment strategies. Drug repurposing is one attractive approach for cancer therapy. Disulfiram (DSF), used to treat alcoholism, inhibits cancer growth and we previously found that DSF perturbs protein degradation/turnover pathways in vitro. This was enhanced by combining DSF with the anti-diabetic drug metformin (Met). Here, we investigated DSF with/without Met, against OSCC in vivo. Nude mice injected subcutaneously with the human OSCC cell line WHCO1, were treated with 30 mg/kg or 50 mg/kg DSF three times per week and with/without Met, for 21 days. DSF and DSF/Met-treated animals had significantly smaller tumours compared to untreated, vehicle and positive control cisplatin-treated groups. This effect for DSF was independent of copper, with no significant accumulation of copper in tumours, together with maintained proteasome activity. However, increases in total ubiquitinated proteins, LC3B-II, LAMP1 and p62 in DSF and DSF/Met groups, indicate that autophagy is inhibited. These findings show that DSF and DSF/Met significantly impede OSCC tumour growth in vivo and offer prospective alternative chemotherapy approaches for OSCC.
Collapse
Affiliation(s)
- Rupal Jivan
- The School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Private Bag X3, WITS 2050, South Africa
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Leonard Howard Damelin
- The School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; Cell Biology Group, Centre for HIV and STI's, National Institute for Communicable Diseases (NHLS), Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | - Reubina Wadee
- Division of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Robin Bruce Veale
- The School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Private Bag X3, WITS 2050, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Demetra Mavri-Damelin
- The School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Private Bag X3, WITS 2050, South Africa.
| |
Collapse
|
33
|
Hasinoff BB, Patel D. Disulfiram is a slow-binding partial noncompetitive inhibitor of 20S proteasome activity. Arch Biochem Biophys 2017; 633:23-28. [PMID: 28887129 DOI: 10.1016/j.abb.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 01/10/2023]
Abstract
The alcohol abuse drug disulfiram has also been shown to exhibit potent cell growth inhibitory and anticancer activity. While a number of cellular and animal studies have suggested that disulfiram exhibits its anticancer activity through interaction with the proteasome, direct evidence for inhibition of proteasome activity is lacking. In this study we show that disulfiram potently inhibits the chymotrypsin-like activity of purified human 20S proteasome at low micromolar pharmacological concentrations. The enzyme progress curves displayed characteristics of a slow-binding reaction, similar to that observed for the FDA-approved proteasomal-targeted anticancer drugs bortezomib and carfilzomib. The apparent second order rate constant for reaction with 20s proteasome that was derived from an analysis of the progress curves was about 250-fold smaller than for bortezomib and carfilzomib. The concentration dependence of the enzyme kinetics was consistent with partial noncompetitive inhibition, whereby the putative disulfiram-proteasome adduct retains, partial but decreased enzyme activity. Disulfiram, which is known to have a high affinity for protein thiols, likely reacted with a non-critical cysteine residue, and not at the proteasome substrate binding site.
Collapse
Affiliation(s)
- Brian B Hasinoff
- College of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada.
| | - Daywin Patel
- College of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| |
Collapse
|
34
|
Abstract
Cancer is a major health issue worldwide, and the global burden of cancer is expected to increase in the coming years. Whereas the limited success with current therapies has driven huge investments into drug development, the average number of FDA approvals per year has declined since the 1990s. This unmet need for more effective anti-cancer drugs has sparked a growing interest for drug repurposing, i.e. using drugs already approved for other indications to treat cancer. As such, data both from pre-clinical experiments, clinical trials and observational studies have demonstrated anti-tumor efficacy for compounds within a wide range of drug classes other than cancer. Whereas some of them induce cancer cell death or suppress various aspects of cancer cell behavior in established tumors, others may prevent cancer development. Here, we provide an overview of promising candidates for drug repurposing in cancer, as well as studies describing the biological mechanisms underlying their anti-neoplastic effects.
Collapse
Affiliation(s)
- Linda Sleire
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway
| | - Hilde Elise Førde
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway
| | - Inger Anne Netland
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway
| | - Lina Leiss
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway
| | - Bente Sandvei Skeie
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway; Department of Neurosurgery, Haukeland University Hospital, Jonas Lies vei, 71, 5021 Bergen, Norway
| | - Per Øyvind Enger
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway; Department of Neurosurgery, Haukeland University Hospital, Jonas Lies vei, 71, 5021 Bergen, Norway.
| |
Collapse
|
35
|
Wang C, Yang J, Han H, Chen J, Wang Y, Li Q, Wang Y. Disulfiram-loaded porous PLGA microparticle for inhibiting the proliferation and migration of non-small-cell lung cancer. Int J Nanomedicine 2017; 12:827-837. [PMID: 28182125 PMCID: PMC5279843 DOI: 10.2147/ijn.s121948] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this study, poly(lactic-co-glycolic acid) (PLGA) was used as a carrier to construct disulfiram-loaded porous microparticle through the emulsion solvent evaporation method, using ammonium bicarbonate as a porogen. The microparticle possessed highly porous surface, suitable aerodynamic diameter for inhalation (8.31±1.33 µm), favorable drug loading (4.09%±0.11%), and sustained release profile. The antiproliferation effect of release supernatant was detected through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay using non-small-cell lung cancer A549 as a model, with only 13.3% of cell viability observed for the release supernatant at 7 days. The antiproliferation mechanism was elucidated to be associated with the enhanced induction of cell apoptosis and cell cycle arrest at S phase through flow cytometry and Western blotting analysis. Finally, wound healing and transwell migration assay showed that they could efficiently inhibit the cell migration. These results demonstrated that disulfiram-loaded porous PLGA microparticle could achieve favorable antitumor efficiency, implying the potential of treating non-small-cell lung cancer in a pulmonary administration.
Collapse
Affiliation(s)
- Chenhui Wang
- Department of Urology, First Hospital of Jilin University; Innovative Drug Research Centre, School of Pharmacy, Chongqing University, Chongqing
| | - Jiebing Yang
- Department of Urology, First Hospital of Jilin University; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Jiawen Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Yudi Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Yanbo Wang
- Department of Urology, First Hospital of Jilin University
| |
Collapse
|
36
|
The therapeutic potential of vaginal drug delivery in the treatment of cervical cancer. Ther Deliv 2016; 6:559-70. [PMID: 26001173 DOI: 10.4155/tde.15.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cervical cancer is usually treated by surgery, with the more advanced cancers requiring adjuvant chemo or radiotherapy. Its location makes it easily accessible through the vagina for the localized delivery of chemotherapeutic drugs. Localized delivery has the advantage of direct delivery to the site of action resulting in a lower dose being required and a reduction in systemic side effects. This approach would be advantageous in fertility-sparing surgery, where by localized delivery could be used to reduce tumor size allowing for a much smaller tumor to be removed, reducing the risk of preterm birth. Furthermore, localized delivery could be used after surgery to reduce the risk of recurrence, which is significantly higher in fertility-sparing surgery compared with standard surgery.
Collapse
|
37
|
Song W, Tang Z, Shen N, Yu H, Jia Y, Zhang D, Jiang J, He C, Tian H, Chen X. Combining disulfiram and poly(l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance. J Control Release 2016; 231:94-102. [PMID: 26928530 DOI: 10.1016/j.jconrel.2016.02.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/08/2016] [Accepted: 02/24/2016] [Indexed: 12/31/2022]
Abstract
A poly(l-glutamic acid) graft polyethylene glycol-cisplatin complex (PGA-CisPt) performs well in reducing the toxicity of free cisplatin and greatly enhances the accumulation and retention of cisplatin in solid tumors. However, there is a lack of effective treatment options for cisplatin-resistant tumors. A major reason for this is the dense PEG shell, which ensures that the PGA-CisPt maintains a long retention time in the blood that may result in it bypassing the tumor cells or failing to be endocytosed within the tumor microenvironment. Consequently, the cisplatin from PGA-CisPt is released to the extracellular space in the presence of cisplatin-resistant tumor cells and the resistant problem to free cisplatin still valid. Therefore, we devised a strategy to combat the resistance of cisplatin in the tumor microenvironment using nanoparticles-loaded disulfiram (NPs-DSF) as a modulator. In vitro, cisplatin, in combination with DSF, had a synergistic effect and decreased cell survival rate of cisplatin-resistant A549DDP cells. This effect was also observed when combining PGA-CisPt with NPs-DSF. Similarly, in Balb/C nude mice with A549DDP xenografts, NPs-DSF improved PGA-CisPt effectiveness in inhibiting tumor growth while maintaining low toxicity. Our data demonstrate that DSF reduces intracellular glutathione (GSH) levels, inhibits NFκB activity, and modulates the expression of apoptosis-related proteins Bcl-2 and Bax, thereby improves the effectiveness of cisplatin in resistant cell lines. Here, we provide a promising method for overcoming cisplatin resistance in tumors, while maintaining the in vivo benefits of the PGA-CisPt complex.
Collapse
Affiliation(s)
- Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yanjie Jia
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Dawei Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jian Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
38
|
Lun X, Wells JC, Grinshtein N, King JC, Hao X, Dang NH, Wang X, Aman A, Uehling D, Datti A, Wrana JL, Easaw JC, Luchman A, Weiss S, Cairncross JG, Kaplan DR, Robbins SM, Senger DL. Disulfiram when Combined with Copper Enhances the Therapeutic Effects of Temozolomide for the Treatment of Glioblastoma. Clin Cancer Res 2016; 22:3860-75. [PMID: 27006494 DOI: 10.1158/1078-0432.ccr-15-1798] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 03/11/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Glioblastoma is one of the most lethal cancers in humans, and with existing therapy, survival remains at 14.6 months. Current barriers to successful treatment include their infiltrative behavior, extensive tumor heterogeneity, and the presence of a stem-like population of cells, termed brain tumor-initiating cells (BTIC) that confer resistance to conventional therapies. EXPERIMENTAL DESIGN To develop therapeutic strategies that target BTICs, we focused on a repurposing approach that explored already-marketed (clinically approved) drugs for therapeutic potential against patient-derived BTICs that encompass the genetic and phenotypic heterogeneity of glioblastoma observed clinically. RESULTS Using a high-throughput in vitro drug screen, we found that montelukast, clioquinol, and disulfiram (DSF) were cytotoxic against a large panel of patient-derived BTICs. Of these compounds, disulfiram, an off-patent drug previously used to treat alcoholism, in the presence of a copper supplement, showed low nanomolar efficacy in BTICs including those resistant to temozolomide and the highly infiltrative quiescent stem-like population. Low dose DSF-Cu significantly augmented temozolomide activity in vitro, and importantly, prolonged in vivo survival in patient-derived BTIC models established from both newly diagnosed and recurrent tumors. Moreover, we found that in addition to acting as a potent proteasome inhibitor, DSF-Cu functionally impairs DNA repair pathways and enhances the effects of DNA alkylating agents and radiation. These observations suggest that DSF-Cu inhibits proteasome activity and augments the therapeutic effects of DNA-damaging agents (temozolomide and radiation). CONCLUSIONS DSF-Cu should be considered as an adjuvant therapy for the treatment of patients with glioblastoma in both newly diagnosed and recurrent settings. Clin Cancer Res; 22(15); 3860-75. ©2016 AACR.
Collapse
Affiliation(s)
- Xueqing Lun
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada. Clark H. Smith Brain Tumour Centre, University of Calgary, Calgary, Alberta, Canada
| | - J Connor Wells
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Natalie Grinshtein
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer C King
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada. Clark H. Smith Brain Tumour Centre, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoguang Hao
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada. Clark H. Smith Brain Tumour Centre, University of Calgary, Calgary, Alberta, Canada
| | - Ngoc-Ha Dang
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada. Clark H. Smith Brain Tumour Centre, University of Calgary, Calgary, Alberta, Canada
| | - Xiuling Wang
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada. Clark H. Smith Brain Tumour Centre, University of Calgary, Calgary, Alberta, Canada
| | - Ahmed Aman
- Drug Discovery Platform, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - David Uehling
- Drug Discovery Platform, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Alessandro Datti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital Toronto, Ontario, Canada. Department of Agricultural, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Jacob C Easaw
- Clark H. Smith Brain Tumour Centre, University of Calgary, Calgary, Alberta, Canada. Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Artee Luchman
- Department of Cell Biology & Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada. Department of Cell Biology & Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - J Gregory Cairncross
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada. Clark H. Smith Brain Tumour Centre, University of Calgary, Calgary, Alberta, Canada. Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Stephen M Robbins
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada. Clark H. Smith Brain Tumour Centre, University of Calgary, Calgary, Alberta, Canada. Department of Oncology, University of Calgary, Calgary, Alberta, Canada.
| | - Donna L Senger
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada. Clark H. Smith Brain Tumour Centre, University of Calgary, Calgary, Alberta, Canada. Department of Oncology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
39
|
Lee YM, Duh Y, Wang ST, Lai MMC, Yuan HS, Lim C. Using an Old Drug to Target a New Drug Site: Application of Disulfiram to Target the Zn-Site in HCV NS5A Protein. J Am Chem Soc 2016; 138:3856-62. [PMID: 26928525 DOI: 10.1021/jacs.6b00299] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In viral proteins, labile Zn-sites, where Zn(2+) is crucial for maintaining the native protein structure but the Zn-bound cysteines are reactive, are promising drug targets. Here, we aim to (i) identify labile Zn-sites in viral proteins using guidelines established from our previous work and (ii) assess if clinically safe Zn-ejecting agents could eject Zn(2+) from the predicted target site and thus inhibit viral replication. As proof-of-concept, we identified a labile Zn-site in the hepatitis C virus (HCV) NS5A protein and showed that the antialcoholism drug, disulfiram, could inhibit HCV replication to a similar extent as the clinically used antiviral agent, ribavirin. The discovery of a novel viral target and a new role for disulfiram in inhibiting HCV replication will enhance the therapeutic armamentarium against HCV. The strategy presented can also be applied to identify labile sites in other bacterial or viral proteins that can be targeted by disulfiram or other clinically safe Zn-ejectors.
Collapse
Affiliation(s)
- Yu-Ming Lee
- Institute of Biomedical Sciences, Academia Sinica , Taipei 115, Taiwan
| | - Yulander Duh
- Institute of Molecular Biology, Academia Sinica , Taipei 115, Taiwan
| | - Shih-Ting Wang
- Institute of Molecular Biology, Academia Sinica , Taipei 115, Taiwan
| | - Michael M C Lai
- Institute of Molecular Biology, Academia Sinica , Taipei 115, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica , Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica , Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University , Hsinchu 300, Taiwan
| |
Collapse
|
40
|
Song W, Tang Z, Lei T, Wen X, Wang G, Zhang D, Deng M, Tang X, Chen X. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:377-86. [DOI: 10.1016/j.nano.2015.10.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/10/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
|
41
|
Sharma V, Verma V, Lal N, Yadav SK, Sarkar S, Mandalapu D, Porwal K, Rawat T, Maikhuri JP, Rajender S, Sharma VL, Gupta G. Disulfiram and its novel derivative sensitize prostate cancer cells to the growth regulatory mechanisms of the cell by re-expressing the epigenetically repressed tumor suppressor-estrogen receptor β. Mol Carcinog 2015; 55:1843-1857. [PMID: 26599461 DOI: 10.1002/mc.22433] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 11/09/2022]
Abstract
Estrogen Receptor-β (ER-β), a tumor-suppressor in prostate cancer, is epigenetically repressed by hypermethylation of its promoter. DNA-methyltransferases (DNMTs), which catalyze the transfer of methyl-groups to CpG islands of gene promoters, are overactive in cancers and can be inhibited by DNMT-inhibitors to re-express the tumor suppressors. The FDA-approved nucleoside DNMT-inhibitors like 5-Azacytidine and 5-Aza-deoxycytidine carry notable concerns due to their off-target toxicity, therefore non-nucleoside DNMT inhibitors are desirable for prolonged epigenetic therapy. Disulfiram (DSF), an antabuse drug, inhibits DNMT and prevents proliferation of cells in prostate and other cancers, plausibly through the re-expression of tumor suppressors like ER-β. To increase the DNMT-inhibitory activity of DSF, its chemical scaffold was optimized and compound-339 was discovered as a doubly potent DSF-derivative with similar off-target toxicity. It potently and selectively inhibited cell proliferation of prostate cancer (PC3/DU145) cells in comparison to normal (non-cancer) cells by promoting cell-cycle arrest and apoptosis, accompanied with inhibition of total DNMT activity, and re-expression of ER-β (mRNA/protein). Bisulfite-sequencing of ER-β promoter revealed that compound-339 demethylated CpG sites more efficaciously than DSF, restoring near-normal methylation status of ER-β promoter. Compound-339 docked on to the MTase domain of DNMT1 with half the energy of DSF. In xenograft mice-model, the tumor volume regressed by 24% and 50% after treatment with DSF and compound-339, respectively, with increase in ER-β expression. Apparently both compounds inhibit prostate cancer cell proliferation by re-expressing the epigenetically repressed tumor-suppressor ER-β through inhibition of DNMT activity. Compound-339 presents a new lead for further study as an anti-prostate cancer agent. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vikas Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vikas Verma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Nand Lal
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - Santosh K Yadav
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saumya Sarkar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Dhanaraju Mandalapu
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - Konica Porwal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Tara Rawat
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - J P Maikhuri
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Singh Rajender
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - V L Sharma
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - Gopal Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
42
|
Zhang L, Tian B, Li Y, Lei T, Meng J, Yang L, Zhang Y, Chen F, Zhang H, Xu H, Zhang Y, Tang X. A Copper-Mediated Disulfiram-Loaded pH-Triggered PEG-Shedding TAT Peptide-Modified Lipid Nanocapsules for Use in Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:25147-25161. [PMID: 26501354 DOI: 10.1021/acsami.5b06488] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Disulfiram, which exhibits marked tumor inhibition mediated by copper, was encapsulated in lipid nanocapsules modified with TAT peptide (TATp) and pH-triggered sheddable PEG to target cancer cells on the basis of tumor environmental specificity. PEG-shedding lipid nanocapsules (S-LNCs) were fabricated from LNCs by decorating short PEG chains with TATp (HS-PEG(1k)-TATp) to form TATp-LNCs and then covered by pH-sensitive graft copolymers of long PEG chains (PGA-g-PEG(2k)). The DSF-S-LNCs had sizes in the range of 60-90 nm and were stable in the presence of 50% plasma. DSF-S-LNCs exhibited higher intracellular uptake and antitumor activity at pH 6.5 than at pH 7.4. The preincubation of Cu showed that the DSF cytotoxicity was based on the accumulation of Cu in Hep G2 cells. Pharmacokinetic studies showed the markedly improved pharmacokinetic profiles of DSF-S-LNCs (AUC= 3921.391 μg/L·h, t(1/2z) = 1.294 h) compared with free DSF (AUC = 907.724 μg/L·h, t(1/2z) = 0.252 h). The in vivo distribution of S-LNCs was investigated using Cy5.5 as a fluorescent probe. In tumor-bearing mice, the delivery efficiency of S-LNCs was found to be 496.5% higher than that of free Cy5.5 and 74.5% higher than that of LNCs in tumors. In conclusion, DSF-S-LNCs increased both the stability and tumor internalization and further increased the cytotoxicity because of the higher copper content.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Bin Tian
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Yi Li
- Department of Pharmacology, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Tian Lei
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Jia Meng
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Liu Yang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Yan Zhang
- Normal College, Shenyang University , Shenyang, Liaoning, PR China
| | - Fen Chen
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine , Shenyang, Liaoning, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Hui Xu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| |
Collapse
|
43
|
Antileishmanial Activity of Disulfiram and Thiuram Disulfide Analogs in an Ex Vivo Model System Is Selectively Enhanced by the Addition of Divalent Metal Ions. Antimicrob Agents Chemother 2015; 59:6463-70. [PMID: 26239994 DOI: 10.1128/aac.05131-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/24/2015] [Indexed: 12/17/2022] Open
Abstract
Current treatments for cutaneous and visceral leishmaniasis are toxic, expensive, difficult to administer, and limited in efficacy and availability. Disulfiram has primarily been used to treat alcoholism. More recently, it has shown some efficacy as therapy against protozoan pathogens and certain cancers, suggesting a wide range of biological activities. We used an ex vivo system to screen several thiuram disulfide compounds for antileishmanial activity. We found five compounds (compound identifier [CID] 7188, 5455, 95876, 12892, and 3117 [disulfiram]) with anti-Leishmania activity at nanomolar concentrations. We further evaluated these compounds with the addition of divalent metal salts based on studies that indicated these salts could potentiate the action of disulfiram. In addition, clinical studies suggested that zinc has some efficacy in treating cutaneous leishmaniasis. Several divalent metal salts were evaluated at 1 μM, which is lower than the normal levels of copper and zinc in plasma of healthy individuals. The leishmanicidal activity of disulfiram and CID 7188 were enhanced by several divalent metal salts at 1 μM. The in vitro therapeutic index (IVTI) of disulfiram and CID 7188 increased 12- and 2.3-fold, respectively, against L. major when combined with ZnCl2. The combination of disulfiram with ZnSO4 resulted in a 1.8-fold increase in IVTI against L. donovani. This novel combination of thiuram disulfides and divalent metal ions salts could have application as topical and/or oral therapies for treatment of cutaneous and visceral leishmaniasis.
Collapse
|
44
|
Zhao Y, Xiao Z, Chen W, Yang J, Li T, Fan B. Disulfiram sensitizes pituitary adenoma cells to temozolomide by regulating O6-methylguanine-DNA methyltransferase expression. Mol Med Rep 2015; 12:2313-22. [PMID: 25937029 DOI: 10.3892/mmr.2015.3664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/24/2015] [Indexed: 11/06/2022] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT) activity is responsible for temozolomide (TMZ) resistance in patients harboring aggressive pituitary adenomas. Recently, disulfiram (DSF) has been shown to induce the loss of MGMT protein and increase TMZ efficacy in glioblastoma cells, while CD133+ nestin+ cells isolated from the cell population have been implicated as pituitary adenoma stem-like cells. However, whether DSF is able to potentiate the cytotoxic effects of TMZ on human pituitary adenoma cells has not been investigated to date. In the present study, CD133+ nestin+ phenotype cells were isolated from primary cultured human pituitary adenoma cells using microbeads. It was found that DSF reduced MGMT protein expression and sensitized human pituitary adenoma cells and stem-like cells to TMZ in vitro, while the proteasome inhibitor PS-341 abrogated the inhibitory effect of DSF on MGMT in vitro. The sensitizing effect of DSF was also verified in primary cultured human pituitary adenoma cells in vivo. The results of the present study suggested that DSF can increase the efficacy of the anti-tumor effect of TMZ on human pituitary adenoma cells and CD133+ nestin+ stem like cells via the ubiquitin-proteasomal MGMT protein elimination route. DSF combined with TMZ may be an effective therapeutic strategy against aggressive pituitary adenomas.
Collapse
Affiliation(s)
- Yachao Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zheng Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Wenna Chen
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Jinsheng Yang
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Tao Li
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Bo Fan
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
45
|
Chen X, Zhang L, Hu X, Lin X, Zhang Y, Tang X. Formulation and preparation of a stable intravenous disulfiram-loaded lipid emulsion. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400278] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xi Chen
- School of Pharmacy; Shenyang Pharmaceutical University; Shengyang P. R. China
| | - Ling Zhang
- School of Pharmacy; Shenyang Pharmaceutical University; Shengyang P. R. China
| | - Xi Hu
- School of Pharmacy; Shenyang Pharmaceutical University; Shengyang P. R. China
| | - Xia Lin
- School of Pharmacy; Shenyang Pharmaceutical University; Shengyang P. R. China
| | - Yu Zhang
- School of Pharmacy; Shenyang Pharmaceutical University; Shengyang P. R. China
| | - Xing Tang
- School of Pharmacy; Shenyang Pharmaceutical University; Shengyang P. R. China
| |
Collapse
|
46
|
Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells. Biochem Pharmacol 2014; 93:332-42. [PMID: 25557293 PMCID: PMC4318799 DOI: 10.1016/j.bcp.2014.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 12/26/2022]
Abstract
Disulfiram, a clinically used alcohol-deterrent has gained prominence as a potential anti-cancer agent due to its impact on copper-dependent processes. Few studies have investigated zinc effects on disulfiram action, despite it having high affinity for this metal. Here we studied the cytotoxic effects of disulfiram in breast cancer cells, and its relationship with both intra and extracellular zinc. MCF-7 and BT474 cancer cell lines gave a striking time-dependent biphasic cytotoxic response between 0.01 and 10 μM disulfiram. Co-incubation of disulfiram with low-level zinc removed this effect, suggesting that availability of extracellular zinc significantly influences disulfiram efficacy. Live-cell confocal microscopy using fluorescent endocytic probes and the zinc dye Fluozin-3 revealed that disulfiram selectively and rapidly increased zinc levels in endo-lysosomes. Disulfiram also caused spatial disorganization of late endosomes and lysosomes, suggesting they are novel targets for this drug. This relationship between disulfiram toxicity and ionophore activity was consolidated via synthesis of a new disulfiram analog and overall we demonstrate a novel mechanism of disulfiram-cytotoxicity with significant clinical implications for future use as a cancer therapeutic.
Collapse
|
47
|
DI C, Zhao Y. Multiple drug resistance due to resistance to stem cells and stem cell treatment progress in cancer (Review). Exp Ther Med 2014; 9:289-293. [PMID: 25574188 PMCID: PMC4280950 DOI: 10.3892/etm.2014.2141] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
Abstract
In recent years, the cancer stem cell (CSC) theory has provided a new angle in the research of cancer, and has gradually gained significance. According to this theory, the multiple drug resistance (MDR) of cancer is most likely due to the resistance of CSCs, and a significant quantity of research has been carried out into the MDR mechanisms of CSC. Over time, some of these mechanisms have been gradually accepted, including ATP-binding cassette transporters, aldehyde dehydrogenase, the CSC microenvironment and epithelial to mesenchymal transition. In the present review, we summarize these mechanisms in detail and review possible appropriate therapy plans against CSCs based on CSC theory.
Collapse
Affiliation(s)
- Chong DI
- Department of Neurosurgery, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yaodong Zhao
- Department of Neurosurgery, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
48
|
Baffoe CS, Nguyen N, Boyd P, Wang W, Morris M, McConville C. Disulfiram-loaded immediate and extended release vaginal tablets for the localised treatment of cervical cancer. J Pharm Pharmacol 2014; 67:189-98. [DOI: 10.1111/jphp.12330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/09/2014] [Indexed: 12/16/2022]
Abstract
Abstract
Objectives
To develop and manufacture both immediate and sustained release vaginal tablets containing the anticancer drug disulfiram, which has the potential to be used as a non-invasive treatment for cervical cancer.
Methods
Disulfiram-loaded vaginal tablets were manufactured at pilot scale using the direct compression method. These tablets were tested in accordance with the European Pharmacopeia testing of solid dosage form guidelines. They were also tested using a biorelevant dissolution method as well as a dual-chambered release model designed to better mimic the dynamic nature of the vaginal vault.
Key findings
We have developed both immediate and sustained release vaginal tablets, which when manufactured at pilot scale are within the limits set by the European Pharmacopeia for the testing of solid dosage forms. Furthermore, these tablets are capable of releasing disulfiram in vitro using the dual-chambered release model at levels 25 000 times and 35 000 times greater than its IC50 concentration for the HeLa cervical cancer cell line.
Conclusions
The successful pilot manufacture and testing of both the immediate and sustained release disulfiram-loaded vaginal tablets warrant further investigation, using an in-vivo model, to assess their potential for use as a non-invasive treatment option for cervical cancer.
Collapse
Affiliation(s)
- Clara S Baffoe
- School of Pharmacy, University of Wolverhampton, Wolverhampton, UK
| | - Nhi Nguyen
- School of Pharmacy, University of Wolverhampton, Wolverhampton, UK
| | - Peter Boyd
- School of Pharmacy, Medical Biology Centre, Queen's University of Belfast, Belfast, UK
| | - Weiguang Wang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Mark Morris
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | | |
Collapse
|
49
|
Development of disulfiram-loaded vaginal rings for the localised treatment of cervical cancer. Eur J Pharm Biopharm 2014; 88:945-53. [DOI: 10.1016/j.ejpb.2014.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 12/14/2022]
|
50
|
Dastjerdi MN, Babazadeh Z, Salehi M, Hashemibeni B, Kazemi M. Comparison of the anti-cancer effect of Disulfiram and 5-Aza-CdR on pancreatic cancer cell line PANC-1. Adv Biomed Res 2014; 3:156. [PMID: 25221759 PMCID: PMC4162084 DOI: 10.4103/2277-9175.137866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 02/02/2014] [Indexed: 01/31/2023] Open
Abstract
Background: Pancreatic cancer has poor prognosis by surgical and chemotherapy when it is diagnosed, so other anti-cancerous assistant therapeutic drugs are suggested e.g. epigenetic reversal of tumor-suppressor genes on promoter hypermethylation. 5-Aza-CdR is a nucleoside analog of DNMTi but it has long-term cytotoxicity effects. This study compares the anticancer effect of 5-Aza-CdR and Disulfiram potencies on PANC-1 cell line and up-regulation of p21. Materials and Methods: PANC-1 cell line was cultured in DMEM high glucose and treated by 5-Aza-CdR with 5 and 10 μM concentration for four days and 13 μM DSF (Diulfiram) for 24 hours. MS-PCR and RT-PCR were carried out to detect the methylation pattern and estimate the mRNA expression of RASSF1A and p21 in PANC-1. Result: MS-PCR demonstrated partial unmethylation after treatment with 5-Aza-CdR while there was no unmethylated band after DSF treatment. RT-PCR showed significant differences between re-expression of RASSF1A before and after treatment with 10 μM 5-Aza-CdR (P < 0.01) but not after treatment with 13 μM DSF (P > 0.05). The significant correlation was observed between RASSF1A re-expression and p21 up-regulation before and after treatment with 10 μM 5-Aza-CdR (P < 0.01) but not after treatment with 13 μM DSF (P > 0.05), while p21 up-regulation was significantly higher after DSF treatment (P < 0.01). Conclusion: Our findings indicated that 5-Aza-CdR induces the re-expression of RASSF1A and p21 up-regulation in PANC-1. DSF showed no epigenetic reversion while it affected p21 up-regulation.
Collapse
Affiliation(s)
- Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Babazadeh
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Salehi
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|