1
|
Recuero SDC, Viana NI, Reis ST, Mendes KT, Talib LL, Gattaz WF, Guimarães VR, Silva IA, Pimenta RCP, Camargo JA, Nahas WC, Srougi M, Leite KRM. Phospholipase A2 expression in prostate cancer as a biomarker of good prognosis: A comprehensive study in patients with long follow-up. Urologia 2024; 91:720-726. [PMID: 39051490 DOI: 10.1177/03915603241257362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
BACKGROUND Phospholipase A2 (PLA2) is a large family of enzymes involved in the inflammatory process that catalyzes the hydrolysis of membrane phospholipids, leading to the production of free fatty acids and lysophospholipids, starting the arachidonic acid cascade. Their expression has been related to the behavior of several cancers. Our objective is to search for PLA2 expression in prostate cancer (PCa) tissue that correlates with prognosis and survival. METHODS Using qRT-PCR, we analyzed the expression levels of PLA2G1B, PLA2G2A, PLA2G2D, PLA2G4A, PLA2G4B, PLA2G4C, PLA2G4D, PLA2G4E, PLA2G4F, PLA2G6, PLA2G7, PLA2G16, PNPLA1, and PNPLA2 in PCa tissue from 108 patients submitted to radical prostatectomy, followed by a mean time of 163 months. RESULTS All PLA2 was overexpressed in PCa compared to normal tissue. Interestingly, higher expression of some PLA2 was related to favorable prognostic factors: lower levels of PSA (PLA2G2A, PLA2G4D), lower rates of lymph node metastasis (PLA2G16 and PLA2G1B), and organ-confined disease (PLA2G4A). Most importantly, PLAG4B was independently related to longer disease-free survival. CONCLUSION This is the first study exploring comprehensively the expression levels of PLA2 in PCa, showing that the higher expression of some PLA2 should be used as biomarkers of good prognosis and longer disease-free survival.
Collapse
Affiliation(s)
| | - Nayara I Viana
- Department of Urology, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Sabrina T Reis
- Department of Urology, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | | | - Leda L Talib
- Department of Psychiatry, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Wagner F Gattaz
- Department of Psychiatry, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Vanessa R Guimarães
- Department of Urology, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Iran A Silva
- Department of Urology, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Ruan C P Pimenta
- Department of Urology, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Juliana A Camargo
- Department of Urology, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Willian C Nahas
- Department of Urology, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Miguel Srougi
- Department of Urology, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Katia R M Leite
- Department of Urology, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| |
Collapse
|
2
|
Jimenez-Canale J, Navarro-Lopez R, Huerta-Ocampo JA, Burgara-Estrella AJ, Encarnacion-Guevara S, Silva-Campa E, Velazquez-Contreras FE, Sarabia-Sainz JA. Exploring the protein profile and biological activity of Crotalus molossus venom against E. coli, P. aeruginosa and S. aureus bacteria and T47D breast carcinoma cells. Toxicon 2024; 249:108036. [PMID: 39059561 DOI: 10.1016/j.toxicon.2024.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Mexico has the highest diversity of snake species in the world, following Australia when considering just venomous snakes. Specifically, in Sonora, the second largest state in the country, more than 15 highly venomous species occur, including the northern black-tailed rattlesnake (Crotalus molossus). This specie's venom has not been as thoroughly researched in contrast with other Mexican vipers, nevertheless some studies report its biological activity and even pharmacological potential with antibacterial and cytotoxic activity. In this study we identified the main protein components from a pool of C. molossus venom through a gel-free proteomics approach, reporting ∼140 proteins belonging to the SVMP (38.76%), PLA2 (28.75%), CTL (11.93%), SVSP (6.03%) and LAAO (5.67%) toxin families. To study its biological activities, we evaluated its hemolytic, antibacterial, and cytotoxic activity in red blood cells, Gram positive and negative bacteria and a luminal A breast carcinoma cell line (T47D), respectively, in vitro. We report that concentrations <100 μg/mL are potentially not hemolytic and reduced the bacteria viability of E. coli and S. aureus with an IC50 of 10.27 and 11.51 μg/mL, respectively. Finally, we determined the C. molossus venom as cytotoxic against the T47D breast carcinoma cell line, with an IC50 of 1.55 μg/mL. We suggest that the evaluated cytotoxicity was due to a high abundance of SVMPs and PLA2s, since it's been reported that they affect the extracellular matrix and membrane permeation. This may provide a useful tool for pharmaceutical screening in the future.
Collapse
Affiliation(s)
- J Jimenez-Canale
- Department of Research in Materials and Polymers, University of Sonora, Hermosillo, Sonora, 83000, Mexico
| | - R Navarro-Lopez
- Department of Health and Biological Sciences, University of Sonora, Hermosillo, Sonora, 83000, Mexico
| | - J A Huerta-Ocampo
- Proteomics Laboratory, Food Science Coordination, Center for Research in Feeding and Development (CIAD), Hermosillo, Sonora, 83304, Mexico
| | - A J Burgara-Estrella
- Department of Research in Physics, University of Sonora, Hermosillo, Sonora, 83000, Mexico
| | - S Encarnacion-Guevara
- Program of Functional Genomics of Procaryotes, Center of Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, 62210, Mexico
| | - E Silva-Campa
- Department of Research in Physics, University of Sonora, Hermosillo, Sonora, 83000, Mexico
| | - F E Velazquez-Contreras
- Department of Research in Materials and Polymers, University of Sonora, Hermosillo, Sonora, 83000, Mexico
| | - J A Sarabia-Sainz
- Department of Research in Physics, University of Sonora, Hermosillo, Sonora, 83000, Mexico.
| |
Collapse
|
3
|
Bennani I, Cherif Chefchaouni A, Hafidi Y, Moukafih B, El Marrakchi S, Bandadi FZ, Rahali Y, El Kartouti A. Advancements in the use of nanopharmaceuticals for cancer treatment. J Oncol Pharm Pract 2024; 30:1078-1083. [PMID: 38706188 DOI: 10.1177/10781552241251757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
OBJECTIVE Advances in nanotechnology make it possible to specifically target therapies to cancer cells and neoplasms, guide the surgical resection of tumors, and optimize the effectiveness of radiological treatments. This research article provides a concise synthesis of current knowledge in the field of galenic pharmacy focused on targeted drug delivery in oncology. This research article synthesizes current knowledge in galenic pharmacy, focusing on targeted drug delivery in oncology and reviewing recent advancements in nanopharmaceuticals for cancer treatment. DATA SOURCE The data for this review are derived from a comprehensive analysis of the most cited scientific literature (Pubmed). Recent studies, clinical trials, and technological breakthroughs related to nanopharmaceuticals have been rigorously examined. This diverse source ensures a comprehensive representation of the latest developments in the field. SUMMARY OF DATA The results highlight the emergence of nanopharmaceuticals as a promising approach to cancer treatment. The most common in oncology remain liposomes, nanopolymers, and nanocrystals. From a galenic point of view, these three forms offer a wide range of improvements compared to conventional forms such as improvement in solubility as well as stability. The same observation is in the clinic where treatment response rates are significantly improved. The most advantageous form will depend on the specific characteristics of each patient and each type of cancer. The precise design of nanocarriers allows for targeted drug delivery, enhancing therapeutic efficacy while reducing side effects. Concrete examples of clinical applications are presented, illustrating the practical potential of these advancements. CONCLUSION In conclusion, this review provides a holistic overview of recent developments in galenic pharmacy for targeted drug delivery in oncology. The stability of nanocarriers is a crucial challenge because it conditions the effectiveness and safety of the drugs transported. Environmental and biological variations encountered in the body can compromise this stability, jeopardizing the therapeutic effectiveness and safety of treatments. Likewise, personalized approaches are essential to address interindividual variations in treatment response, as well as patients' pharmacogenomic profiles, in order to optimize therapeutic effectiveness and minimize adverse effects.
Collapse
Affiliation(s)
- Ismail Bennani
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Ali Cherif Chefchaouni
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Rabat, Morocco
| | - Youssef Hafidi
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Badreddine Moukafih
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Soufiane El Marrakchi
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Fatima-Zahra Bandadi
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Younes Rahali
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Rabat, Morocco
| | - Abdeslam El Kartouti
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
4
|
Nizioł J, Ossoliński K, Płaza-Altamer A, Kołodziej A, Ossolińska A, Ossoliński T, Krupa Z, Ruman T. Untargeted metabolomics of bladder tissue using liquid chromatography and quadrupole time-of-flight mass spectrometry for cancer biomarker detection. J Pharm Biomed Anal 2024; 240:115966. [PMID: 38217999 DOI: 10.1016/j.jpba.2024.115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Bladder cancer (BC) ranks among the most common cancers globally, with an increasing occurrence, particularly in developed nations. Utilizing tissue metabolomics presents a promising strategy for identifying potential biomarkers for cancer detection. In this study, we utilized ultra-high-performance liquid chromatography coupled with ultra-high-resolution mass spectrometry (UHPLC-UHRMS), incorporating both C18-silica and HILIC columns, to comprehensively analyze both polar and non-polar metabolite profiles in tissue samples from 99 patients with bladder cancer. By utilizing an untargeted approach with external validation, we identified twenty-five tissue metabolites that hold promise as potential indicators of BC. Furthermore, twenty-five characteristic tissue metabolites that exhibit discriminatory potential across bladder cancer tumor grades, as well as thirty-nine metabolites that display correlations with tumor stages were presented. Receiver operating characteristics analysis demonstrated high predictive power for all types of metabolomics data, with area under the curve (AUC) values exceeding 0.966. Notably, this study represents the first report in which human bladder normal tissues adjacent to cancerous tissues were analyzed using UHPLC-UHRMS. These findings suggest that the metabolite markers identified in this investigation could serve as valuable tools for the detection and monitoring of bladder cancer stages and grades.
Collapse
Affiliation(s)
- Joanna Nizioł
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland.
| | - Krzysztof Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100 Kolbuszowa, Poland
| | - Aneta Płaza-Altamer
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Artur Kołodziej
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Anna Ossolińska
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100 Kolbuszowa, Poland
| | - Tadeusz Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100 Kolbuszowa, Poland
| | - Zuzanna Krupa
- Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, 8 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Tomasz Ruman
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| |
Collapse
|
5
|
Lu S, Zhang C, Wang J, Zhao L, Li G. Research progress in nano-drug delivery systems based on the characteristics of the liver cancer microenvironment. Biomed Pharmacother 2024; 170:116059. [PMID: 38154273 DOI: 10.1016/j.biopha.2023.116059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
The liver cancer has microenvironmental features such as low pH, M2 tumor-associated macrophage enrichment, low oxygen, rich blood supply and susceptibility to hematotropic metastasis, high chemokine expression, enzyme overexpression, high redox level, and strong immunosuppression, which not only promotes the progression of the disease, but also seriously affects the clinical effectiveness of traditional therapeutic approaches. However, nanotechnology, due to its unique advantages of size effect and functionalized modifiability, can be utilized to develop various responsive nano-drug delivery system (NDDS) by using these characteristic signals of the liver cancer microenvironment as a source of stimulation, which in turn can realize the intelligent release of the drug under the specific microenvironment, and significantly increase the concentration of the drug at the target site. Therefore, researchers have designed a series of stimuli-responsive NDDS based on the characteristics of the liver cancer microenvironment, such as hypoxia, weak acidity, and abnormal expression of proteases, and they have been widely investigated for improving anti-tumor therapeutic efficacy and reducing the related side effects. This paper provides a review of the current application and progress of NDDS developed based on the response and regulation of the microenvironment in the treatment of liver cancer, compares the effects of the microenvironment and the NDDS, and provides a reference for building more advanced NDDS.
Collapse
Affiliation(s)
- Shijia Lu
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Chenxiao Zhang
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Jinglong Wang
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Limei Zhao
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Guofei Li
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China.
| |
Collapse
|
6
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Yao ZK, Jean YH, Lin SC, Lai YC, Chen NF, Tseng CC, Chen WF, Wen ZH, Kuo HM. Manoalide Induces Intrinsic Apoptosis by Oxidative Stress and Mitochondrial Dysfunction in Human Osteosarcoma Cells. Antioxidants (Basel) 2023; 12:1422. [PMID: 37507960 PMCID: PMC10376204 DOI: 10.3390/antiox12071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor that produces immature osteoid. Metastatic OS has a poor prognosis with a death rate of >70%. Manoalide is a natural sesterterpenoid isolated from marine sponges. It is a phospholipase A2 inhibitor with anti-inflammatory, analgesic, and anti-cancer properties. This study aimed to investigate the mechanism and effect of manoalide on OS cells. Our experiments showed that manoalide induced cytotoxicity in 143B and MG63 cells (human osteosarcoma). Treatment with manoalide at concentrations of 10, 20, and 40 µM for 24 and 48 h reduced MG63 cell viability to 45.13-4.40% (p < 0.01). Meanwhile, manoalide caused reactive oxygen species (ROS) overproduction and disrupted antioxidant proteins, activating the apoptotic proteins caspase-9/-3 and PARP (Poly (ADP-ribose) polymerase). Excessive levels of ROS in the mitochondria affected oxidative phosphorylation, ATP generation, and membrane potential (ΔΨm). Additionally, manoalide down-regulated mitochondrial fusion protein and up-regulated mitochondrial fission protein, resulting in mitochondrial fragmentation and impaired function. On the contrary, a pre-treatment with n-acetyl-l-cysteine ameliorated manoalide-induced apoptosis, ROS, and antioxidant proteins in OS cells. Overall, our findings show that manoalide induces oxidative stress, mitochondrial dysfunction, and apoptosis, causing the cell death of OS cells, showing potential as an innovative alternative treatment in human OS.
Collapse
Affiliation(s)
- Zhi-Kang Yao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Yen-Hsuan Jean
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung 90059, Taiwan
| | - Sung-Chun Lin
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung 90059, Taiwan
| | - Yu-Cheng Lai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Orthopedics, Asia University Hospital, Taichung 41354, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for General Education, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Chung-Chih Tseng
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833301, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hsiao-Mei Kuo
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833301, Taiwan
| |
Collapse
|
8
|
Relationship between tumor microbiota transcriptional activity and gene expression in breast cancer. BMC Cancer 2023; 23:252. [PMID: 36927310 PMCID: PMC10018882 DOI: 10.1186/s12885-023-10726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND A few studies have reported the distribution of the microbiota in breast cancer tissues, but few reports have compared the microbiota in different subtypes of breast cancer tissue. Moreover, no study has reported on the relationship between the microbiota and gene expression in breast tumor. METHODS Sections of formalin-fixed paraffin-embedded (FFPE) tissue were prepared from the breast tumors of 70 patients and were subjected to microarray analysis to identify gene expression profiles. The same total RNA samples were also used to analyze the microbiota activity in tumor tissues by performing 16 S rRNA sequencing and internal transcribed spacer (ITS) sequencing of reverse transcript cDNA with Illumina Miseq. Pearson's correlation coefficient was used for calculating the correlation between microbial relative activity and gene expression. RESULTS The microbiota transcriptional activity of 70 FFPE samples mainly consisted of the phyla Bacteroidetes, Firmicutes and Proteobacteria. Prevotella_9, Bacteroides and Alloprevotella were the most active genera in ER+/HER2-, ER+/HER2 + and ER-/HER2 + tumors, while triple-negative samples exhibited a higher activity of Lactobacillus. In ER-negative samples (triple-negative and ER-/HER2+), 479 genes, including the breast carcinogenesis genes phospholipase A2, histone cluster 2, Crk-like, and cyclin D1, were significantly positive associated with the activity of Lactobacillus. CONCLUSION This was the first study to clarify an association between the breast tumor microbiota transcriptional activity and the expression of carcinogenesis genes in ER-negative breast cancer. Changes in the microbiota of breast tissue induced by external factors might be one of the key causes of ER negative breast cancer.
Collapse
|
9
|
Enzyme Inhibitors from Gorgonians and Soft Corals. Mar Drugs 2023; 21:md21020104. [PMID: 36827145 PMCID: PMC9963996 DOI: 10.3390/md21020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
For decades, gorgonians and soft corals have been considered promising sources of bioactive compounds, attracting the interest of scientists from different fields. As the most abundant bioactive compounds within these organisms, terpenoids, steroids, and alkaloids have received the highest coverage in the scientific literature. However, enzyme inhibitors, a functional class of bioactive compounds with high potential for industry and biomedicine, have received much less notoriety. Thus, we revised scientific literature (1974-2022) on the field of marine natural products searching for enzyme inhibitors isolated from these taxonomic groups. In this review, we present representative enzyme inhibitors from an enzymological perspective, highlighting, when available, data on specific targets, structures, potencies, mechanisms of inhibition, and physiological roles for these molecules. As most of the characterization studies for the new inhibitors remain incomplete, we also included a methodological section presenting a general strategy to face this goal by accomplishing STRENDA (Standards for Reporting Enzymology Data) project guidelines.
Collapse
|
10
|
Mangini M, D’Angelo R, Vinciguerra C, Payré C, Lambeau G, Balestrieri B, Charles JF, Mariggiò S. Multimodal regulation of the osteoclastogenesis process by secreted group IIA phospholipase A 2. Front Cell Dev Biol 2022; 10:966950. [PMID: 36105351 PMCID: PMC9467450 DOI: 10.3389/fcell.2022.966950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023] Open
Abstract
Increasing evidence points to the involvement of group IIA secreted phospholipase A2 (sPLA2-IIA) in pathologies characterized by abnormal osteoclast bone-resorption activity. Here, the role of this moonlighting protein has been deepened in the osteoclastogenesis process driven by the RANKL cytokine in RAW264.7 macrophages and bone-marrow derived precursor cells from BALB/cJ mice. Inhibitors with distinct selectivity toward sPLA2-IIA activities and recombinant sPLA2-IIA (wild-type or catalytically inactive forms, full-length or partial protein sequences) were instrumental to dissect out sPLA2-IIA function, in conjunction with reduction of sPLA2-IIA expression using small-interfering-RNAs and precursor cells from Pla2g2a knock-out mice. The reported data indicate sPLA2-IIA participation in murine osteoclast maturation, control of syncytium formation and resorbing activity, by mechanisms that may be both catalytically dependent and independent. Of note, these studies provide a more complete understanding of the still enigmatic osteoclast multinucleation process, a crucial step for bone-resorbing activity, uncovering the role of sPLA2-IIA interaction with a still unidentified receptor to regulate osteoclast fusion through p38 SAPK activation. This could pave the way for the design of specific inhibitors of sPLA2-IIA binding to interacting partners implicated in osteoclast syncytium formation.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Rosa D’Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Caterina Vinciguerra
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Christine Payré
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Barbara Balestrieri
- Jeff and Penny Vinik Center for Translational Immunology Research, Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Julia F. Charles
- Departments of Orthopaedic Surgery and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy,*Correspondence: Stefania Mariggiò,
| |
Collapse
|
11
|
Frihling BEF, Boleti APDA, de Oliveira CFR, Sanches SC, Cardoso PHDO, Verbisck N, Macedo MLR, Rita PHS, Carvalho CME, Migliolo L. Purification, Characterization and Evaluation of the Antitumoral Activity of a Phospholipase A2 from the Snake Bothrops moojeni. Pharmaceuticals (Basel) 2022; 15:ph15060724. [PMID: 35745643 PMCID: PMC9230114 DOI: 10.3390/ph15060724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Nature presents a wide range of biomolecules with pharmacological potential, including venomous animal proteins. Among the protein components from snake venoms, phospholipases (PLA2) are of great importance for the development of new anticancer compounds. Thus, we aimed to evaluate the PLA2 anticancer properties from Bothrops moojeni venom. The crude venom was purified through three chromatographic steps, monitored by enzymatic activity and SDS-PAGE (12%). The purified PLA2 denominated BmPLA2 had its molecular mass and N-terminal sequence identified by mass spectrometry and Edman degradation, respectively. BmPLA2 was assayed against human epithelial colorectal adenocarcinoma cells (Caco-2), human rhabdomyosarcoma cells (RD) and mucoepidermoid carcinoma of the lung (NCI-H292), using human fibroblast cells (MRC-5) and microglia cells (BV-2) as a cytotoxicity control. BmPLA2 presented 13,836 Da and a 24 amino acid-residue homologue with snake PLA2, which showed a 90% similarity with other Bothrops moojeni PLA2. BmPLA2 displayed an IC50 of 0.6 µM against Caco-2, and demonstrated a selectivity index of 1.85 (compared to MRC-5) and 6.33 (compared to BV-2), supporting its selectivity for cancer cells. In conclusion, we describe a new acidic phospholipase, which showed antitumor activity and is a potential candidate in the development of new biotechnological tools.
Collapse
Affiliation(s)
- Breno Emanuel Farias Frihling
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Ana Paula de Araújo Boleti
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Caio Fernando Ramalho de Oliveira
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande 79603-011, MS, Brazil; (C.F.R.d.O.); (M.L.R.M.)
| | - Simone Camargo Sanches
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Pedro Henrique de Oliveira Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | | | - Maria Lígia Rodrigues Macedo
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande 79603-011, MS, Brazil; (C.F.R.d.O.); (M.L.R.M.)
| | - Paula Helena Santa Rita
- Biotério e Serpentário, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil;
| | - Cristiano Marcelo Espinola Carvalho
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Correspondence:
| |
Collapse
|
12
|
Ha SJ, Choi YO, Kwag EB, Kim SD, Yoo HS, Kang IC, Park SJ. Qualitative Analysis of Proteins in Two Snake Venoms, Gloydius Blomhoffii and Agkistrodon Acutus. J Pharmacopuncture 2022; 25:52-62. [PMID: 35371588 PMCID: PMC8947974 DOI: 10.3831/kpi.2022.25.1.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives Snake venom is a complex mixture of various pharmacologically active substances, such as small proteins, peptides, and organic and mineral components. This paper aims to identify and analyse the proteins in common venomous snakes, such as Gloydius blomhoffii (G. blomhoffii) and Agkistrodon acutus (A. acutus), in Korea. Methods We used mass spectrometry, electrophoresis, N-terminal sequencing and in-gel digestion to analyse the proteins in these two snake venoms. Results We identified eight proteins in G. blomhoffii venom and four proteins in A. acutus venom. The proteins detected in G. blomhoffii and A. acutus venoms were phospholipase A2, snake venom metalloproteinase and cysteine-rich secretory protein. Snake C-type lectin (snaclec) was unique to A. acutus venom. Conclusion These data will contribute to the current knowledge of proteins present in the venoms of viper snakes and provide useful information for investigating their therapeutic potential.
Collapse
Affiliation(s)
- Su-Jeong Ha
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, Daejeon, Republic of Korea
| | - Yeo-Ok Choi
- Bio Research Institute of Biotechnology, Goyang, Republic of Korea
| | - Eun-Bin Kwag
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, Daejeon, Republic of Korea
| | - Soo-Dam Kim
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, Daejeon, Republic of Korea
| | - Hwa-seung Yoo
- East West Cancer Center, Seoul Korean Medicine Hospital, Daejeon University, Seoul, Republic of Korea
| | - In-Cheol Kang
- Department of Biological Science and BioChip Research Center, Hoseo University, Asan, Republic of Korea
- InnoPharmaScreen Inc., Incheon, Republic of Korea
| | - So-Jung Park
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Abdelgawad MA, Hamed AA, Nayl AA, Badawy MSEM, Ghoneim MM, Sayed AM, Hassan HM, Gamaleldin NM. The Chemical Profiling, Docking Study, and Antimicrobial and Antibiofilm Activities of the Endophytic fungi Aspergillus sp. AP5. Molecules 2022; 27:1704. [PMID: 35268806 PMCID: PMC8911721 DOI: 10.3390/molecules27051704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Growing data suggest that Aspergillus niger, an endophytic fungus, is a rich source of natural compounds with a wide range of biological properties. This study aimed to examine the antimicrobial and antibiofilm capabilities of the Phragmites australis-derived endophyte against a set of pathogenic bacteria and fungi. The endophytic fungus Aspergillus sp. AP5 was isolated from the leaves of P. australis. The chemical profile of the fungal crude extract was identified by spectroscopic analysis using LC-HRESIMS. The fungal-derived extract was evaluated for its antimicrobial activity towards a set of pathogenic bacterial and fungal strains including Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella sp., Candida albicans, and Aspergillus niger. Moreover, antibiofilm activity toward four resistant biofilm-forming bacteria was also evaluated. Additionally, a neural-networking pharmacophore-based visual screening predicted the most probable bioactive compounds in the obtained extract. The AP5-EtOAc extract was found to have potent antibacterial activities against S. aureus, E. coli, and Klebsiella sp., while it exhibited low antibacterial activity toward P. Vulgaris and P. aeruginosa and displayed anticandidal activity. The AP5-EtOAc extract had significant antibiofilm activity in S. aureus, followed by P. aeruginosa. The active metabolites' antifungal and/or antibacterial activities may be due to targeting the fungal CYP 51 and/or the bacterial Gyr-B.
Collapse
Affiliation(s)
- Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Ahmed A. Hamed
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt;
| | - AbdElAziz A. Nayl
- Department of chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia;
| | - Mona Shaban E. M. Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Riyadh, Saudi Arabia;
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62513, Egypt
| | - Noha M. Gamaleldin
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt;
| |
Collapse
|
14
|
Siniavin A, Grinkina S, Osipov A, Starkov V, Tsetlin V, Utkin Y. Anti-HIV Activity of Snake Venom Phospholipase A2s: Updates for New Enzymes and Different Virus Strains. Int J Mol Sci 2022; 23:ijms23031610. [PMID: 35163532 PMCID: PMC8835987 DOI: 10.3390/ijms23031610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Since the beginning of the HIV epidemic, lasting more than 30 years, the main goal of scientists was to develop effective methods for the prevention and treatment of HIV infection. Modern medicines have reduced the death rate from AIDS by 80%. However, they still have side effects and are very expensive, dictating the need to search for new drugs. Earlier, it was shown that phospholipases A2 (PLA2s) from bee and snake venoms block HIV replication, the effect being independent on catalytic PLA2 activity. However, the antiviral activity of human PLA2s against Lentiviruses depended on catalytic function and was mediated through the destruction of the viral membrane. To clarify the role of phospholipolytic activity in antiviral effects, we analyzed the anti-HIV activity of several snake PLA2s and found that the mechanisms of their antiviral activity were similar to that of mammalian PLA2. Our results indicate that snake PLA2s are capable of inhibiting syncytium formation between chronically HIV-infected cells and healthy CD4-positive cells and block HIV binding to cells. However, only dimeric PLA2s had pronounced virucidal and anti-HIV activity, which depended on their catalytic activity. The ability of snake PLA2s to inactivate the virus may provide an additional barrier to HIV infection. Thus, snake PLA2s might be considered as candidates for lead molecules in anti-HIV drug development.
Collapse
Affiliation(s)
- Andrei Siniavin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.); (A.O.); (V.S.); (V.T.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia;
| | - Svetlana Grinkina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia;
| | - Alexey Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.); (A.O.); (V.S.); (V.T.)
| | - Vladislav Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.); (A.O.); (V.S.); (V.T.)
| | - Victor Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.); (A.O.); (V.S.); (V.T.)
| | - Yuri Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.); (A.O.); (V.S.); (V.T.)
- Correspondence: ; Tel.: +7-495-3366522
| |
Collapse
|
15
|
Lešnik S, Bren U. Mechanistic Insights into Biological Activities of Polyphenolic Compounds from Rosemary Obtained by Inverse Molecular Docking. Foods 2021; 11:67. [PMID: 35010191 PMCID: PMC8750736 DOI: 10.3390/foods11010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/18/2023] Open
Abstract
Rosemary (Rosmarinus officinalis L.) represents a medicinal plant known for its various health-promoting properties. Its extracts and essential oils exhibit antioxidative, anti-inflammatory, anticarcinogenic, and antimicrobial activities. The main compounds responsible for these effects are the diterpenes carnosic acid, carnosol, and rosmanol, as well as the phenolic acid ester rosmarinic acid. However, surprisingly little is known about the molecular mechanisms responsible for the pharmacological activities of rosemary and its compounds. To discern these mechanisms, we performed a large-scale inverse molecular docking study to identify their potential protein targets. Listed compounds were separately docked into predicted binding sites of all non-redundant holo proteins from the Protein Data Bank and those with the top scores were further examined. We focused on proteins directly related to human health, including human and mammalian proteins as well as proteins from pathogenic bacteria, viruses, and parasites. The observed interactions of rosemary compounds indeed confirm the beforementioned activities, whereas we also identified their potential for anticoagulant and antiparasitic actions. The obtained results were carefully checked against the existing experimental findings from the scientific literature as well as further validated using both redocking procedures and retrospective metrics.
Collapse
Affiliation(s)
- Samo Lešnik
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
16
|
Scott KF, Mann TJ, Fatima S, Sajinovic M, Razdan A, Kim RR, Cooper A, Roohullah A, Bryant KJ, Gamage KK, Harman DG, Vafaee F, Graham GG, Church WB, Russell PJ, Dong Q, de Souza P. Human Group IIA Phospholipase A 2-Three Decades on from Its Discovery. Molecules 2021; 26:molecules26237267. [PMID: 34885848 PMCID: PMC8658914 DOI: 10.3390/molecules26237267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Phospholipase A2 (PLA2) enzymes were first recognized as an enzyme activity class in 1961. The secreted (sPLA2) enzymes were the first of the five major classes of human PLA2s to be identified and now number nine catalytically-active structurally homologous proteins. The best-studied of these, group IIA sPLA2, has a clear role in the physiological response to infection and minor injury and acts as an amplifier of pathological inflammation. The enzyme has been a target for anti-inflammatory drug development in multiple disorders where chronic inflammation is a driver of pathology since its cloning in 1989. Despite intensive effort, no clinically approved medicines targeting the enzyme activity have yet been developed. This review catalogues the major discoveries in the human group IIA sPLA2 field, focusing on features of enzyme function that may explain this lack of success and discusses future research that may assist in realizing the potential benefit of targeting this enzyme. Functionally-selective inhibitors together with isoform-selective inhibitors are necessary to limit the apparent toxicity of previous drugs. There is also a need to define the relevance of the catalytic function of hGIIA to human inflammatory pathology relative to its recently-discovered catalysis-independent function.
Collapse
Affiliation(s)
- Kieran F. Scott
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Correspondence: ; Tel.: +61-2-8738-9026
| | - Timothy J. Mann
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Shadma Fatima
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- School of Biotechnology and Biological Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia;
| | - Mila Sajinovic
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Anshuli Razdan
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Ryung Rae Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (W.B.C.)
| | - Adam Cooper
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Aflah Roohullah
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Katherine J. Bryant
- School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Kasuni K. Gamage
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia; (K.K.G.); (D.G.H.)
| | - David G. Harman
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia; (K.K.G.); (D.G.H.)
| | - Fatemeh Vafaee
- School of Biotechnology and Biological Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia;
- UNSW Data Science Hub, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Garry G. Graham
- Department of Clinical Pharmacology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010, Australia;
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - W. Bret Church
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (W.B.C.)
| | - Pamela J. Russell
- Australian Prostate Cancer Research Centre—QUT, Brisbane, QLD 4102, Australia;
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Paul de Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- School of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
17
|
Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. NANO CONVERGENCE 2021; 8:34. [PMID: 34727233 PMCID: PMC8560887 DOI: 10.1186/s40580-021-00282-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/09/2023]
Abstract
Modern medicine has been waging a war on cancer for nearly a century with no tangible end in sight. Cancer treatments have significantly progressed, but the need to increase specificity and decrease systemic toxicities remains. Early diagnosis holds a key to improving prognostic outlook and patient quality of life, and diagnostic tools are on the cusp of a technological revolution. Nanotechnology has steadily expanded into the reaches of cancer chemotherapy, radiotherapy, diagnostics, and imaging, demonstrating the capacity to augment each and advance patient care. Nanomaterials provide an abundance of versatility, functionality, and applications to engineer specifically targeted cancer medicine, accurate early-detection devices, robust imaging modalities, and enhanced radiotherapy adjuvants. This review provides insights into the current clinical and pre-clinical nanotechnological applications for cancer drug therapy, diagnostics, imaging, and radiation therapy.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
18
|
Al-Khalaf AA, Hassan HM, Alrajhi AM, Mohamed RAEH, Hozzein WN. Anti-Cancer and Anti-Inflammatory Potential of the Green Synthesized Silver Nanoparticles of the Red Sea Sponge Phyllospongia lamellosa Supported by Metabolomics Analysis and Docking Study. Antibiotics (Basel) 2021; 10:1155. [PMID: 34680736 PMCID: PMC8532725 DOI: 10.3390/antibiotics10101155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Red Sea sponges have been endorsed as a plentiful source of bioactive compounds with promising anti-cancer and anti-inflammatory activities; therefore, exploring their potential as a source of anti-cancer metabolites has stimulated a growing research interest. PURPOSE To investigate the anti-cancer and anti-inflammatory potential of the Red Sea sponges, in their bulk and silver nanostructure. Metabolomics analysis of the selected sponge followed by molecular docking studies, will be conducted to explore and predict the secondary metabolites that might provide its capability of inhibiting cancer. MATERIALS AND METHODS We prepared a chloroform extract (CE) and ethyl acetate extract (EE) of the Red Sea sponge Phyllospongia lamellosa synthesized silver nanoparticles. The prepared silver nanoparticles were characterized through UV-vis spectrophotometric, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR) analyses. Testing for their anti-cancer activities was performed against MCF-7, MDB-231, and MCF-10A cells. Anti-inflammatory activity against COX-1 and 2 was assessed. Furthermore, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics analysis and molecular docking were also applied.
Collapse
Affiliation(s)
- Areej A. Al-Khalaf
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.M.A.); (R.A.E.H.M.)
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Aisha M Alrajhi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.M.A.); (R.A.E.H.M.)
| | - Rania Ali El Hadi Mohamed
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.M.A.); (R.A.E.H.M.)
| | - Wael N. Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11671, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
19
|
Kapalatiya H, Madav Y, Tambe VS, Wairkar S. Enzyme-responsive smart nanocarriers for targeted chemotherapy: an overview. Drug Deliv Transl Res 2021; 12:1293-1305. [PMID: 34251612 DOI: 10.1007/s13346-021-01020-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 02/02/2023]
Abstract
Nanocarriers play pivotal roles in the field of biomedical applications, particularly in anticancer therapy. One of the prominent strategies for the transport of anticancer drugs with site-specific release and improved therapeutic efficacy is the use of an enzyme-responsive drug delivery system. There is an emerging class of cancer therapeutics engineered to control the release of a drug via enzymatic degradation. Enzymes, being an essential component of bio-nanotechnology toolbox, hold exceptional biorecognition abilities as well as outstanding catalytic properties. Often, abnormal enzyme expression observed in cancer offers many opportunities in designing nanocarriers modified with enzyme-labile linkage. Through altered physical or chemical characteristics of these nanocarriers or cleavage of the drug in response to the bio-action of enzyme, an on-demand drug release can be obtained. In this review, several classes of enzymes performing critical roles in cancer such as hydrolases, lipases, and oxidoreductases are summarized. Insights on various approaches that interfere with the mechanism of these enzymes have also been included. Finally, various smart nanocarriers such as mesoporous silica nanoparticles, gold nanoparticles, carbon-nanotubes, micelles, liposomes, and dendrimers serving as excellent platforms for enzyme-responsive formulations have been discussed.
Collapse
Affiliation(s)
- Hiral Kapalatiya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Yamini Madav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Varunesh Sanjay Tambe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
20
|
Non-coding RNAs and lipids mediate the function of extracellular vesicles in cancer cross-talk. Semin Cancer Biol 2021; 74:121-133. [PMID: 34033894 DOI: 10.1016/j.semcancer.2021.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 11/22/2022]
Abstract
Research on extracellular vesicles (EVs) has been expanded, especially in the field of cancer. The cargoes in EVs, especially those in small EVs such as exosomes include microRNAs (miRNAs), mRNA, proteins, and lipids, are assumed to work cooperatively in the tumor microenvironment. In 2007, it was reported that miRNAs were abundant among the non-coding RNAs present in exosomes. Since then, many studies have investigated the functions of miRNAs and have tried to apply these molecules to aid in the diagnosis of cancer. Accordingly, many reviews of non-coding RNAs in EVs have been published for miRNAs. This review focuses on relatively new cargoes, covering long noncoding (lnc) RNAs, circular RNAs, and repeat RNAs, among non-coding RNAs. These RNAs, regardless of EV or cell type, have newly emerged due to the innovation of sequencing technology. The poor conservation, low quantity, and technical difficulty in detecting these RNA types have made it difficult to elucidate their functions and expression patterns. We herein summarize a limited number of studies. Although lipids are major components of EVs, current research on EVs focuses on miRNA and protein biology, while the roles of lipids in exosomes have not drawn attention. However, several recent studies revealed that phospholipids, which are components of the EV membrane, play important roles in the intercommunication between cells and in the generation of lipid mediators. Here, we review the reported roles of these molecules, and describe their potential in cancer biology.
Collapse
|
21
|
Rapid Screening and Identification of Antitumor Ingredients from the Mangrove Endophytic Fungus Using an Enzyme-Immobilized Magnetic Nanoparticulate System. Molecules 2021; 26:molecules26082255. [PMID: 33924693 PMCID: PMC8069786 DOI: 10.3390/molecules26082255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
As a consequence of recent progression in biomedicine and nanotechnology, nanoparticle-based systems have evolved as a new method with extensive applications in responsive therapy, multimodal imaging, drug delivery and natural product separation. Meanwhile, the magnetic nanoparticulate system has aroused great interest for separation and purification because of its excellent magnetic properties. Phospholipase A2 (PLA2) is a highly expressed regulator to promote the growth of various cancers and is an ideal target to treat cancers. In this study, a novel strategy based on ligand–receptor interactions to discover novel PLA2 inhibitors was established, in which PLA2-functionalized Fe3O4@PLGA-PEG-NH2 magnetic nanoparticles were used as a supporting material combined with high-performance liquid chromatography–mass spectrometry, aiming to accelerate the discovery of novel PLA2 inhibitors from natural sources such as mangrove endophytic fungi. Under the optimized ligand fishing conditions, six target compounds were ultimately fished and identified to be cyclic peptides (1–3) and sterols (4–6), which compounds 1, 2 and 4–6 have well-documented cytotoxicities. Compound 3 exerted better inhibitory effect on A549 cells by experiment. In conclusion, PLA2-functionalized Fe3O4@PLGA-PEG-NH2 magnetic nanoparticles-based ligand fishing provided a feasible, selective and effective platform for the efficient screening and identification of antitumor components from natural products.
Collapse
|
22
|
Sharma N, Langley RJ, Eurtivong C, Leung E, Dixon RJ, Paulin EK, Rees SWP, Pilkington LI, Barker D, Reynisson J, Leung IKH. An optimised MALDI-TOF assay for phosphatidylcholine-specific phospholipase C. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:491-496. [PMID: 33432952 DOI: 10.1039/d0ay02208j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Bacillus cereus phosphatidylcholine-specific phospholipase C (PC-PLCBc) is an enzyme that catalyses the hydrolysis of phosphatidylcholines into phosphocholine and 1,2-diacylglycerols. PC-PLCBc has found applications in both the food industry and in medicinal chemistry. Herein, we report our work in the development and optimisation of a matrix assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry-based assay to monitor PC-PLCBc activity. The use of one-phase and two-phase reaction systems to assess the inhibition of PC-PLCBc with different structural classes of inhibitors was compared. We also highlighted the advantage of our assay over the commonly used commercially available Amplex Red assay. This method will also be applicable to work on the activity and inhibition of other phospholipases.
Collapse
Affiliation(s)
- Nabangshu Sharma
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Ries J Langley
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand and Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Chatchakorn Eurtivong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand and Center of Excellence on Environmental Health and Toxicology (EHT), Commission on Higher Education (CHE), Ministry of Education, Bangkok 10400, Thailand
| | - Euphemia Leung
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand and Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand and Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Ryan Joseph Dixon
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Emily K Paulin
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Shaun W P Rees
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Lisa I Pilkington
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - David Barker
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand. and Centre for Green Chemical Science, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand and The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand. and School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand. and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand and Centre for Green Chemical Science, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| |
Collapse
|
23
|
Biochemical and functional characterization of a new recombinant phospholipase A 2 inhibitor from Crotalus durissus collilineatus snake serum. Int J Biol Macromol 2020; 164:1545-1553. [PMID: 32735921 DOI: 10.1016/j.ijbiomac.2020.07.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 11/20/2022]
Abstract
Phospholipase A2 plays an important role in many diseases. Thus, the production of bioactive molecules, which can modulate PLA2 activity, became an important target for the pharmaceutical industry. Previously, we demonstrated the inhibitory and anti-angiogenic effect of γCdcPLI, the natural PLA2inhibitor from Crotalus durissus collilineatus. The aim of the present study was to recombinantly express the γCdcPLI inhibitor and analyze its biochemical and functional characteristics. Based on the amino acid sequence from the natural protein, we designed a synthetic gene for production of a non-tagged recombinant recγCdcPLI using the pHis-Parallel2 vector. To enable disulfide bond formation, protein expression was performed using E. coli Rosetta-gamiB. The protein was purified by anion and affinity chromatography with a yield of 5 mg/L. RecγCdcPLI showed similar secondary structure in CD and FTIR, revealing predominately β-strands. Analogous to the natural protein, recγCdcPLI was able to form oligomers of ~5.5 nm. The inhibitor was efficiently binding to PLA2 from honeybee (Kd = 1.48 μM) and was able to inhibit the PLA2 activity. Furthermore, it decreased the vessel formation in HUVEC cells, suggesting an anti-angiogenic potential. Heterologous production of recγCdcPLI is highly efficient and thus enables enhanced drug design for treatment of diseases triggered by PLA2 activity.
Collapse
|
24
|
Gergen AK, Jarrett MJ, Li A, White AM, Meng X, Fullerton DA, Weyant MJ. Secretory Phospholipase A 2 Inhibition Attenuates Adhesive Properties of Esophageal Barrett's Cells. J Surg Res 2020; 259:562-568. [PMID: 33261858 DOI: 10.1016/j.jss.2020.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 10/31/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Gastroesophageal reflux and Barrett's esophagus are significant risk factors for the development of esophageal adenocarcinoma. Group IIa secretory phospholipase A2 (sPLA2) catalyzes the production of various proinflammatory metabolites and plays a critical role in promoting reflux-induced inflammatory changes within the distal esophagus. We hypothesized that inhibition of sPLA2 in human Barrett's cells would attenuate adhesion molecule expression via decreased activation of nuclear factor kappa B (NF-κB) and decrease cell proliferation, possibly mitigating the invasive potential of Barrett's esophagus. MATERIALS AND METHODS Normal human esophageal epithelial cells (HET1A) and Barrett's cells (CPB) were assayed for baseline sPLA2 expression. CPB cells were treated with a specific inhibitor of sPLA2 followed by tumor necrosis factor-α. Protein expression was evaluated using immunoblotting. Cell proliferation was assessed using an MTS cell proliferation assay kit. Statistical analysis was performed using the Student's t-test or analysis of variance, where appropriate. RESULTS CPB cells demonstrated higher baseline sPLA2 expression than HET1A cells (P = 0.0005). Treatment with 30 μM sPLA2 inhibitor significantly attenuated intercellular adhesion molecule-1 (P = 0.004) and vascular cell adhesion molecule-1 (P < 0.0001) expression as well as decreased NF-κB activation (P = 0.002). sPLA2 inhibition decreased cell proliferation in a dose-dependent manner (P < 0.001 for 15, 20, and 30 μM doses). CONCLUSIONS sPLA2 inhibition in human Barrett's cells decreases cellular adhesive properties and NF-κB activation as well as decreases cell proliferation, signifying downregulation of the inflammatory response and possible attenuation of cellular malignant potential. These findings identify sPLA2 inhibition as a potential chemopreventive target for premalignant lesions of the esophagus.
Collapse
Affiliation(s)
- Anna K Gergen
- University of Colorado School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Aurora, Colorado.
| | - Michael J Jarrett
- University of Colorado School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Aurora, Colorado
| | - Anqi Li
- University of Colorado School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Aurora, Colorado
| | - Allana M White
- University of Colorado School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Aurora, Colorado
| | - Xianzhong Meng
- University of Colorado School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Aurora, Colorado
| | - David A Fullerton
- University of Colorado School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Aurora, Colorado
| | - Michael J Weyant
- University of Colorado School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Aurora, Colorado
| |
Collapse
|
25
|
Peng Z, Chang Y, Fan J, Ji W, Su C. Phospholipase A2 superfamily in cancer. Cancer Lett 2020; 497:165-177. [PMID: 33080311 DOI: 10.1016/j.canlet.2020.10.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Phospholipase A2 enzymes (PLA2s) comprise a superfamily that is generally divided into six subfamilies known as cytosolic PLA2s (cPLA2s), calcium-independent PLA2s (iPLA2s), secreted PLA2s (sPLA2s), lysosomal PLA2s, platelet-activating factor (PAF) acetylhydrolases, and adipose specific PLA2s. Each subfamily consists of several isozymes that possess PLA2 activity. The first three PLA2 subfamilies play important roles in inflammation-related diseases and cancer. In this review, the roles of well-studied enzymes sPLA2-IIA, cPLA2α and iPLA2β in carcinogenesis and cancer development were discussed. sPLA2-IIA seems to play conflicting roles and can act as a tumor suppressor or a tumor promoter according to the cancer type, but cPLA2α and iPLA2β play protumorigenic role in most cancers. The mechanisms of PLA2-mediated signal transduction and crosstalk between cancer cells and endothelial cells in the tumor microenvironment are described. Moreover, the mechanisms by which PLA2s mediate lipid reprogramming and glycerophospholipid remodeling in cancer cells are illustrated. PLA2s as the upstream regulators of the arachidonic acid cascade are generally high expressed and activated in various cancers. Therefore, they can be considered as potential pharmacological targets and biomarkers in cancer. The detailed information summarized in this review may aid in understanding the roles of PLA2s in cancer, and provide new clues for the development of novel agents and strategies for tumor prevention and treatment.
Collapse
Affiliation(s)
- Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Yanxin Chang
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Surgical Hospital, Navy Military Medical University, Shanghai, 200438, China.
| | - Jianhui Fan
- Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, 350025, Fujian Province, China.
| | - Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
26
|
Guo C, Zhang Y, Li Y, Xu S, Wang L. 19F MRI Nanoprobes for the Turn-On Detection of Phospholipase A2 with a Low Background. Anal Chem 2019; 91:8147-8153. [DOI: 10.1021/acs.analchem.9b00435] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chang Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yangyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yawei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
27
|
Tian X, Zhang G, Zou Z, Yang Z. Anticancer Drug Affects Metabolomic Profiles in Multicellular Spheroids: Studies Using Mass Spectrometry Imaging Combined with Machine Learning. Anal Chem 2019; 91:5802-5809. [PMID: 30951294 PMCID: PMC6573030 DOI: 10.1021/acs.analchem.9b00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multicellular spheroids (hereinafter referred to as spheroids) are 3D biological models. The metabolomic profiles inside spheroids provide crucial information reflecting the molecular phenotypes and microenvironment of cells. To study the influence of an anticancer drug on the spatially resolved metabolites, spheroids were cultured using HCT-116 colorectal cancer cells, treated with the anticancer drug Irinotecan under a series of time- and concentration-dependent conditions. The Single-probe mass spectrometry imaging (MSI) technique was utilized to conduct the experiments. The MSI data were analyzed using advanced data analysis methods to efficiently extract metabolomic information. Multivariate curve resolution alternating least square (MCR-ALS) was used to decompose each MS image into different components with grouped species. To improve the efficiency of data analysis, both supervised (Random Forest) and unsupervised (cluster large applications (CLARA)) machine learning (ML) methods were employed to cluster MS images according to their metabolomic features. Our results indicate that anticancer drug significantly affected the abundances of a variety of metabolites in different regions of spheroids. This integrated experiment and data analysis approach can facilitate the studies of metabolites in different types of 3D tumor models and tissues and potentially benefit the drug discovery, therapeutic resistance, and other biological research fields.
Collapse
Affiliation(s)
- Xiang Tian
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Genwei Zhang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhu Zou
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
28
|
Wu C, Su J, Wang X, Wang J, Xiao K, Li Y, Xiao Q, Ling M, Xiao Y, Qin C, Long W, Zhang F, Pan Y, Xiang F, Liu Q. Overexpression of the phospholipase A2 group V gene in glioma tumors is associated with poor patient prognosis. Cancer Manag Res 2019; 11:3139-3152. [PMID: 31114356 PMCID: PMC6489671 DOI: 10.2147/cmar.s199207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/17/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: Gliomas are the most common primary malignant neoplasms of the central nervous system. Secreted phospholipases A2 (sPLA2s) are known to play an important role in various physiological processes, including bioactive lipid production, defense mechanisms, and cell signaling. However, their roles and clinical importance in gliomas remain unclear. Patients and methods: In this study, we analyzed the association between the expression of various sPLA2-encoding genes and the clinicopathology of gliomas, using the data of 1047 patients obtained from a public database. Immunohistochemical analysis of 82 glioma tissues was also carried out to assess the relationship between phospholipase A2 group V (PLA2G5) protein expression and the World Health Organization (WHO) glioma grades. Results: We found that high PLA2G5 gene expression was associated with unfavorable prognosis in both low-grade and high-grade gliomas. The immunohistochemistry of the 82 glioma tissues further confirmed that PLA2G5 protein expression was dependent on the WHO glioma grade. In addition, we found a correlation between PLA2G5 gene expression and both epithelial-mesenchymal transition and the isocitrate dehydrogenase 1 mutation status in these tumors. Conclusion: Our results indicate that PLA2G5 could be a potential biomarker for predicting poor prognosis in patients with gliomas.
Collapse
Affiliation(s)
- Changwu Wu
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Jun Su
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Xiangyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Junquan Wang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Kai Xiao
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Yang Li
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Qun Xiao
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Min Ling
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Yao Xiao
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Wenyong Long
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China.,Institute of Skull Base Surgery and Neuro-Oncology at Hunan Neurosurgery Institute of Central South University, Changsha, Hunan, People's Republic of China
| | - Fengqi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Yimin Pan
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Feng Xiang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China.,Institute of Skull Base Surgery and Neuro-Oncology at Hunan Neurosurgery Institute of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
29
|
Amara CS, Vantaku V, Lotan Y, Putluri N. Recent advances in the metabolomic study of bladder cancer. Expert Rev Proteomics 2019; 16:315-324. [PMID: 30773067 DOI: 10.1080/14789450.2019.1583105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Metabolomics is a chemical process, involving the characterization of metabolites and cellular metabolism. Recent studies indicate that numerous metabolic pathways are altered in bladder cancer (BLCA), providing potential targets for improved detection and possible therapeutic intervention. We review recent advances in metabolomics related to BLCA and identify various metabolites that may serve as potential biomarkers for BLCA. Areas covered: In this review, we describe the latest advances in defining the BLCA metabolome and discuss the possible clinical utility of metabolic alterations in BLCA tissues, serum, and urine. In addition, we focus on the metabolic alterations associated with tobacco smoke and racial disparity in BLCA. Expert commentary: Metabolomics is a powerful tool which can shed new light on BLCA development and behavior. Key metabolites may serve as possible markers of BLCA. However, prospective validation will be needed to incorporate these markers into clinical care.
Collapse
Affiliation(s)
- Chandra Sekhar Amara
- a Department of Molecular and Cell Biology , Baylor College of Medicine , Houston , TX , USA
| | - Venkatrao Vantaku
- a Department of Molecular and Cell Biology , Baylor College of Medicine , Houston , TX , USA
| | - Yair Lotan
- b Department of Urology , University of Texas Southwestern , Dallas , TX , USA
| | - Nagireddy Putluri
- a Department of Molecular and Cell Biology , Baylor College of Medicine , Houston , TX , USA.,c Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
30
|
Cedro RCA, Menaldo DL, Costa TR, Zoccal KF, Sartim MA, Santos-Filho NA, Faccioli LH, Sampaio SV. Cytotoxic and inflammatory potential of a phospholipase A 2 from Bothrops jararaca snake venom. J Venom Anim Toxins Incl Trop Dis 2018; 24:33. [PMID: 30498509 PMCID: PMC6251196 DOI: 10.1186/s40409-018-0170-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/01/2018] [Indexed: 12/15/2022] Open
Abstract
Background Snake venom phospholipases A2 (PLA2s) have been reported to induce myotoxic, neurotoxic, hemolytic, edematogenic, cytotoxic and proinflammatory effects. This work aimed at the isolation and functional characterization of a PLA2 isolated from Bothrops jararaca venom, named BJ-PLA2-I. Methods and Results For its purification, three consecutive chromatographic steps were used (Sephacryl S-200, Source 15Q and Mono Q 5/50 GL). BJ-PLA2-I showed acidic characteristics, with pI~ 4.4 and molecular mass of 14.2 kDa. Sequencing resulted in 60 amino acid residues that showed high similarity to other Bothrops PLA2s, including 100% identity with BJ-PLA2, an Asp49 PLA2 previously isolated from B. jararaca venom. Being an Asp49 PLA2, BJ-PLA2-I showed high catalytic activity, and also inhibitory effects on the ADP-induced platelet aggregation. Its inflammatory characterization showed that BJ-PLA2-I was able to promote leukocyte migration in mice at different concentrations (5, 10 and 20 μg/mL) and also at different response periods (2, 4 and 24 h), mainly by stimulating neutrophil infiltration. Furthermore, increased levels of total proteins, IL-6, IL-1β and PGE2 were observed in the inflammatory exudate induced by BJ-PLA2-I, while nitric oxide, TNF-α, IL-10 and LTB4 levels were not significantly altered. This toxin was also evaluated for its cytotoxic potential on normal (PBMC) and tumor cell lines (HL-60 and HepG2). Overall, BJ-PLA2-I (2.5–160 μg/mL) promoted low cytotoxicity, with cell viabilities mostly varying between 70 and 80% and significant values obtained for HL-60 and PBMC only at the highest concentrations of the toxin evaluated. Conclusions BJ-PLA2-I was characterized as an acidic Asp49 PLA2 that induces acute local inflammation and low cytotoxicity. These results should contribute to elucidate the action mechanisms of snake venom PLA2s.
Collapse
Affiliation(s)
- Rafhaella C A Cedro
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Danilo L Menaldo
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Tássia R Costa
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Karina F Zoccal
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Marco A Sartim
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Norival A Santos-Filho
- 2Campus Experimental de Registro, Universidade Estadual Paulista (UNESP), Registro, SP Brazil
| | - Lúcia H Faccioli
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Suely V Sampaio
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| |
Collapse
|
31
|
Zong L, Pi Z, Liu S, Xing J, Liu Z, Song F. Liquid extraction surface analysis nanospray electrospray ionization based lipidomics for in situ analysis of tumor cells with multidrug resistance. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1683-1692. [PMID: 30003601 DOI: 10.1002/rcm.8229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/20/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Multidrug resistance (MDR) occurs frequently and is a major challenge in tumor treatment. The lipid composition in the cell membrane and the redox balance are closely associated with the development of MDR. Liquid extraction surface analysis in combination with mass spectrometry (LESA-MS) has the characteristics of minimal sample preparation, rapid analysis, high sensitivity and high throughput, and has obtained wide applications. METHODS LESA-MS was employed to in situ determine the lipids and other specific metabolites of intact MCF-7/ADR cells (adriamycin-resistant breast cancer cells) and its parental MCF-7/S cells grown on a glass slide. In situ atomic force microscopy was used to observe the morphology of tumor cells before and after extraction. Multivariate statistical analysis was used to investigate the potential lipid biomarkers correlated with the MDR. Moreover, the cell membrane fluidity and potential were determined. RESULTS The changes in the level of the lipids were closely correlated with the multidrug resistance of MCF-7/S cells. Moreover, lower cell membrane fluidity and higher cell membrane potential were observed and thus demonstrated the changes in the cell membrane induced by multidrug resistance. Also, the ratios of GSH/GSSG, ATP/ADP and ATP/AMP were significantly higher in MCF-7/ADR cells relative to MCF-7/S cells. CONCLUSIONS Lower cell membrane fluidity and higher cell membrane potential caused by the changes in lipid compositions, enhanced anti-oxidative ability and energy generation were involved in the development of the MDR. The specific alterations identified in this study may provide more information for overcoming MDR.
Collapse
Affiliation(s)
- Li Zong
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Junpeng Xing
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
32
|
Bayci AWL, Baker DA, Somerset AE, Turkoglu O, Hothem Z, Callahan RE, Mandal R, Han B, Bjorndahl T, Wishart D, Bahado-Singh R, Graham SF, Keidan R. Metabolomic identification of diagnostic serum-based biomarkers for advanced stage melanoma. Metabolomics 2018; 14:105. [PMID: 30830422 DOI: 10.1007/s11306-018-1398-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/18/2018] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Melanoma is a highly aggressive malignancy and is currently one of the fastest growing cancers worldwide. While early stage (I and II) disease is highly curable with excellent prognosis, mortality rates rise dramatically after distant spread. We sought to identify differences in the metabolome of melanoma patients to further elucidate the pathophysiology of melanoma and identify potential biomarkers to aid in earlier detection of recurrence. METHODS Using 1H NMR and DI-LC-MS/MS, we profiled serum samples from 26 patients with stage III (nodal metastasis) or stage IV (distant metastasis) melanoma and compared their biochemical profiles with 46 age- and gender-matched controls. RESULTS We accurately quantified 181 metabolites in serum using a combination of 1H NMR and DI-LC-MS/MS. We observed significant separation between cases and controls in the PLS-DA scores plot (permutation test p-value = 0.002). Using the concentrations of PC-aa-C40:3, DL-carnitine, octanoyl-L-carnitine, ethanol, and methylmalonyl-L-carnitine we developed a diagnostic algorithm with an AUC (95% CI) = 0.822 (0.665-0.979) with sensitivity and specificity of 100 and 56%, respectively. Furthermore, we identified arginine, proline, tryptophan, glutamine, glutamate, glutathione and ornithine metabolism to be significantly perturbed due to disease (p < 0.05). CONCLUSION Targeted metabolomic analysis demonstrated significant differences in metabolic profiles of advanced stage (III and IV) melanoma patients as compared to controls. These differences may represent a potential avenue for the development of multi-marker serum-based assays for earlier detection of recurrences, allow for newer, more effective targeted therapy when tumor burden is less, and further elucidate the pathophysiologic changes that occur in melanoma.
Collapse
Affiliation(s)
- A W L Bayci
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| | - D A Baker
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA.
- Department of Surgery, Beaumont Health, 3601 W. 13 Mile Rd., Royal Oak, MI, 48073, USA.
| | - A E Somerset
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| | - O Turkoglu
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, MI, USA
| | - Z Hothem
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| | - R E Callahan
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| | - R Mandal
- Department of Biological and Computing Sciences, University of Alberta Edmonton, Edmonton, AB, Canada
| | - B Han
- Department of Biological and Computing Sciences, University of Alberta Edmonton, Edmonton, AB, Canada
| | - T Bjorndahl
- Department of Biological and Computing Sciences, University of Alberta Edmonton, Edmonton, AB, Canada
| | - D Wishart
- Department of Biological and Computing Sciences, University of Alberta Edmonton, Edmonton, AB, Canada
| | - R Bahado-Singh
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, MI, USA
| | - S F Graham
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, MI, USA
| | - R Keidan
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| |
Collapse
|
33
|
Tamura S, Wang Y, Veeneman B, Hovelson D, Bankhead A, Broses LJ, Lorenzatti Hiles G, Liebert M, Rubin JR, Day KC, Hussain M, Neamati N, Tomlins S, Palmbos PL, Grivas P, Day ML. Molecular Correlates of In Vitro Responses to Dacomitinib and Afatinib in Bladder Cancer. Bladder Cancer 2018; 4:77-90. [PMID: 29430509 PMCID: PMC5798519 DOI: 10.3233/blc-170144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: The HER family of proteins (EGFR, HER2, HER3 and HER4) have long been thought to be therapeutic targets for bladder cancer, but previous clinical trials targeting these proteins have been disappointing. Second generation agents may be more effective. Objective: The aim of this study was to evaluate responses to two second-generation irreversible tyrosine kinase inhibitors, dacomitinib and afatinib, in bladder cancer cell lines. Methods: Cell lines were characterized by targeted next generation DNA sequencing, RNA sequencing, western blotting and flow cytometry. Cell survival responses to dacomitinib or afatinib were determined using (3-[4,5-dimethylthioazol-2-yl]-2,5-diphenyl tetrazolium bromide) (MTT) or [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and phenazine methosylfate (PMS) cell survival assays. Results: Only two cell lines of 12 tested were sensitive to afatinib. Sensitivity to afatinib was significantly associated with mutation in either HER2 or HER3 (p < 0.05). The two cell lines sensitive to afatinib were also responsive to dacomitinib ralong with an additional 4 other cell lines out of 16 tested. No characteristic was associated with dacomitinib sensitivity. Molecular profiling demonstrated that only two genes were high in both afatinib and dacomitinib sensitive cells. Further rhigher expression of RAS pathway genes was noted for dacomitinib responsive cells. Conclusions: This study confirms that cell line screening can be useful in pre-clinical evaluation of targeted small molecule inhibitors and suggests that compounds with similar structure(s) and target(s) may have distinct sensitivity profiles. Further rcombinational targeting of additional molecularly relevant pathways may be important in enhancing responses to HER targeted agents in bladder cancer.
Collapse
Affiliation(s)
- Shuzo Tamura
- Department of Medicinal Chemistry, School of Pharmacy, University of Michigan, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Current address: Yokohama City University, Yokohama City, Japan
| | - Yin Wang
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Brendan Veeneman
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Current Address: Pfizer, Pearl River, NY, USA
| | - Daniel Hovelson
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Armand Bankhead
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Luke J Broses
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Guadalupe Lorenzatti Hiles
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Monica Liebert
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - John R Rubin
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen C Day
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Maha Hussain
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Current Address: Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, School of Pharmacy, University of Michigan, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Scott Tomlins
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Philip L Palmbos
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Petros Grivas
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Current address: University of Washington, Seattle, WA, USA
| | - Mark L Day
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Reprogrammed lipid metabolism in bladder cancer with cisplatin resistance. Oncotarget 2018; 9:13231-13243. [PMID: 29568353 PMCID: PMC5862574 DOI: 10.18632/oncotarget.24229] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/06/2018] [Indexed: 02/04/2023] Open
Abstract
Due to its tendency to recur and acquire chemoresistance quickly, bladder cancer (BC) remains to be an elusive and difficult disease. Patients with recurrent and chemoresistant BC have an extremely poor prognosis. One possible approach that may provide insightful and valuable information regarding resistance mechanisms is looking into the lipid metabolism of BC cells. Metabolism of lipids is essential for cancer cells and is associated with the regulation of a variety of key cellular processes and functions. This study conducted a comparative lipidomic profiling of two isogenic human T24 bladder cancer cell lines, one of which is clinically characterized as cisplatin-sensitive (T24S) and the other as cisplatin-resistant (T24R). Immunohistochemistry analysis revealed that expression of cytosolic acetyl-CoA synthetase 2 (ACSS2) is positively correlated with aggressive BC. Ultra performance liquid chromatography-mass spectrometry (UPLC-MS) analysis profiled a total of 1,864 lipids and levels of differentially expressed lipids suspected of being associated with cisplatin resistance were determined. In addition, we found that ACSS2 inhibition greatly perturbed levels of metabolites, including CE(18:1), CE(22:6), TG(49:1), and TG(53:2). This study broadens our current knowledge on the links between cisplatin resistance and lipid metabolism in aggressive BC and suggests potential biomarkers for identifying higher-risk patients.
Collapse
|
35
|
Fernandes Messias MC, Mecatti GC, Figueiredo Angolini CF, Eberlin MN, Credidio L, Real Martinez CA, Rodrigues Coy CS, de Oliveira Carvalho P. Plasma Lipidomic Signature of Rectal Adenocarcinoma Reveals Potential Biomarkers. Front Oncol 2018; 7:325. [PMID: 29359123 PMCID: PMC5766651 DOI: 10.3389/fonc.2017.00325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 12/15/2017] [Indexed: 01/05/2023] Open
Abstract
Background Rectal adenocarcinoma (RAC) is a common malignant tumor of the digestive tract and survival is highly dependent upon stage of disease at diagnosis. Lipidomic strategy can be used to identify potential biomarkers for establishing early diagnosis or therapeutic programs for RAC. Objective To evaluate the lipoperoxidation biomarkers and lipidomic signature in the plasma of patients with RAC (n = 23) and healthy controls (n = 18). Methods Lipoperoxidation was evaluated based on malondialdehyde (MDA) and F2-isoprostane levels and the lipidomic profile obtained by gas chromatography and high resolution mass spectrometry (ESI-q-TOF) associated with a multivariate statistical technique. Results The most abundant ions identified in the RAC patients were those of protonated phosphatidylcholine and phosphatidylethanolamine. It was found that a lisophosphatidylcholine (LPC) plasmalogen containing palmitoleic acid [LPC (P-16:1)], with highest variable importance projection score, showed a tendency to be lower in the cancer patients. A reduction of n − 3 polyunsaturated fatty acids was observed in the plasma of these patients. MDA levels were higher in patients with advanced cancer (stages III/IV) than in the early stages groups and the healthy group (p < 0.05). No differences in F2-isoprostane levels were observed among these groups. Conclusion This study shows that the reduction in plasma levels of LPC plasmalogens associated with an increase in MDA levels may indicate increased oxidative stress in these patients and identify the metabolite LPC (P-16:1) as a putatively novel lipid signature for RAC.
Collapse
Affiliation(s)
| | - Giovana Colozza Mecatti
- Laboratory of Multidisciplinary Research, São Francisco University (USF), Bragança Paulista, São Paulo, Brazil
| | | | | | - Laura Credidio
- Department of Surgery, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
36
|
Laser desorption/ionization MS imaging of cancer kidney tissue on silver nanoparticle-enhanced target. Bioanalysis 2018; 10:83-94. [DOI: 10.4155/bio-2017-0195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: Renal cell carcinoma is a very aggressive and often fatal disease for which there are no specific biomarkers found to date. The purpose of work was to find substances that differentiate the cancerous and healthy tissue by using laser desorption/ionization MS imaging combined with silver nanoparticle-enhanced target. Results: Ion images and comparative analysis of spectra revealed differences in intensities for several metabolites, for which their biochemical properties were discussed. Statistical analysis allowed to distinguish healthy and cancer tissue without the involvement of a pathologist. Conclusion: Laser desorption/ionization MS imaging technology combined with silver nanoparticle-enhanced target enabled rapid visualization of the differences between the clear cell renal cell carcinoma and the healthy part of the kidney tissue.
Collapse
|
37
|
Phospholipases during membrane dynamics in malaria parasites. Int J Med Microbiol 2017; 308:129-141. [PMID: 28988696 DOI: 10.1016/j.ijmm.2017.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Plasmodium parasites, the causative agents of malaria, display a well-regulated lipid metabolism required to ensure their survival in the human host as well as in the mosquito vector. The fine-tuning of lipid metabolic pathways is particularly important for the parasites during the rapid erythrocytic infection cycles, and thus enzymes involved in lipid metabolic processes represent prime targets for malaria chemotherapeutics. While plasmodial enzymes involved in lipid synthesis and acquisition have been studied in the past, to date not much is known about the roles of phospholipases for proliferation and transmission of the malaria parasite. These phospholipid-hydrolyzing esterases are crucial for membrane dynamics during host cell infection and egress by the parasite as well as for replication and cell signaling, and thus they are considered important virulence factors. In this review, we provide a comprehensive bioinformatic analysis of plasmodial phospholipases identified to date. We further summarize previous findings on the lipid metabolism of Plasmodium, highlight the roles of phospholipases during parasite life-cycle progression, and discuss the plasmodial phospholipases as potential targets for malaria therapy.
Collapse
|
38
|
Antitumoral effects of γCdcPLI, a PLA 2 inhibitor from Crotalus durissus collilineatus via PI3K/Akt pathway on MDA-MB-231 breast cancer cell. Sci Rep 2017; 7:7077. [PMID: 28765552 PMCID: PMC5539153 DOI: 10.1038/s41598-017-07082-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/22/2017] [Indexed: 12/23/2022] Open
Abstract
Phospholipases A2(PLA2s) overexpression is closely associated with the malignant potential of breast cancers. Here, we showed for the first the antitumoral effects of γCdcPLI, a PLA2 inhibitor from Crotalus durissus collilineatus via PI3K/Akt pathway on MDA-MB-231 cell. Firstly, γCdcPLI was more cytotoxic to MDA-MB-231 breast cancer cells than other cell lines (MCF-7, HeLa, PC3 and A549) and did not affect the viability of non-tumorigenic breast cell (MCF 10A). In addition, γCdcPLI induced modulation of important mediators of apoptosis pathways such as p53, MAPK-ERK, BIRC5 and MDM2. γCdcPLI decreased MDA-MB-231 adhesion, migration and invasion. Interestingly, the γCdcPLI also inhibited the adhesion and migration of endothelial cells and blocked angiogenesis by inhibiting tube formation by HUVECs in vitro and sprouting elongation on aortic ring assay ex vivo. Furthermore, γCdcPLI reduced the production of vascular endothelial growth factor (VEGF). γCdcPLI was also able to decrease PGE2 levels in MDA-MB-231 and inhibited gene and protein expression of the PI3K/Akt pathway. In conclusion, γCdcPLI showed in vitro antitumoral, antimestatatic and anti-angiogenic potential effects and could be an attractive approach for futures studies in cancer therapy.
Collapse
|
39
|
Hou H, Xu Z, Zhang H, Xu Y. Combination diagnosis of multi-slice spiral computed tomography and secretary phospholipase A2-IIa for solitary pulmonary nodules. J Clin Lab Anal 2017; 32. [PMID: 28493533 DOI: 10.1002/jcla.22250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/05/2017] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION This study was aimed to compare the diagnostic value of multi-slice spiral computed tomography (CT) and secretary phospholipase A2-IIa (sPLA2-IIa) in differentiating between malignant and benign solitary pulmonary nodules (SPNs). METHODS A total of 223 patients with SPNs (91 patients with malignant SPNs and 132 patients with benign SPNs) were included from Weihai Central Hospital during October 2014 to December 2016. SPN diagnosis was confirmed in all patients using needle biopsy, surgery and bronchoscopy. The patients were managed with dynamic multi-slice CT scans, and their sPLA2-IIa levels were also detected. By selecting the area of interest of focus, the perfusion parameters of multi-slice CT targeting the focus were obtained. RESULTS The levels of MTT, PS, BV, BF and sPLA2-IIa significantly increased with increasing severity of SPNs (P<.05). Notably, BV (area under the ROC curve [AUC]=0.915; 95%CI: 0.88-0.95; sensitivity=91.21%; specificity=78.79%) showed a higher potential to discriminate patients with malignant SPNs from those with benign SPNs than did BF (AUC=0.712; 95%CI: 0.65-0.78; sensitivity=72.50%; specificity=59.10%), PS (AUC=0.772; 95%CI: 0.71-0.84; sensitivity=65.93%; specificity=82.58%) and MTT (AUC=0.600; 95%CI: 0.52-0.68; sensitivity=52.75%; specificity=78.03%). Finally, the combined diagnostic value of BV and sPLA2-IIa was quite ideal (AUC=0.947; 95%CI: 0.92-0.97; sensitivity=85.70%; specificity=92.70%) for malignant and benign SPNs. CONCLUSIONS The combined diagnostic value of BV and sPLA2-IIa appeared as a desirable detection method for malignant and benign SPNs.
Collapse
Affiliation(s)
- Hongjun Hou
- Department of Radiology, Weihai Central Hospital, Weihai City, Shandong Province, China
| | - Zushan Xu
- Department of Radiology, Weihai Central Hospital, Weihai City, Shandong Province, China
| | - Hongsheng Zhang
- Department of Radiology, Weihai Central Hospital, Weihai City, Shandong Province, China
| | - Yan Xu
- Department of Radiology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| |
Collapse
|
40
|
Mesgarzadeh AH, Akbarzadeh A, Rasipour A, Rasipour T, Mehdizadeh A, Shaaker M. Secretory phospholipase-A2 and fatty acid composition in oral reactive lesions: a cross-sectional study. Cancer Cell Int 2017; 17:50. [PMID: 28465673 PMCID: PMC5408472 DOI: 10.1186/s12935-017-0414-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/30/2017] [Indexed: 01/22/2023] Open
Abstract
Background Oral reactive lesions are the most common lesions of oral cavity. Phospholipases and fatty acids play key roles in the creation of inflammation by change in metabolic activities and production of lipid mediators. The aim of this study was to investigate the amount of secretory phospholipase-A2 (sPLA2) and difference of fatty acid pattern in oral reactive hyperplasia and adjacent normal appearing tissues in patients with oral reactive lesions. Methods Paired samples of oral hyperplastic (OH) and adjacent normal-appearing tissue of 45 patients were investigated in this study. The collected samples were analyzed with enzymatic spectrophotometric method in terms of the amount of sPLA2 and composition of fatty acids by gas–liquid chromatography method. Results The amount of sPLA2 (1.8-fold, p < 0.001), stearic acid (1.2-fold, p < 0.001), oleic acid (1.1-fold, p = 0.01), arachidonic acid (1.5-fold, p < 0.001) and docosahexaenoic acid (1.3-fold, p = 0.02) were increased, while the amount of palmitoleic acid (−45%, p < 0.001) and linoleic acid (−19%, p < 0.001) were reduced in the OH tissue samples. Furthermore, the results demonstrated significant associations between the type and location of tissue samples with monounsaturated fatty acids (MUFAs) and n−3 polyunsaturated fatty acids. Tissue samples from patients with inflammatory fibroepithelial hyperplasia showed relatively higher MUFAs and lower n−3 polyunsaturated fatty acids than other type of lesions. Conclusions Localized changes in the sPLA2 activity and composition of fatty acid are associated with oral reactive hyperplasia and the type of pathological response. We suggest that sPLA2 activity and multiple type of fatty acids might be used as potential therapeutic target for oral reactive hyperplasia.
Collapse
Affiliation(s)
- Ali Hossein Mesgarzadeh
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rasipour
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tannaz Rasipour
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsod Shaaker
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Lu S, Dong Z. Overexpression of secretory phospholipase A2-IIa supports cancer stem cell phenotype via HER/ERBB-elicited signaling in lung and prostate cancer cells. Int J Oncol 2017; 50:2113-2122. [PMID: 28440478 DOI: 10.3892/ijo.2017.3964] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
Abstract
Resistance to conventional chemotherapies remains a significant clinical challenge in treatment of cancer. The cancer stem cells (CSCs) have properties necessary for tumor initiation, resistance to therapy, and progression. HER/ERBB‑elicited signaling supports CSC properties. Our previous studies revealed that secretory phospholipase A2 group IIa (sPLA2‑IIa) is overexpressed in both prostate and lung cancer cells, leading to an aberrant high level in the interstitial fluid, i.e., tumor microenvironment and blood. HER/ERBB-PI3K-Akt-NF-κB signaling stimulates sPLA2‑IIa overexpression, and in turn, sPLA2‑IIa activates EGFR family receptors and HER/ERBB-elicited signaling and stimulates sPLA2‑IIa overexpression in a positive feedback manner. The present study determined the molecular mechanisms of sPLA2‑IIa in stimulating HER/ERBB-elicited signaling and supporting CSC properties. We found that sPLA2‑IIa binds both EGFR and HER3 demonstrated by co-immunoprecipitation experiments and also indirectly interacts with HER2, suggesting that sPLA2‑IIa functions as a ligand for both EGFR and HER3. Furthermore, both side population CSCs from non-small cell lung cancer (NSCLC) A549 and H1975 cells and ALDH1‑high CSCs from castration-resistant prostate cancer (CRPC) 22Rv1 cells overexpress sPLA2‑IIa and produce tumors when inoculated into subcutis of nude mice. Given an aberrant high level of sPLA2‑IIa in the tumor microenvironment that should be much higher than that in the blood, our findings support the notion that sPLA2‑IIa functions as a ligand for EGFR family receptors and supports CSC properties via HER/ERBB-elicited signaling, which may contribute to resistance to therapy and cancer progression.
Collapse
Affiliation(s)
- Shan Lu
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhongyun Dong
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
42
|
Lee S, Jang WJ, Choi B, Joo SH, Jeong CH. Comparative metabolomic analysis of HPAC cells following the acquisition of erlotinib resistance. Oncol Lett 2017; 13:3437-3444. [PMID: 28529573 PMCID: PMC5431587 DOI: 10.3892/ol.2017.5940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/17/2017] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is one of the most lethal types of cancer, due to difficulty in early detection and the limited efficacy of available treatments. Erlotinib is used to inhibit the epidermal growth factor receptor for the treatment of pancreatic cancer; however, erlotinib resistance is a major issue and the mechanisms underlying the development of erlotinib resistance remain unclear. To better understand the alterations in tumor metabolism by acquired resistance to erlotinib, an erlotinib-resistant pancreatic cancer cell line (HPAC-ER) was established, followed by a comparison of the metabolic characteristics between these cells and their erlotinib-sensitive parental cells (HPAC). This comparison was accomplished through mass spectrometry-based targeted metabolic profiling. Five metabolite groups (acylcarnitines, amino acids and biogenic amines, glycerophospholipids, sphingolipids and monosaccharides) were semi-quantified and compared statistically. These results revealed significant differences between the two groups of cells. A significant increase in the level of short-chain acylcarnitines and selected lysophosphatidylcholines, and a significant decrease in the level of acyl-alkyl-phosphatidylcholines and one sphingolipid, were observed in the HPAC-ER cells compared with the HPAC cells. The metabolic changes observed in the present study support the theory that there are increased metabolic demands in erlotinib-resistant cancer, reflecting the changes in acetyl-CoA-associated and choline phospholipid metabolism. These findings will aid in elucidating the changes that occur in pancreatic cancer metabolism through the acquired resistance to erlotinib, and in the identification of biomarkers for the early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Sooyeun Lee
- College of Pharmacy, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
| | - Boyeon Choi
- College of Pharmacy, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
| | - Sang Hoon Joo
- Department of Pharmacy, Catholic University of Daegu, Gyeongsan-si, Gyeongbuk 38430, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
| |
Collapse
|
43
|
Osipov AV, Utkin YN. Antiproliferative Effects of Snake Venom Phospholipases A2 and Their Perspectives for Cancer Treatment. TOXINS AND DRUG DISCOVERY 2017. [DOI: 10.1007/978-94-007-6452-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Zielichowska A, Daczewska M, Saczko J, Michel O, Kulbacka J. Applications of calcium electroporation to effective apoptosis induction in fibrosarcoma cells and stimulation of normal muscle cells. Bioelectrochemistry 2016; 109:70-8. [DOI: 10.1016/j.bioelechem.2016.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 02/06/2023]
|
45
|
Szcześ A. Effect of the enzymatically modified supported dipalmitoylphosphatidylcholine (DPPC) bilayers on calcium carbonate formation. Colloid Polym Sci 2016; 294:409-419. [PMID: 26855469 PMCID: PMC4733140 DOI: 10.1007/s00396-015-3796-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/21/2015] [Accepted: 10/20/2015] [Indexed: 11/25/2022]
Abstract
After an hour contact with a phospholipase A2 (PLA2) solution, only the outer leaflet of the dipalmitoylphosphatidylcholine (DPPC) bilayers supported on mica surface underwent hydrolysis whose products, i.e., palmitic acid and lysophospholipid, accumulated on the bilayer surface. Only calcite was present on the bare mica and enzymatically unmodified and modified supported DPPC bilayers soaked for 2 weeks at 25 and 37 °C in a solution of initial pH equals to 7.4 and 9.2 containing calcium and bicarbonate ions at their concentrations about those of human blood plasma. The DPPC bilayers accelerate the crystal growth at lower pH and favors CaCO3 nucleation at higher pH. Enzymatic modification of bilayers does not affect crystal morphology and its organization on the examined surface but causes a slight crystal size increase at lower pH and significantly reduces crystal size at alkaline pH. The temperature increase leads to the formation of bigger crystals under physiological pH and has almost no effect on crystal size at alkaline pH. The obtained results are probably attributed to Ca2+ interaction with a specific polar site on the surface of the membrane and DPPC hydrolysis products acting as nucleation centers.
Collapse
Affiliation(s)
- Aleksandra Szcześ
- Department of Physical Chemistry-Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, 20-031 Poland
| |
Collapse
|
46
|
Interaction kinetics of serum proteins with liposomes and their effect on phospholipase-induced liposomal drug release. Int J Pharm 2015; 495:827-39. [PMID: 26410758 DOI: 10.1016/j.ijpharm.2015.09.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/10/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
We used surface plasmon resonance (SPR) to measure the affinity and kinetics of the interaction between serum proteins and both conventional and PEGylated liposomes. The effect of the interactions on secretory phospholipase A2 (sPLA2)-induced release of a model drug from liposomes was also assessed. SPR analysis of 12 serum proteins revealed that the mode of interaction between serum proteins and liposomes greatly varies depending on the type of protein. For example, albumin bound to liposomes at slower association/dissociation rates with higher affinity and prevented sPLA2-induced drug release from PEGylated liposomes. Conversely, fibronectin bound at faster association/dissociation rates with lower affinity and demonstrated little impact on the drug release. These results indicate that the effect of serum proteins on sPLA2 phospholipid hydrolysis varies with the mode of interaction between proteins and liposomes. Understanding how the proteins interact with liposomes and impact sPLA2 phospholipid hydrolysis should aid the rational design of therapeutic liposomal formulations.
Collapse
|
47
|
Olsen RS, Andersson RE, Zar N, Löfgren S, Wågsäter D, Matussek A, Dimberg J. Prognostic significance of PLA2G4C gene polymorphism in patients with stage II colorectal cancer. Acta Oncol 2015; 55:474-9. [PMID: 26364726 DOI: 10.3109/0284186x.2015.1073350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Phospholipase A2 Group IV C (PLA2G4C) catalyzes the release of certain fatty acids from phospholipids and plays a role in a range of physiological functions, such as remodeling of cell membranes and the production of prostaglandins. Furthermore, it has been proposed that PLA2G4C plays an important role in breast cancer cell chemotaxis. This study aimed to investigate the effect of a single nucleotide polymorphism (SNP) rs1549637 (T>A) of the PLA2G4C gene on the prognosis of colorectal cancer (CRC). MATERIAL AND METHODS Whole blood DNA was extracted from 381 patients with CRC and 618 controls, and a TaqMan SNP genotyping assay was used to determine the distribution of the genotypes. Cancer-specific and disease-free survival was analyzed by Kaplan-Meier graphs and by uni- and multivariable Cox regression. RESULTS The cancer-specific survival differed between the genotypes (p = 0.019) and the carriers of the A allele were associated with the highest risk of CRC death, with a hazard ratio (HR) of 1.72 [95% confidence interval (CI) 1.17-2.53, p = 0.006] compared with homozygous carriers of the T allele. This increased mortality in the carriers with the allele A was especially marked in stage II with an HR of 3.84 (95% CI 1.51-9.78, p = 0.005). CONCLUSION The A allele in PLA2G4C SNP (rs1549637) is associated with a worse prognosis in patients with CRC, especially in stage II disease, and it could be a potential prognostic biomarker in the planning of individual adjuvant therapy in stage II patients.
Collapse
Affiliation(s)
- Renate S. Olsen
- Laboratory Services, Ryhov County Hospital, Jönköping, Sweden
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | - Niklas Zar
- Department of Surgery, Ryhov County Hospital, Jönköping, Sweden
| | - Sture Löfgren
- Department of Clinical Microbiology, Ryhov County Hospital, Jönköping, Sweden, and
| | - Dick Wågsäter
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | - Jan Dimberg
- Natural Science and Biomedicine, University College of Health Sciences, Jönköping, Sweden
| |
Collapse
|
48
|
Zhai YC, Dong B, Wei WQ, He Y, Li XQ, Cormier RT, Wang W, Liu F. Overexpression of phospholipase A2 Group IIA in esophageal squamous cell carcinoma and association with cyclooxygenase-2 expression. Asian Pac J Cancer Prev 2015; 15:9417-21. [PMID: 25422234 DOI: 10.7314/apjcp.2014.15.21.9417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Esophageal cancer is one of the most frequently occurring malignancies and the seventh leading cause of cancer-related deaths in the world. The esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer worldwide. MATERIALS AND METHODS Our goal in this study was to detect phospholipase A2 Group IIA (PLA2G2A) and cyclooxygenase-2 (COX-2) immuno-expression in ESCC in a high- risk population in China. RESULTS Positive expression of PLA2G2A protein was observed in 57.2% (166/290) of the cases, while COX-2 was found in 257 of 290 samples (88.6%), both PLA2G2A and COX-2 being expressed in 153 cases (52.8%), with a significant agreement (Kappa=0.091, p=0.031).Overexpression of PLA2G2A was significantly correlated with the depth of invasion (p=0.001). Co-expression of PLA2G2A and COX-2 not only significantly correlated with the depth of invasion (p=0.004) but also with TNM stage (p=0.04). CONCLUSIONS Our results showed that in patients with ESCC, PLA2G2A overexpression and PLA2G2A co-expression with COX-2 is significantly correlated with advanced stage. The biological role and pathophysiologic regulation of PLA2G2A and COX-2 overexpression in ESCC deserve further investigation.
Collapse
Affiliation(s)
- Yan-Chun Zhai
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China E-mail : ,
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Deletion of phospholipase A2 group IVc induces apoptosis in rat mammary tumour cells by the nuclear factor-κB/lipocalin 2 pathway. Biochem J 2015; 469:315-24. [PMID: 26013918 DOI: 10.1042/bj20150064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022]
Abstract
Although some forms of phospholipase A2, the initiator of the arachidonic acid cascade, contribute to carcinogenesis in many organs, the contribution of phospholipase A2 group IVc (Pla2g4c) remains to be clarified and the function of the enzyme in cancer development is unknown. The Hirosaki hairless rat (HHR), a mutant rat strain with autosomal recessive inheritance, derived spontaneously from the Sprague-Dawley rat (SDR). The HHRs showed a lower incidence and much smaller volume of mammary tumours induced by 7,12-dimethylbenz[a]anthracene, and a markedly increased number of TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling)-positive apoptotic cells was detected. Array comparative genomic hybridization and PCR analyses revealed the deletion of 50-kb genomic DNA on 1q21, including Pla2g4c, in HHRs. The Pla2g4c gene was expressed in the ductal carcinoma cells and myoepithelial cells in SDRs, but not in HHRs. The direct involvement of Pla2g4c in the prevention of cell death was demonstrated through the inhibition of its expression in rat mammary tumour RMT-1 cells using siRNA. This treatment also induced expression of lipocalin 2 (Lcn2) and other NF-κB (nuclear factor κB)-related genes. siRNA-induced apoptosis was inhibited by Lcn2 repression or NF-κB inhibitors. This is the first report on Pla2g4c gene-deficient rats and their low susceptibility to mammary carcinogenesis by enhancing NF-κB/Lcn2-induced apoptosis.
Collapse
|
50
|
Maeda Y, Sekiguchi F, Yamanaka R, Sugimoto R, Yamasoba D, Tomita S, Nishikawa H, Kawabata A. Mechanisms for proteinase-activated receptor 1-triggered prostaglandin E2 generation in mouse osteoblastic MC3T3-E1 cells. Biol Chem 2015; 396:153-62. [DOI: 10.1515/hsz-2014-0148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 09/02/2014] [Indexed: 11/15/2022]
Abstract
Abstract
We analyzed signaling mechanisms for prostaglandin E2 (PGE2) production following activation of proteinase-activated receptor-1 (PAR1), a thrombin receptor, in preosteoblastic MC3T3-E1 cells. PAR1 stimulation caused PGE2 release, an effect suppressed by inhibitors of COX-1, COX-2, iPLA2, cPLA2, MAP kinases (MAPKs), Src, EGF receptor (EGFR) tyrosine kinase (EGFR-TK) and matrix metalloproteinase (MMP), but not by an intracellular Ca2+ chelator or inhibitors of PI3 kinase, protein kinase C (PKC) and NF-κB. PAR1 activation induced phosphorylation of MAPKs and upregulation of COX-2. The phosphorylation of p38 MAPK was suppressed by inhibitors of Src and EGFR-TK. The COX-2 upregulation was dependent on ERK, p38, EGFR-TK, Src, and COX-2 itself. PAR1 activation also induced MEK-dependent phosphorylation of cAMP response element binding protein (CREB). All inhibitors of EP1, EP2, EP3 and EP4 receptors suppressed the PAR1-triggered PGE2 release. Exogenously applied PGE2 facilitated PAR1-triggered COX-2 upregulation, but it alone had no effect. Together, the PAR1-mediated PGE2 production in MC3T3-E1 cells appears to involve iPLA2 and cPLA2 for arachidonic acid release, and the MEK/ERK/CREB and Src/MMP/EGFR/p38 pathways for COX-2 upregulation, which is facilitated by endogenous PGE2 formed by COX-2. These signaling mechanisms might underlie the role of the thrombin/PAR1/PGE2 system in the early stage of the bone healing.
Collapse
|