1
|
Li X, Mao J. Research progress on the role of lipoxygenase and its inhibitors in prostate cancer. Future Oncol 2024; 20:3549-3568. [PMID: 39535136 PMCID: PMC11776861 DOI: 10.1080/14796694.2024.2419356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Prostate cancer (PCa) has become a common disease among middle-aged and elderly men. The lipoxygenase (LOX) pathway plays a crucial role in the occurrence, development, invasion and metastasis of PCa and is therefore considered a new target for the prevention and treatment of PCa. 5-LOX and 12-LOX have a promoting effect on the occurrence, development, invasion and metastasis of PCa. 15-LOX-2 has an inhibitory effect on PCa. LOX inhibitors can effectively inhibit the metabolic activity of LOX. The research aims to review the mechanism of action and inhibitors of LOX in PCa, in order to provide relevant references for the prevention and treatment of PCa.
Collapse
Affiliation(s)
- Xiaobing Li
- Chongqing Medical & Pharmaceutical College, Chongqing, 400030, China
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jingxin Mao
- Chongqing Medical & Pharmaceutical College, Chongqing, 400030, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
2
|
Ma Y, Zou C, Yang Y, Fang M, Guan Y, Sun J, Gao Y, Shang Z, Zhang X. Arachidonic acid enhances hepatocyte bile acid uptake and alleviates cholestatic liver disease by upregulating OATP1 expression. Food Funct 2024; 15:9916-9927. [PMID: 39258405 DOI: 10.1039/d4fo02158d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cholestatic liver disease is caused by disorders of bile synthesis, secretion, and excretion. Over the long term, progressive liver cell damage from the disease evolves into liver fibrosis and cirrhosis, ultimately leading to liver failure and even cancer. Notably, cholestatic liver disease has a complex pathogenesis that remains relatively unclear. In this study, we generated two mouse models of cholestatic liver disease using a 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet and α-naphthyl isothiocyanate (ANIT) gavage. Quantitative proteomics using liquid chromatography-tandem mass spectrometry showed that arachidonic acid metabolism was a common pathway in both models. Additionally, serum arachidonic acid concentrations were lower in both models than in the control group. Arachidonic acid supplementation in the diet of DDC model mice significantly reduced the levels of serum markers of cholestasis (alanine aminotransferase, aspartate transaminase, alkaline phosphatase, total bile acid, and total bilirubin) and decreased the degree of bile duct hyperplasia and cholestasis. To elucidate the mechanisms by which arachidonic acid improved bile stasis, we analyzed gene expression after arachidonic acid administration and found that Oatp1 was upregulated in the liver tissue of cholestatic mice. Arachidonic acid also increased Oatp1 expression in AML12 cells, which promoted bile acid uptake. Conclusively, our research showed that arachidonic acid mitigates cholestatic liver disease by upregulating Oatp1, promoting bile acid uptake by hepatocytes and participating in intestinal-hepatic circulation. Overall, these results suggest that supplementing foods with arachidonic acid in the daily diet may be an effective treatment strategy for cholestatic liver disease.
Collapse
Affiliation(s)
- Yanlu Ma
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Chen Zou
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Yilan Yang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Yunfeng Guan
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Jianqi Sun
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Anhui Hospital, Anhui, China
| | - Zhi Shang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Prat M, Coulson K, Blot C, Jacquemin G, Romano M, Renoud ML, AlaEddine M, Le Naour A, Authier H, Rahabi MC, Benmoussa K, Salon M, Parny M, Delord JP, Ferron G, Lefèvre L, Couderc B, Coste A. PPARγ activation modulates the balance of peritoneal macrophage populations to suppress ovarian tumor growth and tumor-induced immunosuppression. J Immunother Cancer 2023; 11:e007031. [PMID: 37586764 PMCID: PMC10432661 DOI: 10.1136/jitc-2023-007031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Ovarian adenocarcinoma (OVAD) frequently metastasizes to the peritoneal cavity and manifests by the formation of ascites, which constitutes a tumor-promoting microenvironment. In the peritoneal cavity, two developmentally, phenotypically and functionally distinct macrophage subsets, immunocompetent large peritoneal macrophages (LPM) and immunosuppressive small peritoneal macrophages (SPM), coexist. Because peroxisome proliferator-activated receptor γ (PPARγ) is a critical factor participating in macrophage differentiation and cooperates with CCAAT/enhancer binding protein β (C/EBPβ), a transcription factor essential for SPM-to-LPM differentiation, PPARγ could be also involved in the regulation of SPM/LPM balance and could be a promising therapeutic target. METHODS To evaluate the 15(S)-hydroxyeicosatetraenoic acid (HETE), a PPARγ endogenous ligand, impact on ovarian tumor growth, we intraperitoneally injected 15(S)-HETE into a murine ovarian cancer model. This experimental model consists in the intraperitoneally injection of ID8 cells expressing luciferase into syngeneic C57BL/6 female mice. This ID8 orthotopic mouse model is a well-established experimental model of end-stage epithelial OVAD. Tumor progression was monitored using an in vivo imaging system. Peritoneal immune cells in ascites were analyzed by flow cytometry and cell sorting. To determine whether the impact of 15(S)-HETE in tumor development is mediated through the macrophages, these cells were depleted by injection of liposomal clodronate. To further dissect how 15(S)-HETE mediated its antitumor effect, we assessed the tumor burden in tumor-bearing mice in which the PPARγ gene was selectively disrupted in myeloid-derived cells and in mice deficient of the recombination-activating gene Rag2. Finally, to validate our data in humans, we isolated and treated macrophages from ascites of individuals with OVAD. RESULTS Here we show, in the murine experimental model of OVAD, that 15(S)-HETE treatment significantly suppresses the tumor growth, which is associated with the differentiation of SPM into LPM and the LPM residency in the peritoneal cavity. We demonstrate that C/EBPβ and GATA6 play a central role in SPM-to-LPM differentiation and in LPM peritoneal residence through PPARγ activation during OVAD. Moreover, this SPM-to-LPM switch is associated with the increase of the effector/regulatory T-cell ratio. Finally, we report that 15(S)-HETE attenuates immunosuppressive properties of human ovarian tumor-associated macrophages from ascites. CONCLUSION Altogether, these results promote PPARγ as a potential therapeutic target to restrain OVAD development and strengthen the use of PPARγ agonists in anticancer therapy.
Collapse
Affiliation(s)
- Mélissa Prat
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Kimberley Coulson
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Clément Blot
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Godefroy Jacquemin
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mathilde Romano
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Marie-Laure Renoud
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mohamad AlaEddine
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Augustin Le Naour
- UMR1037 Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM, Toulouse, France
| | - Hélène Authier
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mouna Chirine Rahabi
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Khaddouj Benmoussa
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Marie Salon
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mélissa Parny
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | | | - Gwenaël Ferron
- Institut Claudius Regaud, IUCT Oncopole, Toulouse, France
| | - Lise Lefèvre
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Bettina Couderc
- UMR1037 Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM, Toulouse, France
- Institut Claudius Regaud, IUCT Oncopole, Toulouse, France
| | - Agnès Coste
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| |
Collapse
|
4
|
Hacioglu C, Kar F. Capsaicin induces redox imbalance and ferroptosis through ACSL4/GPx4 signaling pathways in U87-MG and U251 glioblastoma cells. Metab Brain Dis 2023; 38:393-408. [PMID: 35438378 DOI: 10.1007/s11011-022-00983-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/08/2022] [Indexed: 01/25/2023]
Abstract
Glioblastoma is one of the deadliest malignant gliomas. Capsaicin is a homovanillic acid derivative that can show anti-cancer effects by regulating various signaling pathways. The aim of this study is to investigate the effects of capsaicin on cell proliferation via ferroptosis in human U87-MG and U251 glioblastoma cells. Firstly, effects of capsaicin treatment on cell viability were determined by MTT analysis. Next, cellular-proliferation and cytotoxicity assays were determined by analyzing bromodeoxyuridine (BrdU) and lactate dehydrogenase (LDH) activity, respectively. Following, acyl-CoA synthetase long chain family member 4 (ACSL4), glutathione peroxidase 4 (GPx4), 5-hydroxyeicosatetraenoic acid (5-HETE), total oxidant status (TOS), malondialdehyde (MDA), total antioxidant status (TAS) and reduced glutathione (GSH) levels were determined by ELISA. Additionally, ACSL4 and GPx4 mRNA and protein levels were analyzed. Capsaicin showed a concentration-dependent anti-proliferative effects in U87-MG and U251 cells. Cell viability was decreased in the both cell lines treated with capsaicin concentrations above 50 μM, while LDH activity increased. Treatment of 121.6, 188.5, and 237.2 μM capsaicin concentrations for 24 h indicated an increase in ACSL4, 5-HETE, TOS and MDA levels in U87-MG and U251 cells (p < 0.05). On the other hand, we found that capsaicin administration caused a decrease in BrdU, GPx4, TAS and GSH levels in U87-MG and U251 cells (p < 0.05). Besides, ACSL4 mRNA and protein levels were increased in the glioblastoma cells treated with capsaicin, whereas GPx4 mRNA and protein levels were decreased. Finally, capsaicin might be used as a potential anticancer agent with ferroptosis-induced anti-proliferative effects in the treatment of human glioblastoma.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Faculty of Medicine, Department of Medical Biochemistry, Düzce University, Düzce, Turkey.
- Faculty of Pharmacy, Department of Biochemistry, Düzce University, Düzce, Turkey.
| | - Fatih Kar
- Kütahya Health Sciences University Department of Basic Sciences, Faculty of Engineering and Natural Sciences, Kütahya, Turkey
| |
Collapse
|
5
|
Montecillo-Aguado M, Tirado-Rodriguez B, Antonio-Andres G, Morales-Martinez M, Tong Z, Yang J, Hammock BD, Hernandez-Pando R, Huerta-Yepez S. Omega-6 Polyunsaturated Fatty Acids Enhance Tumor Aggressiveness in Experimental Lung Cancer Model: Important Role of Oxylipins. Int J Mol Sci 2022; 23:6179. [PMID: 35682855 PMCID: PMC9181584 DOI: 10.3390/ijms23116179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is currently the leading cause of cancer death worldwide; it is often diagnosed at an advanced stage and bears poor prognosis. It has been shown that diet is an important environmental factor that contributes to the risk and mortality of several types of cancers. Intake of ω-3 and ω-6 PUFAs plays an important role in cancer risk and progression. Current Western populations have high consumption of ω-6 PUFAs with a ratio of ω-6/ω-3 PUFAs at 15:1 to 16.7:1 This high consumption of ω-6 PUFAs is related to increased cancer risk and progression. However, whether a diet rich in ω-6 PUFAs can contribute to tumor aggressiveness has not been well investigated. We used a murine model of pulmonary squamous cell carcinoma to study the aggressiveness of tumors in mice fed with a diet rich in ω-6 PUFAs and its relationship with oxylipins. Our results shown that the mice fed a diet rich in ω-6 showed a marked increase in proliferation, angiogenesis and pro-inflammatory markers and decreased expression of pro-apoptotic proteins in their tumors. Oxylipin profiling revealed an upregulation of various pro-tumoral oxylipins including PGs, HETEs, DiHETrEs and HODEs. These results demonstrate for the first time that high intake of ω-6 PUFAs in the diet enhances the malignancy of tumor cells by histological changes on tumor dedifferentiation and increases cell proliferation, angiogenesis, pro-inflammatory oxylipins and molecular aggressiveness targets such as NF-κB p65, YY1, COX-2 and TGF-β.
Collapse
Affiliation(s)
- Mayra Montecillo-Aguado
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City 04510, Mexico;
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Belen Tirado-Rodriguez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Gabriela Antonio-Andres
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Mario Morales-Martinez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Zhen Tong
- Molecular Toxicology Interdepartmental Program and Environmental Health Sciences, University of California, Los Angeles, CA 90095, USA;
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jun Yang
- Comprehensive Cancer Center, Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; (J.Y.); (B.D.H.)
| | - Bruce D. Hammock
- Comprehensive Cancer Center, Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; (J.Y.); (B.D.H.)
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Science and Nutrition, Salvador Zubiran (INCNSZ), Mexico City 14080, Mexico;
| | - Sara Huerta-Yepez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Aryl Hydrocarbon Receptor (AhR) Limits the Inflammatory Responses in Human Lung Adenocarcinoma A549 Cells via Interference with NF-κB Signaling. Cells 2022; 11:cells11040707. [PMID: 35203356 PMCID: PMC8870046 DOI: 10.3390/cells11040707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
Apart from its role in the metabolism of carcinogens, the aryl hydrocarbon receptor (AhR) has been suggested to be involved in the control of inflammatory responses within the respiratory tract. However, the mechanisms responsible for this are only partially known. In this study, we used A549 cell line, as a human model of lung alveolar type II (ATII)-like cells, to study the functional role of the AhR in control of inflammatory responses. Using IL-1β as an inflammation inducer, we found that the induction of cyclooxygenase-2 and secretion of prostaglandins, as well as expression and release of pro-inflammatory cytokines, were significantly higher in the AhR-deficient A549 cells. This was linked with an increased nuclear factor-κB (NF-κB) activity, and significantly enhanced phosphorylation of its regulators, IKKα/β, and their target IκBα, in the AhR-deficient A549 cells. In line with this, when we mimicked the exposure to a complex mixture of airborne pollutants, using an organic extract of reference diesel exhaust particle mixture, an exacerbated inflammatory response was observed in the AhR-deficient cells, as compared with wild-type A549 cells. Together, the present results indicate that the AhR may act as a negative regulator of the inflammatory response in the A549 model, via a direct modulation of NF-κB signaling. Its role(s) in the control of inflammation within the lung alveoli exposed to airborne pollutants, especially those which simultaneously activate the AhR, thus deserve further attention.
Collapse
|
7
|
Zhang Y, Breum NMD, Schubert S, Hashemi N, Kyhnau R, Knauf MS, Mathialakan M, Takeuchi M, Kishino S, Ogawa J, Kristensen P, Guo Z, Eser BE. Semi-rational Engineering of a Promiscuous Fatty Acid Hydratase for Alteration of Regioselectivity. Chembiochem 2021; 23:e202100606. [PMID: 34929055 DOI: 10.1002/cbic.202100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Indexed: 11/12/2022]
Abstract
Fatty acid hydratases (FAHs) catalyze regio- and stereo-selective hydration of unsaturated fatty acids to produce hydroxy fatty acids. Fatty acid hydratase-1 (FA-HY1) from Lactobacillus Acidophilus is the most promiscuous and regiodiverse FAH identified so far. Here, we engineered binding site residues of FA-HY1 (S393, S395, S218 and P380) by semi-rational protein engineering to alter regioselectivity. Although it was not possible to obtain a completely new type of regioselectivity with our mutant libraries, a significant shift of regioselectivity was observed towards cis-5, cis-8, cis-11, cis-14, cis-17-eicosapentaenoic acid (EPA). We identified mutants (S393/S395 mutants) with excellent regioselectivity, generating a single hydroxy fatty acid product from EPA (15-OH product), which is advantageous from application perspective. This result is impressive given that wild-type FA-HY1 produces a mixture of 12-OH and 15-OH products at 63 : 37 ratio (12-OH : 15-OH). Moreover, our results indicate that native FA-HY1 is at its limit in terms of promiscuity and regiospecificity, thus it may not be possible to diversify its product portfolio with active site engineering. This behavior of FA-HY1 is unlike its orthologue, fatty acid hydratase-2 (FA-HY2; 58 % sequence identity to FA-HY1), which has been shown earlier to exhibit significant promiscuity and regioselectivity changes by a few active site mutations. Our reverse engineering from FA-HY1 to FA-HY2 further demonstrates this conclusion.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | | | - Sune Schubert
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Negin Hashemi
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Rikke Kyhnau
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Marius Sandholt Knauf
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Masuthan Mathialakan
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Michiki Takeuchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Peter Kristensen
- Faculty of Engineering and Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| |
Collapse
|
8
|
Turnbull RE, Sander KN, Turnbull J, Barrett DA, Goodall AH. Profiling oxylipins released from human platelets activated through the GPVI collagen receptor. Prostaglandins Other Lipid Mediat 2021; 158:106607. [PMID: 34942378 DOI: 10.1016/j.prostaglandins.2021.106607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
In addition to haemostasis, platelets are involved in pathological processes, often driven by material released upon activation. Interaction between collagen and glycoprotein VI (GPVI) is a primary platelet stimulus that liberates arachidonic acid and linoleic acid from membrane phospholipids. These are oxidised by cyclooxygenase-1 (COX-1) and 12-lipoxygenase (12-LOX) to eicosanoids and other oxylipins with various biological properties. Using liquid chromatography-tandem mass spectrometry we found that GPVI-stimulated platelets released significant levels of ten oxylipins; the well documented TxA2 and 12-HETE, PGD2 and PGE2, as well as 8-, 9-, 11-, and 15-HETE, 9- and 13-HODE.1 Levels of oxylipins released from washed platelets mirrored those from platelets stimulated in the presence of plasma, indicating generation from intracellular, rather than exogenous AA/LA. Inhibition of COX-1 with aspirin, as expected, completely abolished production of TxA2 and PGD/E2, but also significantly inhibited the release of 11-HETE (89 ± 3%) and 9-HODE (74 ± 6%), and reduced 15-HETE and 13-HODE by ∼33 %. Inhibition of 12-LOX by either esculetin or ML355 inhibited the release of all oxylipins apart from 15-HETE. These findings suggest routes to modify the production of bioactive molecules released by activated platelets.
Collapse
Affiliation(s)
- Robert E Turnbull
- Department of Cardiovascular Sciences, University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Katrin N Sander
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - James Turnbull
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - David A Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Alison H Goodall
- Department of Cardiovascular Sciences, University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
9
|
Changes in Sphingolipid Profile of Benzo[a]pyrene-Transformed Human Bronchial Epithelial Cells Are Reflected in the Altered Composition of Sphingolipids in Their Exosomes. Int J Mol Sci 2021; 22:ijms22179195. [PMID: 34502101 PMCID: PMC8431443 DOI: 10.3390/ijms22179195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids (SLs), glycosphingolipids (GSLs), and eicosanoids are bioactive lipids, which play important roles in the etiology of various diseases, including cancer. However, their content and roles in cancer cells, and in particular in the exosomes derived from tumor cells, remain insufficiently characterized. In this study, we evaluated alterations of SL and GSL levels in transformed cells and their exosomes, using comparative HPLC-MS/MS analysis of parental human bronchial epithelial cells HBEC-12KT and their derivative, benzo[a]pyrene-transformed HBEC-12KT-B1 cells with the acquired mesenchymal phenotype. We examined in parallel SL/GSL contents in the exosomes released from both cell lines. We found significant alterations of the SL/GSL profile in the transformed cell line, which corresponded well with alterations of the SL/GSL profile in exosomes derived from these cells. This suggested that a majority of SLs and GSLs were transported by exosomes in the same relative pattern as in the cells of origin. The only exceptions included decreased contents of sphingosin, sphingosin-1-phosphate, and lactosylceramide in exosomes derived from the transformed cells, as compared with the exosomes derived from the parental cell line. Importantly, we found increased levels of ceramide phosphate, globoside Gb3, and ganglioside GD3 in the exosomes derived from the transformed cells. These positive modulators of epithelial-mesenchymal transition and other pro-carcinogenic processes might thus also contribute to cancer progression in recipient cells. In addition, the transformed HBEC-12KT-B1 cells also produced increased amounts of eicosanoids, in particular prostaglandin E2. Taken together, the exosomes derived from the transformed cells with specifically upregulated SL and GSL species, and increased levels of eicosanoids, might contribute to changes within the cancer microenvironment and in recipient cells, which could in turn participate in cancer development. Future studies should address specific roles of individual SL and GSL species identified in the present study.
Collapse
|
10
|
Senan AM, Yin B, Zhang Y, Nasiru MM, Lyu YM, Umair M, Bhat JA, Zhang S, Liu L. Efficient and selective catalytic hydroxylation of unsaturated plant oils: a novel method for producing anti-pathogens. BMC Chem 2021; 15:20. [PMID: 33781309 PMCID: PMC8008645 DOI: 10.1186/s13065-021-00748-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/17/2021] [Indexed: 12/31/2022] Open
Abstract
With the increasing demand for antimicrobial agents and the spread of antibiotic resistance in pathogens, the exploitation of plant oils to partly replace antibiotic emerges as an important source of fine chemicals, functional food utility and pharmaceutical industries. This work introduces a novel catalytic method of plant oils hydroxylation by Fe(III) citrate monohydrate (Fe3+-cit.)/Na2S2O8 catalyst. Methyl (9Z,12Z)-octadecadienoate (ML) was selected as an example of vegetable oils hydroxylation to its hydroxy-conjugated derivatives (CHML) in the presence of a new complex of Fe(II)-species. Methyl 9,12-di-hydroxyoctadecanoate 1, methyl-9-hydroxyoctadecanoate 2 and methyl (10E,12E)-octadecanoate 3 mixtures is produced under optimized condition with oxygen balloon. The specific hydroxylation activity was lower in the case of using Na2S2O8 alone as a catalyst. A chemical reaction has shown the main process converted of plantoils hydroxylation and (+ 16 Da) of OH- attached at the methyl linoleate (ML-OH). HPLC and MALDI-ToF-mass spectrometry were employed for determining the obtained products. It was found that adding oxidizing agents (Na2S2O8) to Fe3+ in the MeCN mixture with H2O would generate the new complex of Fe(II)-species, which improves the C-H activation. Hence, the present study demonstrated a new functional method for better usage of vegetable oils.Producing conjugated hydroxy-fatty acids/esters with better antipathogenic properties. CHML used in food industry, It has a potential pathway to food safety and packaging process with good advantages, fundamental to microbial resistance. Lastly, our findings showed that biological monitoring of CHML-minimum inhibitory concentration (MIC) inhibited growth of various gram-positive and gram-negative bacteria in vitro study. The produced CHML profiles were comparable to the corresponding to previousstudies and showed improved the inhibition efficiency over the respective kanamycin derivatives.![]()
Collapse
Affiliation(s)
- Ahmed M Senan
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Binru Yin
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yaoyao Zhang
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mustapha M Nasiru
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yong-Mei Lyu
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Muhammad Umair
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Javaid A Bhat
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
11
|
Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol Ther 2021; 218:107670. [PMID: 32891711 PMCID: PMC7470770 DOI: 10.1016/j.pharmthera.2020.107670] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inflammation in the tumor microenvironment is a hallmark of cancer and is recognized as a key characteristic of carcinogens. However, the failure of resolution of inflammation in cancer is only recently being understood. Products of arachidonic acid and related fatty acid metabolism called eicosanoids, including prostaglandins, leukotrienes, lipoxins, and epoxyeicosanoids, critically regulate inflammation, as well as its resolution. The resolution of inflammation is now appreciated to be an active biochemical process regulated by endogenous specialized pro-resolving lipid autacoid mediators which combat infections and stimulate tissue repair/regeneration. Environmental and chemical human carcinogens, including aflatoxins, asbestos, nitrosamines, alcohol, and tobacco, induce tumor-promoting inflammation and can disrupt the resolution of inflammation contributing to a devastating global cancer burden. While mechanisms of carcinogenesis have focused on genotoxic activity to induce mutations, nongenotoxic mechanisms such as inflammation and oxidative stress promote genotoxicity, proliferation, and mutations. Moreover, carcinogens initiate oxidative stress to synergize with inflammation and DNA damage to fuel a vicious feedback loop of cell death, tissue damage, and carcinogenesis. In contrast, stimulation of resolution of inflammation may prevent carcinogenesis by clearance of cellular debris via macrophage phagocytosis and inhibition of an eicosanoid/cytokine storm of pro-inflammatory mediators. Controlling the host inflammatory response and its resolution in carcinogen-induced cancers will be critical to reducing carcinogen-induced morbidity and mortality. Here we review the recent evidence that stimulation of resolution of inflammation, including pro-resolution lipid mediators and soluble epoxide hydrolase inhibitors, may be a new chemopreventive approach to prevent carcinogen-induced cancer that should be evaluated in humans.
Collapse
Affiliation(s)
- Anna Fishbein
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
12
|
Johnson AM, Kleczko EK, Nemenoff RA. Eicosanoids in Cancer: New Roles in Immunoregulation. Front Pharmacol 2020; 11:595498. [PMID: 33364964 PMCID: PMC7751756 DOI: 10.3389/fphar.2020.595498] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Eicosanoids represent a family of active biolipids derived from arachidonic acid primarily through the action of cytosolic phospholipase A2-α. Three major downstream pathways have been defined: the cyclooxygenase (COX) pathway which produces prostaglandins and thromboxanes; the 5-lipoxygenase pathway (5-LO), which produces leukotrienes, lipoxins and hydroxyeicosatetraenoic acids, and the cytochrome P450 pathway which produces epoxygenated fatty acids. In general, these lipid mediators are released and act in an autocrine or paracrine fashion through binding to cell surface receptors. The pattern of eicosanoid production is cell specific, and is determined by cell-specific expression of downstream synthases. Increased eicosanoid production is associated with inflammation and a panel of specific inhibitors have been developed designated non-steroidal anti-inflammatory drugs. In cancer, eicosanoids are produced both by tumor cells as well as cells of the tumor microenvironment. Earlier studies demonstrated that prostaglandin E2, produced through the action of COX-2, promoted cancer cell proliferation and metastasis in multiple cancers. This resulted in the development of COX-2 inhibitors as potential therapeutic agents. However, cardiac toxicities associated with these agents limited their use as therapeutic agents. The advent of immunotherapy, especially the use of immune checkpoint inhibitors has revolutionized cancer treatment in multiple malignancies. However, the majority of patients do not respond to these agents as monotherapy, leading to intense investigation of other pathways mediating immunosuppression in order to develop rational combination therapies. Recent data have indicated that PGE2 has immunosuppressive activity, leading to renewed interest in targeting this pathway. However, little is known regarding the role of other eicosanoids in modulating the tumor microenvironment, and regulating anti-tumor immunity. This article reviews the role of eicosanoids in cancer, with a focus on their role in modulating the tumor microenvironment. While the role of PGE2 will be discussed, data implicating other eicosanoids, especially products produced through the lipoxygenase and cytochrome P450 pathway will be examined. The existence of small molecular inhibitors and activators of eicosanoid pathways such as specific receptor blockers make them attractive candidates for therapeutic trials, especially in combination with novel immunotherapies such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | - Raphael A. Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
13
|
Storniolo CE, Cabral M, Busquets MA, Martín-Venegas R, Moreno JJ. Dual Behavior of Long-Chain Fatty Acids and Their Cyclooxygenase/Lipoxygenase Metabolites on Human Intestinal Caco-2 Cell Growth. Front Pharmacol 2020; 11:529976. [PMID: 33013380 PMCID: PMC7500452 DOI: 10.3389/fphar.2020.529976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Etiology of colorectal cancer (CRC) is related, at least in part, with nutritional profile and epidemiological data indicating a key role of dietary fat on CRC pathogenesis. Moreover, inflammation and eicosanoids produced from arachidonic acid might have a pivotal role in CRC development. However, the effect of specific fatty acids (FAs) on intestinal epithelial cell growth is not completely studied now. By this reason, the aim of this work is to unravel the effect of different saturated and unsaturated long-chain fatty acids (LCFA) and some LCFA metabolites on CRC cell line growth and their possible mechanisms of action. Our results demonstrated that oleic acid is a potent mitogenic factor to Caco-2 cells, at least in part, through 10-hydroxy-8-octadecenoic synthesized by lipoxigenase pathway, whereas polyunsaturated FAs such as eicosapentaenoic (EPA) acid has a dual behavior effect depending on its concentration. A high concentration, EPA induced apoptosis through intrinsic pathway, whereas at low concentration induced cell proliferation that could be related to the synthesis of eicosanoids such as prostaglandin E3 and 12-hydroxyeicosapentaenoic acid and the subsequent induction of mitogenic cell signaling pathways (ERK 1/2, CREB, p38α). Thus, this study contributes to understand the complicated relationship between fat ingest and CRC.
Collapse
Affiliation(s)
- Carolina E Storniolo
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Marisol Cabral
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Maria A Busquets
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanosciences and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Raquel Martín-Venegas
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Juan J Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain.,CIBEROBN Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Zhang Y, Eser BE, Kristensen P, Guo Z. Fatty acid hydratase for value-added biotransformation: A review. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Dong C, Liu S, Cui Y, Guo Q. 12-Lipoxygenase as a key pharmacological target in the pathogenesis of diabetic nephropathy. Eur J Pharmacol 2020; 879:173122. [DOI: 10.1016/j.ejphar.2020.173122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
|
16
|
Jelińska M, Skrajnowska D, Wrzosek M, Domanska K, Bielecki W, Zawistowska M, Bobrowska Korczak B. Inflammation factors and element supplementation in cancer. J Trace Elem Med Biol 2020; 59:126450. [PMID: 31931255 DOI: 10.1016/j.jtemb.2019.126450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 12/28/2022]
Abstract
The aim of the study was to evaluate the effect of dietary supplementation with chosen minerals (Zn, Se, Fe) on expression of selected cytokines (IL-1, IL-6, TNFα) in spleen of rats and on their concentrations in rat serum under inflammatory and pathological conditions obtained by implantation of prostate cancer cells (LnCaP). Serum levels of metabolites of arachidonic, eicosapentaenoic and linoleic acids (hydroxyeicosatetraenoic, hydroxyeicosapentaenoic and hydroxyoctadecadienoic acids, respectively), as compounds involved in inflammation and cancer development, were also investigated. Male rats were randomised into dietary groups supplemented with Zn, Se or Fe. Prostate cancer cells were implanted to some rats in each group. The study demonstrated that minerals supplemented with the diet may exert various effects on an organism. Selenium, zinc and iron influence pro-inflammatory cytokine expression, what leads to stimulation of inflammation. They also affect synthesis of arachidonic and linoleic acid metabolites that exert pro-inflammatory action and enable cancer development and metastasis.
Collapse
Affiliation(s)
- Małgorzata Jelińska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Dorota Skrajnowska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy and Laboratory of Biochemistry and Clinical Chemistry at the Preclinical Research Center, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Kamila Domanska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Wojciech Bielecki
- Department of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences, Nowoursynowska 159 c, 02-776, Warsaw, Poland
| | - Marta Zawistowska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Barbara Bobrowska Korczak
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland.
| |
Collapse
|
17
|
Spaggiari M, Ricci A, Calani L, Bresciani L, Neviani E, Dall’Asta C, Lazzi C, Galaverna G. Solid state lactic acid fermentation: A strategy to improve wheat bran functionality. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Multi-Staged Regulation of Lipid Signaling Mediators during Myogenesis by COX-1/2 Pathways. Int J Mol Sci 2019; 20:ijms20184326. [PMID: 31487817 PMCID: PMC6769623 DOI: 10.3390/ijms20184326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023] Open
Abstract
Cyclooxygenases (COXs), including COX-1 and -2, are enzymes essential for lipid mediator (LMs) syntheses from arachidonic acid (AA), such as prostaglandins (PGs). Furthermore, COXs could interplay with other enzymes such as lipoxygenases (LOXs) and cytochrome P450s (CYPs) to regulate the signaling of LMs. In this study, to comprehensively analyze the function of COX-1 and -2 in regulating the signaling of bioactive LMs in skeletal muscle, mouse primary myoblasts and C2C12 cells were transfected with specific COX-1 and -2 siRNAs, followed by targeted lipidomic analysis and customized quantitative PCR gene array analysis. Knocking down COXs, particularly COX-1, significantly reduced the release of PGs from muscle cells, especially PGE2 and PGF2α, as well as oleoylethanolamide (OEA) and arachidonoylethanolamine (AEA). Moreover, COXs could interplay with LOXs to regulate the signaling of hydroxyeicosatetraenoic acids (HETEs). The changes in LMs are associated with the expression of genes, such as Itrp1 (calcium signaling) and Myh7 (myogenic differentiation), in skeletal muscle. In conclusion, both COX-1 and -2 contribute to LMs production during myogenesis in vitro, and COXs could interact with LOXs during this process. These interactions and the fine-tuning of the levels of these LMs are most likely important for skeletal muscle myogenesis, and potentially, muscle repair and regeneration.
Collapse
|
19
|
Arachidonic Acid Metabolism and Kidney Inflammation. Int J Mol Sci 2019; 20:ijms20153683. [PMID: 31357612 PMCID: PMC6695795 DOI: 10.3390/ijms20153683] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/17/2022] Open
Abstract
As a major component of cell membrane lipids, Arachidonic acid (AA), being a major component of the cell membrane lipid content, is mainly metabolized by three kinds of enzymes: cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP450) enzymes. Based on these three metabolic pathways, AA could be converted into various metabolites that trigger different inflammatory responses. In the kidney, prostaglandins (PG), thromboxane (Tx), leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) are the major metabolites generated from AA. An increased level of prostaglandins (PGs), TxA2 and leukotriene B4 (LTB4) results in inflammatory damage to the kidney. Moreover, the LTB4-leukotriene B4 receptor 1 (BLT1) axis participates in the acute kidney injury via mediating the recruitment of renal neutrophils. In addition, AA can regulate renal ion transport through 19-hydroxystilbenetetraenoic acid (19-HETE) and 20-HETE, both of which are produced by cytochrome P450 monooxygenase. Epoxyeicosatrienoic acids (EETs) generated by the CYP450 enzyme also plays a paramount role in the kidney damage during the inflammation process. For example, 14 and 15-EET mitigated ischemia/reperfusion-caused renal tubular epithelial cell damage. Many drug candidates that target the AA metabolism pathways are being developed to treat kidney inflammation. These observations support an extraordinary interest in a wide range of studies on drug interventions aiming to control AA metabolism and kidney inflammation.
Collapse
|
20
|
Li M, Li C, Liu WX, Liu C, Cui J, Li Q, Ni H, Yang Y, Wu C, Chen C, Zhen X, Zeng T, Zhao M, Chen L, Wu J, Zeng R, Chen L. Dysfunction of PLA2G6 and CYP2C44-associated network signals imminent carcinogenesis from chronic inflammation to hepatocellular carcinoma. J Mol Cell Biol 2019; 9:489-503. [PMID: 28655161 PMCID: PMC5907842 DOI: 10.1093/jmcb/mjx021] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 06/16/2017] [Indexed: 12/14/2022] Open
Abstract
Little is known about how chronic inflammation contributes to the progression of hepatocellular carcinoma (HCC), especially the initiation of cancer. To uncover the critical transition from chronic inflammation to HCC and the molecular mechanisms at a network level, we analyzed the time-series proteomic data of woodchuck hepatitis virus/c-myc mice and age-matched wt-C57BL/6 mice using our dynamical network biomarker (DNB) model. DNB analysis indicated that the 5th month after birth of transgenic mice was the critical period of cancer initiation, just before the critical transition, which is consistent with clinical symptoms. Meanwhile, the DNB-associated network showed a drastic inversion of protein expression and coexpression levels before and after the critical transition. Two members of DNB, PLA2G6 and CYP2C44, along with their associated differentially expressed proteins, were found to induce dysfunction of arachidonic acid metabolism, further activate inflammatory responses through inflammatory mediator regulation of transient receptor potential channels, and finally lead to impairments of liver detoxification and malignant transition to cancer. As a c-Myc target, PLA2G6 positively correlated with c-Myc in expression, showing a trend from decreasing to increasing during carcinogenesis, with the minimal point at the critical transition or tipping point. Such trend of homologous PLA2G6 and c-Myc was also observed during human hepatocarcinogenesis, with the minimal point at high-grade dysplastic nodules (a stage just before the carcinogenesis). Our study implies that PLA2G6 might function as an oncogene like famous c-Myc during hepatocarcinogenesis, while downregulation of PLA2G6 and c-Myc could be a warning signal indicating imminent carcinogenesis.
Collapse
Affiliation(s)
- Meiyi Li
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,Minhang Hospital, Fudan University, Shanghai, China
| | - Chen Li
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Wei-Xin Liu
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of sciences, Beijing, China
| | - Conghui Liu
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of sciences, Beijing, China
| | - Jingru Cui
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Qingrun Li
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Hong Ni
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Yingcheng Yang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | - Chaochao Wu
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Chunlei Chen
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Xing Zhen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Mujun Zhao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,Minhang Hospital, Fudan University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
21
|
Tran TK, Kumar P, Kim H, Hou CT, Kim BS. Bio‐Based Polyurethanes from Microbially Converted Castor Oil. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tuan Kiet Tran
- Department of Chemical EngineeringChungbuk National University Cheongju Chungbuk 28644 Republic of Korea
| | - Prasun Kumar
- Department of Chemical EngineeringChungbuk National University Cheongju Chungbuk 28644 Republic of Korea
| | - Hak‐Ryul Kim
- School of Food Science and BiotechnologyKyungpook National University Daegu 41566 Republic of Korea
| | - Ching T. Hou
- Renewable Product Technology Research UnitNational Center for Agricultural Utilization Research, ARS, USDA Peoria IL 61604 USA
| | - Beom Soo Kim
- Department of Chemical EngineeringChungbuk National University Cheongju Chungbuk 28644 Republic of Korea
| |
Collapse
|
22
|
Abstract
The tumor immune landscape gained considerable interest based on the knowledge that genetic aberrations in cancer cells alone are insufficient for tumor development. Macrophages are basically supporting all hallmarks of cancer and owing to their tremendous plasticity they may exert a whole spectrum of anti-tumor and pro-tumor activities. As part of the innate immune response, macrophages are armed to attack tumor cells, alone or in concert with distinct T cell subsets. However, in the tumor microenvironment, they sense nutrient and oxygen gradients, receive multiple signals, and respond to this incoming information with a phenotype shift. Often, their functional output repertoire is shifted to become tumor-supportive. Incoming and outgoing signals are chemically heterogeneous but also comprise lipid mediators. Here, we review the current understanding whereby arachidonate metabolites derived from the cyclooxygenase and lipoxygenase pathways shape the macrophage phenotype in a tumor setting. We discuss these findings in the context of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) expression and concomitant prostaglandin E2 (PGE2) formation. We elaborate the multiple actions of this lipid in affecting macrophage biology, which are sensors for and generators of this lipid. Moreover, we summarize properties of 5-lipoxygenases (ALOX5) and 15-lipoxygenases (ALOX15, ALOX15B) in macrophages and clarify how these enzymes add to the role of macrophages in a dynamically changing tumor environment. This review will illustrate the potential routes how COX-2/mPGES-1 and ALOX5/-15 in macrophages contribute to the development and progression of a tumor.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Elisabeth Strack
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ryan G Snodgrass
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.
| |
Collapse
|
23
|
Profiling of carboxyl-containing metabolites in smokers and non-smokers by stable isotope labeling combined with LC-MS/MS. Anal Biochem 2019; 569:1-9. [DOI: 10.1016/j.ab.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 12/16/2022]
|
24
|
Storniolo CE, Moreno JJ. Resveratrol Analogs with Antioxidant Activity Inhibit Intestinal Epithelial Cancer Caco-2 Cell Growth by Modulating Arachidonic Acid Cascade. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:819-828. [PMID: 30575383 DOI: 10.1021/acs.jafc.8b05982] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
trans-Resveratrol has beneficial effects on colorectal cancer, through its antioxidant capacity, and its roles in regulating eicosanoid synthesis. This study determines how changes in resveratrol structure affected its biological activities. Our results showed that trans- and cis-resveratrol and hydroxylated analogs (piceatannol) (10-25 μM) displayed similar antioxidant activities (2-3 fold higher than trolox) and inhibit eicosanoid synthesis and Caco-2 growth (76.5 ± 2.7%, 48.2 ± 3.1% and 41.1 ± 2.3%, p ≤ 0.05). These effects can be related with an increase of the percentage of cells in the S phase (156.3 ± 5.6, 91.2 ± 3.3 and 64.1 ± 2.8, p ≤ 0.05) as a consequence of the impairment of the cells in G0/G1. Furthermore, we observed that these molecules induce apoptosis at 100 μM (48.2 ± 6.6%, p ≤ 0.05; 4.3 ± 2.5% and 21.2 ± 3.3%, p ≤ 0.05). These actions were related with changes of the mitochondrial membrane potential involved in the intrinsic pathway of apoptosis. However, methoxylated (pterostilbene, pinostilbene, trans-trimethoxy-resveratrol, and CAY10616) (0.1-10 μM) and halogenated (PDM11, CAY10464, PDM2, and CAY465) (1-10 μM) stilbenes inhibited Caco-2 cell growth, with a higher potency than resveratrol (50% inhibition at 0.1-1 μM) but without effects on oxidative stress and arachidonic acid cascade. Thus, our results show that the antioxidant effect of hydroxyl stilbenes is related to eicosanoid synthesis regulation and the basic stilbene structure of two benzene rings bonded through a central ethylene, is responsible for its effects on Caco-2 cell growth/DNA synthesis/cell cycle independently of redox state/eicosanoid synthesis modulation.
Collapse
Affiliation(s)
- Carolina E Storniolo
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences , University of Barcelona , Barcelona 08007 , Spain
- Institute of Nutrition and Food Safety (INSA-UB) , University of Barcelona , Barcelona 08921 , Spain
| | - Juan J Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences , University of Barcelona , Barcelona 08007 , Spain
- Institute of Nutrition and Food Safety (INSA-UB) , University of Barcelona , Barcelona 08921 , Spain
- CIBEROBN Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III , Madrid 28029 , Spain
| |
Collapse
|
25
|
Rynning I, Arlt VM, Vrbova K, Neča J, Rossner Jr P, Klema J, Ulvestad B, Petersen E, Skare Ø, Haugen A, Phillips DH, Machala M, Topinka J, Mollerup S. Bulky DNA adducts, microRNA profiles, and lipid biomarkers in Norwegian tunnel finishing workers occupationally exposed to diesel exhaust. Occup Environ Med 2019; 76:10-16. [PMID: 30425118 PMCID: PMC6327869 DOI: 10.1136/oemed-2018-105445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/04/2018] [Accepted: 10/21/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVES This study aimed to assess the biological impact of occupational exposure to diesel exhaust (DE) including DE particles (DEP) from heavy-duty diesel-powered equipment in Norwegian tunnel finishing workers (TFW). METHODS TFW (n=69) and referents (n=69) were investigated for bulky DNA adducts (by 32P-postlabelling) and expression of microRNAs (miRNAs) (by small RNA sequencing) in peripheral blood mononuclear cells (PBMC), as well as circulating free arachidonic acid (AA) and eicosanoid profiles in plasma (by liquid chromatography-tandem mass spectrometry). RESULTS PBMC from TFW showed significantly higher levels of DNA adducts compared with referents. Levels of DNA adducts were also related to smoking habits. Seventeen miRNAs were significantly deregulated in TFW. Several of these miRNAs are related to carcinogenesis, apoptosis and antioxidant effects. Analysis of putative miRNA-gene targets revealed deregulation of pathways associated with cancer, alterations in lipid molecules, steroid biosynthesis and cell cycle. Plasma profiles showed higher levels of free AA and 15-hydroxyeicosatetraenoic acid, and lower levels of prostaglandin D2 and 9-hydroxyoctadecadienoic acid in TFW compared with referents. CONCLUSION Occupational exposure to DE/DEP is associated with biological alterations in TFW potentially affecting lung homoeostasis, carcinogenesis, inflammation status and the cardiovascular system. Of particular importance is the finding that tunnel finishing work is associated with an increased level of DNA adducts formation in PBMC.
Collapse
Affiliation(s)
- Iselin Rynning
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King’s College London in Partnership with Public Health England and Imperial College London, London, UK
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Neča
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Pavel Rossner Jr
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, Prague, Czech Republic
| | - Bente Ulvestad
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Elisabeth Petersen
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
| | - Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Aage Haugen
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King’s College London in Partnership with Public Health England and Imperial College London, London, UK
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Steen Mollerup
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
26
|
Deuterated Arachidonic Acids Library for Regulation of Inflammation and Controlled Synthesis of Eicosanoids: An In Vitro Study. Molecules 2018; 23:molecules23123331. [PMID: 30558277 PMCID: PMC6321560 DOI: 10.3390/molecules23123331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
The synthesis of signal lipids, including eicosanoids, is not fully understood, although it is key to the modulation of various inflammatory states. Recently, isotopologues of essential polyunsaturated fatty acids (PUFAs) deuterated at bis-allylic positions (D-PUFAs) have been proposed as inhibitors of non-enzymatic lipid peroxidation (LPO) in various disease models. Arachidonic acid (AA, 20:4 n-6) is the main precursor to several classes of eicosanoids, which are produced by cyclooxygenases (COX) and lipoxygenases (LOX). In this study we analyzed the relative activity of human recombinant enzymes COX-2, 5-LOX, and 15-LOX-2 using a library of arachidonic acids variably deuterated at the bis-allylic (C7, C10, and C13) positions. Kinetic parameters (KM, Vmax) and isotope effects calculated from kH/kD for seven deuterated arachidonic acid derivatives were obtained. Spectroscopic methods have shown that deuteration at the 13th position dramatically affects the kinetic parameters of COX-2 and 15-LOX-2. The activity of 5-LOX was evaluated by measuring hydroxyeicosatetraenoic acids (8-HETE and 5-HETE) using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Deuteration at the seventh and 10th positions affects the performance of the 5-LOX enzyme. A flowchart is proposed suggesting how to modulate the synthesis of selected eicosanoids using the library of deuterated isotopologues to potentially fine-tune various inflammation stages.
Collapse
|
27
|
Kori M, Yalcin Arga K. Potential biomarkers and therapeutic targets in cervical cancer: Insights from the meta-analysis of transcriptomics data within network biomedicine perspective. PLoS One 2018; 13:e0200717. [PMID: 30020984 PMCID: PMC6051662 DOI: 10.1371/journal.pone.0200717] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
The malignant neoplasm of the cervix, cervical cancer, has effects on the reproductive tract. Although infection with oncogenic human papillomavirus is essential for cervical cancer development, it alone is insufficient to explain the development of cervical cancer. Therefore, other risk factors such as host genetic factors should be identified, and their importance in cervical cancer induction should be determined. Although gene expression profiling studies in the last decade have made significant molecular findings about cervical cancer, adequate screening and effective treatment strategies have yet to be achieved. In the current study, meta-analysis was performed on cervical cancer-associated transcriptome data and reporter biomolecules were identified at RNA (mRNA, miRNA), protein (receptor, transcription factor, etc.), and metabolite levels by the integration of gene expression profiles with genome-scale biomolecular networks. This approach revealed already-known biomarkers, tumor suppressors and oncogenes in cervical cancer as well as various receptors (e.g. ephrin receptors EPHA4, EPHA5, and EPHB2; endothelin receptors EDNRA and EDNRB; nuclear receptors NCOA3, NR2C1, and NR2C2), miRNAs (e.g., miR-192-5p, miR-193b-3p, and miR-215-5p), transcription factors (particularly E2F4, ETS1, and CUTL1), other proteins (e.g., KAT2B, PARP1, CDK1, GSK3B, WNK1, and CRYAB), and metabolites (particularly, arachidonic acids) as novel biomarker candidates and potential therapeutic targets. The differential expression profiles of all reporter biomolecules were cross-validated in independent RNA-Seq and miRNA-Seq datasets, and the prognostic power of several reporter biomolecules, including KAT2B, PCNA, CD86, miR-192-5p and miR-215-5p was also demonstrated. In this study, we reported valuable data for further experimental and clinical efforts, because the proposed biomolecules have significant potential as systems biomarkers for screening or therapeutic purposes in cervical carcinoma.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
28
|
|
29
|
Ortea I, González-Fernández MJ, Ramos-Bueno RP, Guil-Guerrero JL. Proteomics Study Reveals That Docosahexaenoic and Arachidonic Acids Exert Different In Vitro Anticancer Activities in Colorectal Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6003-6012. [PMID: 29804451 DOI: 10.1021/acs.jafc.8b00915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two polyunsaturated fatty acids, docosahexaenoic acid (DHA) and arachidonic acid (ARA), as well as derivatives, such as eicosanoids, regulate different activities, affecting transcription factors and, therefore, DNA transcription, being a critical step for the functioning of fatty-acid-derived signaling. This work has attempted to determine the in vitro anticancer activities of these molecules linked to the gene transcription regulation of HT-29 colorectal cancer cells. We applied the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test along with lactate dehydrogenase and caspase-3 assays; proteome changes were assessed by "sequential windowed acquisition of all theoretical mass spectra" quantitative proteomics, followed by pathway analysis, to determine the affected molecular mechanisms. In all assays, DHA inhibited cell proliferation of HT-29 cells to a higher extent than ARA and acted primarily by downregulating proteasome particles, while ARA presented a dramatic effect on all six DNA replication helicase particles. The results indicated that both DHA and ARA are potential chemopreventive agent candidates.
Collapse
Affiliation(s)
- Ignacio Ortea
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía , Universidad de Córdoba , E14004 Córdoba , Spain
| | - María José González-Fernández
- Food Technology Division, Agrifood Campus of International Excellence (ceiA3) , University of Almería , E40120 Almería , Spain
| | - Rebeca P Ramos-Bueno
- Food Technology Division, Agrifood Campus of International Excellence (ceiA3) , University of Almería , E40120 Almería , Spain
| | - José Luis Guil-Guerrero
- Food Technology Division, Agrifood Campus of International Excellence (ceiA3) , University of Almería , E40120 Almería , Spain
| |
Collapse
|
30
|
Jain R, Austin Pickens C, Fenton JI. The role of the lipidome in obesity-mediated colon cancer risk. J Nutr Biochem 2018; 59:1-9. [PMID: 29605789 DOI: 10.1016/j.jnutbio.2018.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Obesity is a state of chronic inflammation influenced by lipids such as fatty acids and their secondary oxygenated metabolites deemed oxylipids. Many such lipid mediators serve as potent signaling molecules of inflammation, which can further alter lipid metabolism and lead to carcinogenesis. For example, sphingosine-1-phosphate activates cyclooxygenase-2 in endothelial cells resulting in the conversion of arachidonic acid (AA) to prostaglandin E2 (PGE2). PGE2 promotes colon cancer cell growth. In contrast, the less studied path of AA oxygenation via cytochrome p450 enzymes produces epoxyeicosatetraenoic acids (EETs), whose anti-inflammatory properties cause shrinking of enlarged adipocytes, a characteristic of obesity, through the liberation of fatty acids. It is now thought that EET depletion occurs in obesity and may contribute to colon cell carcinogenesis. Meanwhile, gangliosides, a type of sphingolipid, are cell surface signaling molecules that contribute to the apoptosis of colon tumor cells. Many of these discoveries have been made recently and the mechanisms are still not fully understood, leading to an exciting new chapter of lipidomic research. In this review, mechanisms behind obesity-associated colon cancer are discussed with a focus on the role of small lipid signaling molecules in the process. Specifically, changes in lipid metabolite levels during obesity and the development of colon cancer, as well as novel biomarkers and targets for therapy, are discussed.
Collapse
Affiliation(s)
- Raghav Jain
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - C Austin Pickens
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
31
|
|
32
|
Colombo S, Coliva G, Kraj A, Chervet JP, Fedorova M, Domingues P, Domingues MR. Electrochemical oxidation of phosphatidylethanolamines studied by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:223-233. [PMID: 29282829 DOI: 10.1002/jms.4056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Simone Colombo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Giulia Coliva
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | | | | | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
33
|
Jelińska M, Białek A, Gielecińska I, Mojska H, Tokarz A. Impact of conjugated linoleic acid administered to rats prior and after carcinogenic agent on arachidonic and linoleic acid metabolites in serum and tumors. Prostaglandins Leukot Essent Fatty Acids 2017; 126:1-8. [PMID: 29031386 DOI: 10.1016/j.plefa.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/10/2017] [Accepted: 08/21/2017] [Indexed: 11/16/2022]
Abstract
The objective of the study was to assess the influence of conjugated linoleic acid (CLA) daily supplementation prior and after carcinogenic agent on the concentrations of eicosanoids - metabolites of arachidonic acid (15-, 12- or 5-hydroxyeicosatetraenoic acids (15-, 12-, 5-HETE), prostaglandin E2 (PGE2)) and linoleic acid (13- or 9-hydroxyoctadecadienoic acids (13-, 9-HODE)) in rat serum and 7,12-dimethylbenz[a]anthracene (DMBA)-induced tumors. Female rats were randomised into six groups, receiving 1% or 2% Bio-C.L.A or plant oil since the 37th day of life throughout the whole experiment. Some rats (50-day-old) were administered DMBA to induce tumors. Eicosanoids were analyzed with LC-MS/MS. The study indicated that CLA supplemented daily to rats prior and after carcinogen administration affected concentrations of arachidonic and linoleic acid metabolites in rat serum and induced tumors. However, ratios of eicosanoids exerting opposite activities (e.g. 12-HETE/15-HETE) appear to act as more precise factors reflecting pathological changes in an organism than individual compounds.
Collapse
Affiliation(s)
- Małgorzata Jelińska
- Department of Bromatology, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | - Agnieszka Białek
- Department of Bromatology, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Iwona Gielecińska
- Department of Metabolomics, National Food and Nutrition Institute, Powsińska 61/63, 02-903 Warsaw, Poland
| | - Hanna Mojska
- Department of Metabolomics, National Food and Nutrition Institute, Powsińska 61/63, 02-903 Warsaw, Poland
| | - Andrzej Tokarz
- Department of Bromatology, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
34
|
Abstract
Lipids are potent signaling molecules that regulate a multitude of cellular responses, including cell growth and death and inflammation/infection, via receptor-mediated pathways. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. This diversity arises from their synthesis, which occurs via discrete enzymatic pathways and because they elicit responses via different receptors. This review will collate the bioactive lipid research to date and summarize the major pathways involved in their biosynthesis and role in inflammation. Specifically, lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins, and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins, and maresins) will be discussed herein.
Collapse
|
35
|
Hashimoto R, Joshi SR, Jiang H, Capdevila JH, McMurtry IF, Laniado Schwartzman M, Gupte SA. Cyp2c44 gene disruption is associated with increased hematopoietic stem cells: implication in chronic hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 2017; 313:H293-H303. [PMID: 28550179 DOI: 10.1152/ajpheart.00785.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/05/2017] [Accepted: 05/20/2017] [Indexed: 01/02/2023]
Abstract
We have recently demonstrated that disruption of the murine cytochrome P-450 2c44 gene (Cyp2c44) exacerbates chronic hypoxia-induced pulmonary artery remodeling and hypertension in mice. Subsequently, we serendipitously found that Cyp2c44 gene disruption also increases hematopoietic stem cell (HSC) numbers in bone marrow and blood. Therefore, the objective of the present study was to investigate whether CYP2C44-derived eicosanoids regulate HSC proliferation/cell growth and whether increased HSCs contribute to chronic hypoxia-induced remodeling of pulmonary arteries in Cyp2c44 knockout mice. Our findings demonstrated that lack of CYP2C44 epoxygenase, which catalyzed the oxidation of arachidonic acid to epoxyeicosatrienoic (EETs) and hydroxyeicosatetraenoic (HETE) acids, increases the numbers of 1) HSCs (CD34+, CD117+, and CD133+), 2) proangiogenic (CD34+CD133+ and CD34+CD117+CD133+) cells, and 3) immunogenic/inflammatory (CD34+CD11b+, CD133+CD11b+, F4/80+, CD11b+, and F4/80+CD11b+) macrophages in bone marrow and blood compared with wild-type mice. Among the various CYP2C44-derived arachidonic acids, only 15-HETE decreased CD117+ cell numbers when applied to bone marrow cell cultures. Interestingly, CD133+ and von Willebrand factor-positive cells, which are derived from proangiogenic stem cells, are increased in the bone marrow, blood, and lungs of mice exposed to chronic hypoxia and in remodeled and occluded pulmonary arteries of CYP2C44-deficient mice. In conclusion, our results demonstrate that CYP2C44-derived 15-HETE plays a critical role in downregulating HSC proliferation and growth, because disruption of the Cyp2c44 gene increased HSCs that potentially contribute to chronic hypoxia-induced pulmonary arterial remodeling and occlusion.NEW & NOTEWORTHY This study demonstrates that cytochrome P-450 2C44 plays a critical role in controlling the phenotype of hematopoietic stem cells and that when this enzyme is knocked out, stem cells are differentiated. These stem cells give rise to increased circulating monocytes and macrophages and contribute to the pathogenesis of chronic hypoxia-induced pulmonary artery remodeling and hypertension.
Collapse
Affiliation(s)
- Ryota Hashimoto
- Department of Pharmacology, and Translation Cardiovascular Institute, School of Medicine, New York Medical College, Valhalla, New York.,Department of Physiology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Sachindra Raj Joshi
- Department of Pharmacology, and Translation Cardiovascular Institute, School of Medicine, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, and Translation Cardiovascular Institute, School of Medicine, New York Medical College, Valhalla, New York
| | - Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Ivan F McMurtry
- Department of Pharmacology, University of South Alabama, Mobile, Alabama
| | - Michal Laniado Schwartzman
- Department of Pharmacology, and Translation Cardiovascular Institute, School of Medicine, New York Medical College, Valhalla, New York
| | - Sachin A Gupte
- Department of Pharmacology, and Translation Cardiovascular Institute, School of Medicine, New York Medical College, Valhalla, New York;
| |
Collapse
|
36
|
Zhang LJ, Chen B, Zhang JJ, Li J, Yang Q, Zhong QS, Zhan S, Liu H, Cai C. Serum polyunsaturated fatty acid metabolites as useful tool for screening potential biomarker of colorectal cancer. Prostaglandins Leukot Essent Fatty Acids 2017; 120:25-31. [PMID: 28515019 DOI: 10.1016/j.plefa.2017.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/14/2017] [Accepted: 04/04/2017] [Indexed: 02/08/2023]
Abstract
The biomarker identification of cancer is benefit for early detection and less invasion. Polyunsaturated fatty acid (PUFA) metabolite as inflammatory mediators can affect progression and treatment of cancer. In this work, the serum was collected from colorectal cancer patients and healthy volunteers, and then we tested the change of serum PUFA metabolites in both of them by ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Of the 158 PUFA and their metabolites, we found that abnormal change of 2, 3-dinor-8-iso-PGF2α, 19-HETE and 12-keto-LTB4 from arachidonic acid were observed in colorectal cancer patients. Meanwhile, 9-HODE and 13-HODE from linoleic acid were significant lower in colorectal cancer patients. Our data suggested that some PUFA metabolites might be used as a potential biomarker of colorectal cancer, which might provide assistance in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Li-Jian Zhang
- Guangdong key laboratory for research and development of nature drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Bin Chen
- Guangdong key laboratory for research and development of nature drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jun-Jie Zhang
- Guangdong key laboratory for research and development of nature drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jian Li
- Guangdong key laboratory for research and development of nature drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Qingjing Yang
- Guangdong key laboratory for research and development of nature drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Qi-Sheng Zhong
- Shimadzu Global COE for Application& Technical Development, Guangzhou, Guangdong, 510010, China
| | - Song Zhan
- Shimadzu Global COE for Application& Technical Development, Guangzhou, Guangdong, 510010, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering Peking University Beijing, 100871, China.
| | - Chun Cai
- Guangdong key laboratory for research and development of nature drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
37
|
Pelit E, Oikonomou K, Gul M, Georgiou D, Szafert S, Katsamakas S, Hadjipavlou-Litina D, Elemes Y. α-Amination and the 5-exo-trig cyclization reaction of sulfur-containing Schiff bases with N -phenyltriazolinedione and their anti-lipid peroxidation activity. CR CHIM 2017. [DOI: 10.1016/j.crci.2016.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Wang Y, Lin W, Li C, Singhal S, Jain G, Zhu L, Lu L, Zhu R, Wang W. Multipronged Therapeutic Effects of Chinese Herbal Medicine Qishenyiqi in the Treatment of Acute Myocardial Infarction. Front Pharmacol 2017; 8:98. [PMID: 28303103 PMCID: PMC5332380 DOI: 10.3389/fphar.2017.00098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/16/2017] [Indexed: 01/17/2023] Open
Abstract
Background: Based on global gene expression profile, therapeutic effects of Qishenyiqi (QSYQ) on acute myocardial infarction (AMI) were investigated by integrated analysis at multiple levels including gene expression, pathways involved and functional group. Methods: Sprague-Dawley (SD) rats were randomly divided into 3 groups: Sham-operated, AMI model (left anterior descending coronary artery ligation) and QSYQ-treated group. Cardiac tissues were obtained for analysing digital gene expression. Sequencing and transcriptome analyses were performed collaboratively, including analyses of differential gene expression, gene co-expression network, targeted attack on network and functional grouping. In this study, a new strategy known as keystone gene-based group significance analysis was also developed. Results: Analysis of top keystone QSYQ-regulated genes indicated that QSYQ ameliorated ventricular remodeling (VR), which is an irreversible process in the pathophysiology of AMI. At pathway level, both well-known cardiovascular diseases and cardiac signaling pathways were enriched. The most remarkable finding was the novel therapeutic effects identified from functional group analysis. This included anti-inflammatory effects mediated via suppression of arachidonic acid lipoxygenase (LOX) pathway and elevation of nitric oxide (NO); and amelioration of dyslipidaemia mediated via fatty acid oxidation. The regulatory patterns of QSYQ on key genes were confirmed by western blot, immunohistochemistry analysis and measurement of plasma lipids, which further validated the therapeutic effects of QSYQ proposed in this study. Conclusions: QSYQ exerts multipronged therapeutic effects on AMI, by concurrently alleviating VR progression, attenuating inflammation induced by arachidonic acid LOX pathway and NO production; and ameliorating dyslipidaemia.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Beijing University of Chinese Medicine Beijing, China
| | - Weili Lin
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine Beijing, China
| | - Sarita Singhal
- Department of Pediatrics, Digestive Diseases and Nutrition Center, State University of New York at Buffalo Buffalo, NY, USA
| | - Gaurav Jain
- Niagara Falls Memorial Medical Center and Invision Health Buffalo, NY, USA
| | - Lixin Zhu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, State University of New York at BuffaloBuffalo, NY, USA; Genome, Environment and Microbiome Community of Excellence, State University of New York at BuffaloBuffalo, NY, USA; Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Linghui Lu
- Department of Biochemistry and Molecular Biology, Basic Medical College, Beijing University of Chinese Medicine Beijing, China
| | - Ruixin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University Shanghai, China
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Beijing University of Chinese Medicine Beijing, China
| |
Collapse
|
39
|
Bennett M, Gilroy DW. Lipid Mediators in Inflammation. MYELOID CELLS IN HEALTH AND DISEASE 2017:343-366. [DOI: 10.1128/9781555819194.ch19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Melanie Bennett
- Roche Products Limited, Shire Park; Welwyn Garden City AL7 1TW United Kingdom
| | - Derek W. Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London; London WC1 E6JJ United Kingdom
| |
Collapse
|
40
|
Moreno JJ. Eicosanoid receptors: Targets for the treatment of disrupted intestinal epithelial homeostasis. Eur J Pharmacol 2016; 796:7-19. [PMID: 27940058 DOI: 10.1016/j.ejphar.2016.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
The importance of cyclooxygenase and lipoxygenase pathways and the consequent eicosanoid synthesis in the physiology and pathophysiology of the intestinal epithelium is currently being established. Each eicosanoid (prostanoid, leukotriene, hydroxyeicosatetraenoic acid) preferentially recognizes one or more receptors coupled to one or more signal-transduction processes. This overview focuses on the role of eicosanoid receptors in the maintenance of intestinal epithelium physiology through the control of proliferation/differentiation/apoptosis processes. Furthermore, it is reported that the role of these receptors on the regulation of the barrier function of the intestinal epithelium have arisen through the regulation of absorption/secretion processes, tight-junction state and the control of the intestinal immune response. Also, this review considers the implication of AA cascade in the disruption of epithelial homeostasis during inflammatory bowel diseases and colorectal cancer as well as the therapeutic values and potential of the eicosanoid receptors as novel targets for the treatments of the pathologies above mentioned.
Collapse
Affiliation(s)
- Juan J Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Avda. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
41
|
Kodama S, Nakajima S, Ozaki H, Takemoto R, Itabashi Y, Kuksis A. Enantioseparation of hydroxyeicosatetraenoic acids by hydroxypropyl-γ-cyclodextrin-modified micellar electrokinetic chromatography. Electrophoresis 2016; 37:3196-3205. [DOI: 10.1002/elps.201600213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Shuji Kodama
- School of Science; Tokai University; Hiratsuka Kanagawa Japan
| | - Shota Nakajima
- Faculty of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Hiromichi Ozaki
- Faculty of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Ryota Takemoto
- Faculty of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Yutaka Itabashi
- Faculty of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Arnis Kuksis
- Banting and Best Department of Medical Research; University of Toronto; Toronto ON Canada
| |
Collapse
|
42
|
Sharma S, Ruffenach G, Umar S, Motayagheni N, Reddy ST, Eghbali M. Role of oxidized lipids in pulmonary arterial hypertension. Pulm Circ 2016; 6:261-73. [PMID: 27683603 DOI: 10.1086/687293] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a multifactorial disease characterized by interplay of many cellular, molecular, and genetic events that lead to excessive proliferation of pulmonary cells, including smooth muscle and endothelial cells; inflammation; and extracellular matrix remodeling. Abnormal vascular changes and structural remodeling associated with PAH culminate in vasoconstriction and obstruction of pulmonary arteries, contributing to increased pulmonary vascular resistance, pulmonary hypertension, and right ventricular failure. The complex molecular mechanisms involved in the pathobiology of PAH are the limiting factors in the development of potential therapeutic interventions for PAH. Over the years, our group and others have demonstrated the critical implication of lipids in the pathogenesis of PAH. This review specifically focuses on the current understanding of the role of oxidized lipids, lipid metabolism, peroxidation, and oxidative stress in the progression of PAH. This review also discusses the relevance of apolipoprotein A-I mimetic peptides and microRNA-193, which are known to regulate the levels of oxidized lipids, as potential therapeutics in PAH.
Collapse
Affiliation(s)
- Salil Sharma
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Grégoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Negar Motayagheni
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
43
|
Schaible AM, Filosa R, Krauth V, Temml V, Pace S, Garscha U, Liening S, Weinigel C, Rummler S, Schieferdecker S, Nett M, Peduto A, Collarile S, Scuotto M, Roviezzo F, Spaziano G, de Rosa M, Stuppner H, Schuster D, D’Agostino B, Werz O. The 5-lipoxygenase inhibitor RF-22c potently suppresses leukotriene biosynthesis in cellulo and blocks bronchoconstriction and inflammation in vivo. Biochem Pharmacol 2016; 112:60-71. [DOI: 10.1016/j.bcp.2016.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
|
44
|
Pfister SL, Klimko PG, Conrow RE. (5Z,11Z,15R)-15-Hydroxyeicosa-5,11-dien-13-ynoic acid: A stable isomer of 15(S)-HETE that retains key vasoconstrictive and antiproliferative activity. Prostaglandins Other Lipid Mediat 2016; 123:33-9. [PMID: 27117058 DOI: 10.1016/j.prostaglandins.2016.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/14/2016] [Accepted: 04/18/2016] [Indexed: 12/25/2022]
Abstract
15(S)-Hydroxyeicosa-(5Z,8Z,11Z,13E)-tetraenoic acid (15(S)-HETE) is a metabolite of arachidonic acid that elicits a number of biological effects including vasoconstriction and angiogenesis. (5Z,11Z,15R)-15-Hydroxyeicosa-5,11-dien-13-ynoic acid (HETE analog 1) is a synthetic isomer of 15(S)-HETE that is much more stable to autoxidation. Using isometric recording of isolated pulmonary arteries from male and female rabbits, HETE analog 1 and 15(S)-HETE were found to elicit concentration-dependent contractions that were slightly greater in females compared to males. The maximal response in females was greater with 15(S)-HETE. HETE analog 1 and 15(S)-HETE increased [(3)H]-thymidine incorporation in vascular smooth muscle cells cultured from male rabbit pulmonary arteries; both the maximal response and potency were greater with 15(S)-HETE. In contrast, HETE analog 1 produced a concentration-dependent inhibition in proliferation and migration of human hormone-independent prostate carcinoma PC-3 cells. The protocol for synthesis of HETE analog 1 is reported. The stability of this substance and its similar biological profile to 15(S)-HETE support future studies in eicosanoid research.
Collapse
Affiliation(s)
- Sandra L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Peter G Klimko
- Alcon Laboratories, a Novartis Company, Fort Worth, TX, United States
| | - Raymond E Conrow
- Alcon Laboratories, a Novartis Company, Fort Worth, TX, United States
| |
Collapse
|
45
|
Apaya MK, Chang MT, Shyur LF. Phytomedicine polypharmacology: Cancer therapy through modulating the tumor microenvironment and oxylipin dynamics. Pharmacol Ther 2016; 162:58-68. [PMID: 26969215 DOI: 10.1016/j.pharmthera.2016.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrative approaches in cancer therapy have recently been extended beyond the induction of cytotoxicity to controlling the tumor microenvironment and modulating inflammatory cascades and pathways such as lipid mediator biosynthesis and their dynamics. Profiling of important lipid messengers, such as oxylipins, produced as part of the physiological response to pharmacological stimuli, provides a unique opportunity to explore drug pharmacology and the possibilities for molecular management of cancer physiopathology. Whereas single targeted chemotherapeutic drugs commonly lack efficacy and invoke drug resistance and/or adverse effects in cancer patients, traditional herbal medicines are seen as bright prospects for treating complex diseases, such as cancers, in a systematic and holistic manner. Understanding the molecular mechanisms of traditional medicine and its bioactive chemical constituents may aid the modernization of herbal remedies and the discovery of novel phytoagents for cancer management. In this review, systems-based polypharmacology and studies to develop multi-target drugs or leads from phytomedicines and their derived natural products that may overcome the problems of current anti-cancer drugs, are proposed and summarized.
Collapse
Affiliation(s)
- Maria Karmella Apaya
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Ting Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Lie-Fen Shyur
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
46
|
Song YS, Lee DH, Yu JH, Oh DK, Hong JT, Yoon DY. Promotion of adipogenesis by 15-(S)-hydroxyeicosatetraenoic acid. Prostaglandins Other Lipid Mediat 2016; 123:1-8. [DOI: 10.1016/j.prostaglandins.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
|
47
|
Dorow J, Becker S, Kortz L, Thiery J, Hauschildt S, Ceglarek U. Preanalytical Investigation of Polyunsaturated Fatty Acids and Eicosanoids in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry. Biopreserv Biobank 2016; 14:107-13. [PMID: 26886177 DOI: 10.1089/bio.2015.0005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Preanalytical variables have a great impact on sample matrices and are a source of laboratory errors. The effect of cryobanking, which is gaining great importance recently, requires systematic investigation. The arachidonic acid metabolism is useful as a quality marker since eicosanoids are easily subjected to in vitro oxidation processes. MATERIALS AND METHODS Polyunsaturated fatty acids (PUFAs) and related metabolites were analyzed by online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. The influence of different plasma anticoagulants, as well as serum, freeze-thaw cycles (n = 5), short-term storage at 4°C, room temperature up to 120 minutes, and long-term storage at -20°C, -80°C, and -150°C up to 180 days, were investigated. We further investigated the influence of protein depletion, antioxidants, and shock-freezing on plasma. RESULTS PUFA metabolites were stable at 4°C in ethylenediaminetetraacetic acid (EDTA)-stabilized whole blood for 120 minutes and in EDTA-plasma for 30 minutes. Plasma stability at 4°C could be further increased up to 7 days after protein depletion, while addition of antioxidants such as butylated hydroxytoluene or coverage with nitrogen had no protective effects. Repeated freeze-thaw cycles (n > 1) resulted in eicosanoid formation up to 63%. Long-term storage at -20°C led to substantial eicosanoid increases after 30 days, which could be prevented by depleting proteins before storage. Cryobanking at -80°C and -150°C revealed decreased concentrations of eight eicosanoids after 180 days. An advantage of shock-freezing with liquid nitrogen could not be confirmed compared to conventional freezing. CONCLUSION Defined preanalytical conditions for eicosanoid analysis in human matrices are required to minimize in vitro data variability.
Collapse
Affiliation(s)
- Juliane Dorow
- 1 Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig , Leipzig, Germany .,2 LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig , Leipzig, Germany
| | - Susen Becker
- 1 Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig , Leipzig, Germany .,2 LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig , Leipzig, Germany
| | - Linda Kortz
- 1 Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig , Leipzig, Germany .,2 LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig , Leipzig, Germany
| | - Joachim Thiery
- 1 Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig , Leipzig, Germany .,2 LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig , Leipzig, Germany
| | - Sunna Hauschildt
- 3 Department of Immunobiology, Institute of Biology, Universität Leipzig , Leipzig, Germany
| | - Uta Ceglarek
- 1 Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig , Leipzig, Germany .,2 LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig , Leipzig, Germany
| |
Collapse
|
48
|
Garcia CP, Lamarque AL, Comba A, Berra MA, Silva RA, Labuckas DO, Das UN, Eynard AR, Pasqualini ME. Synergistic anti-tumor effects of melatonin and PUFAs from walnuts in a murine mammary adenocarcinoma model. Nutrition 2015; 31:570-7. [DOI: 10.1016/j.nut.2014.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 06/01/2014] [Indexed: 11/15/2022]
|
49
|
Schuette S, Piatkowski B, Corley A, Lang D, Geisler M. Predicted protein-protein interactions in the moss Physcomitrella patens: a new bioinformatic resource. BMC Bioinformatics 2015; 16:89. [PMID: 25885037 PMCID: PMC4384322 DOI: 10.1186/s12859-015-0524-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/02/2015] [Indexed: 12/11/2022] Open
Abstract
Background Physcomitrella patens, a haploid dominant plant, is fast becoming a useful molecular genetics and bioinformatics tool due to its key phylogenetic position as a bryophyte in the post-genomic era. Genome sequences from select reference species were compared bioinformatically to Physcomitrella patens using reciprocal blasts with the InParanoid software package. A reference protein interaction database assembled using MySQL by compiling BioGrid, BIND, DIP, and Intact databases was queried for moss orthologs existing for both interacting partners. This method has been used to successfully predict interactions for a number of angiosperm plants. Results The first predicted protein-protein interactome for a bryophyte based on the interolog method contains 67,740 unique interactions from 5,695 different Physcomitrella patens proteins. Most conserved interactions among proteins were those associated with metabolic processes. Over-represented Gene Ontology categories are reported here. Conclusion Addition of moss, a plant representative 200 million years diverged from angiosperms to interactomic research greatly expands the possibility of conducting comparative analyses giving tremendous insight into network evolution of land plants. This work helps demonstrate the utility of “guilt-by-association” models for predicting protein interactions, providing provisional roadmaps that can be explored using experimental approaches. Included with this dataset is a method for characterizing subnetworks and investigating specific processes, such as the Calvin-Benson-Bassham cycle. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0524-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott Schuette
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, USA.
| | - Brian Piatkowski
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, USA.
| | - Aaron Corley
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, USA.
| | - Daniel Lang
- University of Freiburg, Plant Biotechnology Schaenzlestr. 1, D-79104, Freiburg, Germany.
| | - Matt Geisler
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, USA.
| |
Collapse
|
50
|
Nemenoff R, Gijon M. Inflammation and Lung Cancer: Eicosanoids. INFLAMMATION AND LUNG CANCER 2015:161-189. [DOI: 10.1007/978-1-4939-2724-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|