1
|
Almatroodi SA, A. Alsahli M, S. M. Aljohani A, Alhumaydhi FA, Babiker AY, Khan AA, Rahmani AH. Potential Therapeutic Targets of Resveratrol, a Plant Polyphenol, and Its Role in the Therapy of Various Types of Cancer. Molecules 2022; 27:2665. [PMID: 35566016 PMCID: PMC9101422 DOI: 10.3390/molecules27092665] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer is among the most prominent causes of mortality worldwide. Different cancer therapy modes employed, including chemotherapy and radiotherapy, have been reported to be significant in cancer management, but the side effects associated with these treatment strategies are still a health problem. Therefore, alternative anticancer drugs based on medicinal plants or their active compounds have been generating attention because of their less serious side effects. Medicinal plants are an excellent source of phytochemicals that have been recognized to have health-prompting effects through modulating cell signaling pathways. Resveratrol is a well-known polyphenolic molecule with antioxidant, anti-inflammatory, and health-prompting effects among which its anticancer role has been best defined. Additionally, this polyphenol has confirmed its role in cancer management because it activates tumor suppressor genes, suppresses cell proliferation, induces apoptosis, inhibits angiogenesis, and modulates several other cell signaling molecules. The anticancer potential of resveratrol is recognized in numerous in vivo and in vitro studies. Previous experimental data suggested that resveratrol may be valuable in cancer management or improve the efficacy of drugs when given with anticancer drugs. This review emphasizes the potential role of resveratrol as an anticancer drug by modulating numerous cells signaling pathways in different types of cancer.
Collapse
Affiliation(s)
- Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| |
Collapse
|
2
|
Alaswad HA, Mahbub AA, Le Maitre CL, Jordan-Mahy N. Molecular Action of Polyphenols in Leukaemia and Their Therapeutic Potential. Int J Mol Sci 2021; 22:ijms22063085. [PMID: 33802972 PMCID: PMC8002821 DOI: 10.3390/ijms22063085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Leukaemia is a malignant disease of the blood. Current treatments for leukaemia are associated with serious side-effects. Plant-derived polyphenols have been identified as potent anti-cancer agents and have been shown to work synergistically with standard chemotherapy agents in leukaemia cell lines. Polyphenols have multiple mechanisms of action and have been reported to decrease cell proliferation, arrest cell cycle and induce apoptosis via the activation of caspase (3, 8 and 9); the loss of mitochondrial membrane potential and the release of cytochrome c. Polyphenols have been shown to suppress activation of transcription factors, including NF-kB and STAT3. Furthermore, polyphenols have pro-oxidant properties, with increasing evidence that polyphenols inhibit the antioxidant activity of glutathione, causing oxidative DNA damage. Polyphenols also induce autophagy-driven cancer cell death and regulate multidrug resistance proteins, and thus may be able to reverse resistance to chemotherapy agents. This review examines the molecular mechanism of action of polyphenols and discusses their potential therapeutic targets. Here, we discuss the pharmacological properties of polyphenols, including their anti-inflammatory, antioxidant, anti-proliferative, and anti-tumour activities, and suggest that polyphenols are potent natural agents that can be useful therapeutically; and discuss why data on bioavailability, toxicity and metabolism are essential to evaluate their clinical use.
Collapse
Affiliation(s)
- Hamza A. Alaswad
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, The Owen Building, City Campus, Howard Street, Sheffield S1 1WB, UK; (H.A.A.); (C.L.L.M.)
| | - Amani A. Mahbub
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia;
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, The Owen Building, City Campus, Howard Street, Sheffield S1 1WB, UK; (H.A.A.); (C.L.L.M.)
| | - Nicola Jordan-Mahy
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, The Owen Building, City Campus, Howard Street, Sheffield S1 1WB, UK; (H.A.A.); (C.L.L.M.)
- Correspondence: ; Tel.: +44-0114-225-3120
| |
Collapse
|
3
|
Serine Protease from Nereis virens Inhibits H1299 Lung Cancer Cell Proliferation via the PI3K/AKT/mTOR Pathway. Mar Drugs 2019; 17:md17060366. [PMID: 31226829 PMCID: PMC6627947 DOI: 10.3390/md17060366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
This study explores the in vitro anti-proliferative mechanism between Nereis Active Protease (NAP) and human lung cancer H1299 cells. Colony formation and migration of cells were significantly lowered, following NAP treatment. Flow cytometry results suggested that NAP-induced growth inhibition of H1299 cells is linked to apoptosis, and that NAP can arrest the cells at the G0/G1 phase. The ERK/MAPK and PI3K/AKT/mTOR pathways were selected for their RNA transcripts, and their roles in the anti-proliferative mechanism of NAP were studied using Western blots. Our results suggested that NAP led to the downregulation of p-ERK (Thr 202/Tyr 204), p-AKT (Ser 473), p-PI3K (p85), and p-mTOR (Ser 2448), suggesting that NAP-induced H1299 cell apoptosis occurs via the PI3K/AKT/mTOR pathway. Furthermore, specific inhibitors LY294002 and PD98059 were used to inhibit these two pathways. The effect of NAP on the downregulation of p-ERK and p-AKT was enhanced by the LY294002 (a PI3K inhibitor), while the inhibitor PD98059 had no obvious effect. Overall, the results suggested that NAP exhibits antiproliferative activity by inducing apoptosis, through the inhibition of the PI3K/AKT/mTOR pathway.
Collapse
|
4
|
Huang XT, Li X, Xie ML, Huang Z, Huang YX, Wu GX, Peng ZR, Sun YN, Ming QL, Liu YX, Chen JP, Xu SN. Resveratrol: Review on its discovery, anti-leukemia effects and pharmacokinetics. Chem Biol Interact 2019; 306:29-38. [PMID: 30954463 DOI: 10.1016/j.cbi.2019.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Resveratrol, found in variety of plants, is a natural stilbene structure polyphenol. It has various pharmacological effects, such as antioxidation, anti-aging, anti-inflammation, anti-cancer, antiobesity, anti-diabetes, cardioprotection, neuroprotection. Recently, anti-leukemia activities of resveratrol has been studied extensively via its effects on a variety of biological processes involving cell proliferation, apoptosis, autophagy. Current treatments of leukemia mainly rely on intensive chemotherapy or hematopoietic stem cell transplantation, however, these treatments are still with poor survival and high treatment-related mortality. Therefore, it is extremely needed to find relatively non-toxic medicines with minimal side effects but sufficient therapeutic efficacy. Resveratrol is one such potential candidate owing to its reported anti-leukemia effect. In this review, we summarized resveratrol's discovery, sources and isolation methods, administration methods, effects in different types of leukemia, pharmacokinetics and toxicities, aiming to exploit resveratrol as a potential drug candidate for anti-leukemia.
Collapse
Affiliation(s)
- Xiang-Tao Huang
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Xi Li
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Ming-Ling Xie
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Zhen Huang
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yong-Xiu Huang
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Gui-Xian Wu
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Zhi-Rong Peng
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yan-Ni Sun
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Qian-Liang Ming
- College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yan-Xia Liu
- College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jie-Ping Chen
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| | - Shuang-Nian Xu
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
5
|
Xiao Q, Zhu W, Feng W, Lee SS, Leung AW, Shen J, Gao L, Xu C. A Review of Resveratrol as a Potent Chemoprotective and Synergistic Agent in Cancer Chemotherapy. Front Pharmacol 2019; 9:1534. [PMID: 30687096 PMCID: PMC6333683 DOI: 10.3389/fphar.2018.01534] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Background: Cancer has become a major disease endangering human health around the world. Conventional chemotherapy suffers from many side effects including pain, cardiotoxicity, hepatotoxicity, and renal toxicity. This review aims to describe a natural product of resveratrol as a chemoprotective and synergistic agent in the modulation of cancer chemotherapy. Methods: The publications were identified by comprehensive searching of SciFinder, PubMed, Web of Science, and our own reference library. Search terms included combinations of “resveratrol,” “cancer,” “natural products,” “chemotherapy,” and “side effects.” Selection of material focused on resveratrol reducing the side effects on cancer chemotherapy. Results: Thirty one references were referred in this review to outline resveratrol as a potent chemoprotective and synergistic agent in cancer chemotherapy, including 22 papers for describing the chemoprotective effects, and 9 papers for illustrating the synergistic effects. Conclusion: This study provides a systematic summary of resveratrol serving as a potent chemoprotective and synergistic agent to reduce the associated-side effects and enhance the therapeutic outcomes in cancer chemotherapy. Further studies in terms of resveratrol on a large amount of preclinical tests and clinical trials are highly demanded.
Collapse
Affiliation(s)
- Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China.,School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wangshu Zhu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Su Seong Lee
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | - Albert Wingnang Leung
- Division of Chinese Medicine, School of Professional and Continuing Education, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
6
|
Fernández-Pérez F, Belchí-Navarro S, Almagro L, Bru R, Pedreño MA, Gómez-Ros LV. Cytotoxic effect of natural trans-resveratrol obtained from elicited Vitis vinifera cell cultures on three cancer cell lines. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2012; 67:422-429. [PMID: 23161277 DOI: 10.1007/s11130-012-0327-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
trans-Resveratrol (trans-R) has been reported to be a potential cancer chemopreventive agent. Although its cytotoxic activity against different cancer cell lines has been tested, its effect on human acute leukemia cell lines has scarcely been investigated, and only a few in vitro studies were performed using human breast epithelial cell lines. Due to its potential value for human health, demand for trans-R has rapidly increased, and new biotechnological strategies to obtain it from natural edible sources have been developed. Thus, grapevine cell cultures represent a reliable system of trans-R production since they biosynthesize trans-R constitutively or in response to elicitation. In addition, there are no studies deepen on the inhibitory effect of trans-R, produced by elicited grapevine cell cultures, on growth of human tumor cell lines. In this work, the effect of trans-R extracted from the culture medium, after elicitation of grapevine cell cultures, was tested on two human acute lymphocytic and monocytic leukemia cell lines, and one human breast cancer cell line. The effect of trans-R on cell proliferation was not only dose- and time-dependent but also cell type-dependent, as seen from the different degrees of susceptibility of cancer cell lines tested. As regards the effect of trans-R on cell cycle distribution, low trans-R concentrations increased cells in the S phase whereas a high trans-R concentration increased G₀/G₁ phase in all cell lines. Perturbation of the cell cycle at low trans-R concentrations did not correlate with the induction of cell death, whereas a high trans-R concentration, cell proliferation decreased as a result of increasing apoptosis in the three cell lines. In leukemia cells, trans-R up-regulated the expression of caspase-3 while trans-R-induced apoptosis in breast cells occur through a caspase-3-independent mechanism mediated by a down-regulation of Bcl-2.
Collapse
Affiliation(s)
- Francisco Fernández-Pérez
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus Universitario de Espinardo, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Rahman MA, Kim NH, Kim SH, Oh SM, Huh SO. Antiproliferative and cytotoxic effects of resveratrol in mitochondria-mediated apoptosis in rat b103 neuroblastoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:321-6. [PMID: 23118555 PMCID: PMC3484516 DOI: 10.4196/kjpp.2012.16.5.321] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/18/2012] [Accepted: 09/29/2012] [Indexed: 12/13/2022]
Abstract
Resveratrol, a natural compound, has been shown to possess anti-cancer, anti-aging, anti-inflammatory, anti-microbial, and neuroprotective activities. In this study, we examined the antiproliferative and cytotoxicity properties of resveratrol in Rat B103 neuroblastoma cells; although it's molecular mechanisms for the biological effects are not fully defined. Here, we examined the cellular cytotoxicity of resveratrol by cell viability assay, antiproliferation by BrdU assay, DNA fragmentation by DNA ladder assay, activation of caspases and Bcl-2 family proteins were detected by western blot analyses. The results of our investigation suggest that resveratrol increased cellular cytotoxicity of Rat B103 neuroblastoma cells in a dose-and time-dependent manner with IC50 of 17.86 µM at 48 h. On the other hand, incubation of neuroblastoma cells with resveratrol resulted in S-phase cell cycle arrests which dose-dependently and significantly reduced BrdU positive cells through the downregulation of cyclin D1 protein. In addition, resveratrol dose-dependently and significantly downregulated the expression of anti-apoptotic protein includes Bcl-2, Bcl-xL and Mcl-1 and also activates cleavage caspase-9 and-3 via the downregulation of procaspase-9 and -3 in a dose-dependent manner which indicates that involvement of intrinsic mitochondria-mediated apoptotic pathway. In conclusion, resveratrol increases cellular cytotoxicity and inhibits the proliferation of B103 neuroblastoma cells by inducing mitochondria-mediated intrinsic caspase dependent pathway which suggests this natural compound could be used as therapeutic purposes for neuroblastoma malignancies.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 200-702, Korea
| | | | | | | | | |
Collapse
|
8
|
Wu SS, Chen LG, Lin RJ, Lin SY, Lo YE, Liang YC. Cytotoxicity of (-)-vitisin B in human leukemia cells. Drug Chem Toxicol 2012; 36:313-9. [PMID: 23030068 DOI: 10.3109/01480545.2012.720990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vitis thunbergii var. taiwaniana (VTT) is an indigenous Taiwanese wild grape and is used as a folk medicine in Taiwan. VTT is rich in polyphenols, especially quercetin and resveratrol derivatives, which were demonstrated to exhibit inhibitory activities against carcinogenesis and prevent some neurodegenerative diseases. (-)-Vitisin B is one of the resveratrol tetramers extracted from VTT. In this study, we investigated the mechanisms of (-)-vitisin B on the induction of apoptosis in human HL-60 promyelocytic leukemia cells. First, (-)-vitisin B significantly inhibited cell proliferation through inducing cell apoptosis. This effect appeared to occur in a time- and dose-dependent manner. Cell-cycle distribution was also examined, and we found that (-)-vitisin B significantly induced a sub-G1 population in a dose-dependent manner. In addition, (-)-vitisin B exhibited stronger inhibitory effects on cell proliferation than resveratrol. Second, (-)-vitisin B dose dependently induced apoptosis-related protein expressions, such as the cleavage form of caspase-3, caspase-8, caspase-9, poly(ADP ribose) polymerase, and the proapoptotic Bax protein. Third, (-)-vitisin B treatment also resulted in increases in c-Jun N-terminal kinase (JNK) phosphorylation and Fas ligand (FasL) expression. Moreover, the (-)-vitisin B-induced FasL expression and caspase-3 activation could be reversed by a JNK inhibitor. These results suggest that (-)-vitisin B-induced apoptosis of leukemia cells might be mediated through activation of JNK and Fas death-signal transduction.
Collapse
Affiliation(s)
- Shing-Sheng Wu
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Węsierska-Gądek J, Hackl S, Zulehner N, Maurer M, Komina O. Reconstitution of human MCF-7 breast cancer cells with caspase-3 does not sensitize them to action of CDK inhibitors. J Cell Biochem 2011; 112:273-88. [PMID: 21080333 DOI: 10.1002/jcb.22918] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human MCF-7 breast cancer cells are resistant to pro-apoptotic stimuli due to caspase-3 inactivation. On the other hand, they should be sensitive to agents like selective pharmacological inhibitors of cyclin-dependent kinases (CDKs) that (re)activate p53 tumor suppressor protein because they harbor intact p53 pathways. In this study we examined whether reconstitution of caspase-3 in MCF-7 cells sensitizes them to inhibitors of CDKs, by analyzing the effects of roscovitine (ROSC) and olomoucine (OLO), two closely related selective pharmacological CDK inhibitors, on both mother MCF-7 cells and a secondary mutant line, MCF-7.3.28 that stably expresses human caspase-3. The results show that ROSC is, as expected, much more potent than OLO. Surprisingly; however, ROSC and OLO reduced proliferation of parental MCF-7 cells more strongly than caspase-3-proficient counterparts. Both inhibitors arrest human breast cancer cells at the G(2)-phase of the cell cycle. Analysis of cell-cycle regulators by immunoblotting revealed that ROSC strongly induces p53 protein activity by inducing its phosphorylation at Ser46 in the MCF-7 cells lacking caspase-3, but not in caspase-3-proficient cells. Furthermore, reconstitution of caspase-3 in MCF-7 cells neither elevates the mitochondrial apoptosis rate nor significantly increases caspases activity upon ROSC treatment. However, the stabilization of p53 in response to DNA damaging agents is the same in both caspase negative and positive MCF-7 cells. Cytotoxic agents induce caspase-3-dependent apoptosis in caspase-3-proficient cells. These results indicate that reconstitution of MCF-7 cancer cells with caspase-3 sensitize them to the action of DNA damaging agents but not to ATP-like pharmacological inhibitors of CDKs.
Collapse
Affiliation(s)
- Józefa Węsierska-Gądek
- Dept. of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | |
Collapse
|
10
|
Pizarro JG, Verdaguer E, Ancrenaz V, Junyent F, Sureda F, Pallàs M, Folch J, Camins A. Resveratrol Inhibits Proliferation and Promotes Apoptosis of Neuroblastoma Cells: Role of Sirtuin 1. Neurochem Res 2010; 36:187-94. [DOI: 10.1007/s11064-010-0296-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
|
11
|
Yan Y, Gao YY, Liu BQ, Niu XF, Zhuang Y, Wang HQ. Resveratrol-induced cytotoxicity in human Burkitt's lymphoma cells is coupled to the unfolded protein response. BMC Cancer 2010; 10:445. [PMID: 20723265 PMCID: PMC2931494 DOI: 10.1186/1471-2407-10-445] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 08/20/2010] [Indexed: 11/10/2022] Open
Abstract
Background Resveratrol (RES), a natural phytoalexin found at high levels in grapes and red wine, has been shown to induce anti-proliferation and apoptosis of human cancer cell lines. However, the underlying molecular mechanisms are at present only partially understood. Method The effects of RES on activation of unfolded protein responses (UPR) were evaluated using Western blotting, semi-quantitative and real-time RT-PCR. Cell death was evaluated using Annexin V/PI staining and subsequent FACS. Results Similar as tunicamycin, treatment with RES lead to the activation of all 3 branches of the UPR, with early splicing of XBP-1 indicative of IRE1 activation, phosphorylation of eIF2α consistent with ER resident kinase (PERK) activation, activating transcription factor 6 (ATF6) splicing, and increase in expression levels of the downstream molecules GRP78/BiP, GRP94 and CHOP/GADD153 in human Burkitt's lymphoma Raji and Daudi cell lines. RES was shown to induce cell death, which could be attenuated by thwarting upregulation of CHOP. Conclusions Our data suggest that activation of the apoptotic arm of the UPR and its downstream effector CHOP/GADD153 is involved, at least in part, in RES-induced apoptosis in Burkitt's lymphoma cells.
Collapse
Affiliation(s)
- Ying Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110001, China
| | | | | | | | | | | |
Collapse
|
12
|
Matić I, Žižak Ž, Simonović M, Simonović B, Gođevac D, Šavikin K, Juranić Z. Cytotoxic Effect of Wine Polyphenolic Extracts and Resveratrol Against Human Carcinoma Cells and Normal Peripheral Blood Mononuclear Cells. J Med Food 2010; 13:851-62. [DOI: 10.1089/jmf.2009.0193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Ivana Matić
- Institute of Oncology and Radiology of Serbia, Serbia
| | - Željko Žižak
- Institute of Oncology and Radiology of Serbia, Serbia
| | | | | | - Dejan Gođevac
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plant Research “Dr Josif Pančić,” Belgrade, Serbia
| | | |
Collapse
|
13
|
The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int J Pharm 2010; 390:61-9. [DOI: 10.1016/j.ijpharm.2009.10.011] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 09/18/2009] [Accepted: 10/03/2009] [Indexed: 11/23/2022]
|
14
|
Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation. Biochem Biophys Res Commun 2009; 391:778-82. [PMID: 19944671 DOI: 10.1016/j.bbrc.2009.11.137] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 11/24/2009] [Indexed: 11/24/2022]
Abstract
Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2alpha inhibitor, or overexpression of dominant negative mutants of PERK or eIF2alpha, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2alpha branch of UPR in RES-induced inhibition of cell proliferation.
Collapse
|