1
|
Yu L, Yan J, Zhan Y, Li A, Zhu L, Qian J, Zhou F, Lu X, Fan X. Single-cell RNA sequencing reveals the dynamics of hepatic non-parenchymal cells in autoprotection against acetaminophen-induced hepatotoxicity. J Pharm Anal 2023; 13:926-941. [PMID: 37719199 PMCID: PMC10499594 DOI: 10.1016/j.jpha.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 09/19/2023] Open
Abstract
Gaining a better understanding of autoprotection against drug-induced liver injury (DILI) may provide new strategies for its prevention and therapy. However, little is known about the underlying mechanisms of this phenomenon. We used single-cell RNA sequencing to characterize the dynamics and functions of hepatic non-parenchymal cells (NPCs) in autoprotection against DILI, using acetaminophen (APAP) as a model drug. Autoprotection was modeled through pretreatment with a mildly hepatotoxic dose of APAP in mice, followed by a higher dose in a secondary challenge. NPC subsets and dynamic changes were identified in the APAP (hepatotoxicity-sensitive) and APAP-resistant (hepatotoxicity-resistant) groups. A chemokine (C-C motif) ligand 2+ endothelial cell subset almost disappeared in the APAP-resistant group, and an R-spondin 3+ endothelial cell subset promoted hepatocyte proliferation and played an important role in APAP autoprotection. Moreover, the dendritic cell subset DC-3 may protect the liver from APAP hepatotoxicity by inducing low reactivity and suppressing the autoimmune response and occurrence of inflammation. DC-3 cells also promoted angiogenesis through crosstalk with endothelial cells via vascular endothelial growth factor-associated ligand-receptor pairs and facilitated liver tissue repair in the APAP-resistant group. In addition, the natural killer cell subsets NK-3 and NK-4 and the Sca-1-CD62L+ natural killer T cell subset may promote autoprotection through interferon-γ-dependent pathways. Furthermore, macrophage and neutrophil subpopulations with anti-inflammatory phenotypes promoted tolerance to APAP hepatotoxicity. Overall, this study reveals the dynamics of NPCs in the resistance to APAP hepatotoxicity and provides novel insights into the mechanism of autoprotection against DILI at a high resolution.
Collapse
Affiliation(s)
- Lingqi Yu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Jun Yan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingqi Zhan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Anyao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Lidan Zhu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingyang Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Fanfan Zhou
- School of Pharmacy, The University of Sydney, Sydney, 2006, Australia
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321016, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321016, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Harbin, 150023, China
| |
Collapse
|
2
|
Ghanem CI, Manautou JE. Role and Regulation of Hepatobiliary ATP-Binding Cassette Transporters during Chemical-Induced Liver Injury. Drug Metab Dispos 2022; 50:1376-1388. [PMID: 35914951 PMCID: PMC9513844 DOI: 10.1124/dmd.121.000450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Severity of drug-induced liver injury (DILI) ranges from mild, asymptomatic, and transient elevations in liver function tests to irreversible liver damage, often needing transplantation. Traditionally, DILI is classified mechanistically as high-frequency intrinsic DILI, commonly dose dependent or DILI that rarely occurs and is idiosyncratic in nature. This latter form is not dose dependent and has a pattern of histopathological manifestation that is not always uniform. Currently, a third type of DILI called indirect hepatotoxicity has been described that is associated with the pharmacological action of the drug. Historically, DILI was primarily linked to drug metabolism events; however, the impact of transporter-mediated rates of drug uptake and excretion has gained greater prominence in DILI research. This review provides a comprehensive view of the major findings from studies examining the contribution of hepatic ATP-binding cassette transporters as key contributors to DILI and how changes in their expression and function influence the development, severity, and overall toxicity outcome. SIGNIFICANCE STATEMENT: Drug-induced liver injury (DILI) continues to be a focal point in drug development research. ATP-binding cassette (ABC) transporters have emerged as important determinants of drug detoxification, disposition, and safety. This review article provides a comprehensive analysis of the literature addressing: (a) the role of hepatic ABC transporters in DILI, (b) the influence of genetic mutations in ABC transporters on DILI, and (c) new areas of research emphasis, such as the influence of the gut microbiota and epigenetic regulation, on ABC transporters.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET) (C.I.G.) and Cátedra de Fisiopatología (C.I.G.), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (J.E.M.)
| | - Jose E Manautou
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET) (C.I.G.) and Cátedra de Fisiopatología (C.I.G.), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (J.E.M.)
| |
Collapse
|
3
|
Hoegberg LCG, Shepherd G, Wood DM, Johnson J, Hoffman RS, Caravati EM, Chan WL, Smith SW, Olson KR, Gosselin S. Systematic review on the use of activated charcoal for gastrointestinal decontamination following acute oral overdose. Clin Toxicol (Phila) 2021; 59:1196-1227. [PMID: 34424785 DOI: 10.1080/15563650.2021.1961144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The use of activated charcoal in poisoning remains both a pillar of modern toxicology and a source of debate. Following the publication of the joint position statements on the use of single-dose and multiple-dose activated charcoal by the American Academy of Clinical Toxicology and the European Association of Poison Centres and Clinical Toxicologists, the routine use of activated charcoal declined. Over subsequent years, many new pharmaceuticals became available in modified or alternative-release formulations and additional data on gastric emptying time in poisoning was published, challenging previous assumptions about absorption kinetics. The American Academy of Clinical Toxicology, the European Association of Poison Centres and Clinical Toxicologists and the Asia Pacific Association of Medical Toxicology founded the Clinical Toxicology Recommendations Collaborative to create a framework for evidence-based recommendations for the management of poisoned patients. The activated charcoal workgroup of the Clinical Toxicology Recommendations Collaborative was tasked with reviewing systematically the evidence pertaining to the use of activated charcoal in poisoning in order to update the previous recommendations. OBJECTIVES The main objective was: Does oral activated charcoal given to adults or children prevent toxicity or improve clinical outcome and survival of poisoned patients compared to those who do not receive charcoal? Secondary objectives were to evaluate pharmacokinetic outcomes, the role of cathartics, and adverse events to charcoal administration. This systematic review summarizes the available evidence on the efficacy of activated charcoal. METHODS A medical librarian created a systematic search strategy for Medline (Ovid), subsequently translated for Embase (via Ovid), CINAHL (via EBSCO), BIOSIS Previews (via Ovid), Web of Science, Scopus, and the Cochrane Library/DARE. All databases were searched from inception to December 31, 2019. There were no language limitations. One author screened all citations identified in the search based on predefined inclusion/exclusion criteria. Excluded citations were confirmed by an additional author and remaining articles were obtained in full text and evaluated by at least two authors for inclusion. All authors cross-referenced full-text articles to identify articles missed in the searches. Data from included articles were extracted by the authors on a standardized spreadsheet and two authors used the GRADE methodology to independently assess the quality and risk of bias of each included study. RESULTS From 22,950 titles originally identified, the final data set consisted of 296 human studies, 118 animal studies, and 145 in vitro studies. Also included were 71 human and two animal studies that reported adverse events. The quality was judged to have a Low or Very Low GRADE in 469 (83%) of the studies. Ninety studies were judged to be of Moderate or High GRADE. The higher GRADE studies reported on the following drugs: paracetamol (acetaminophen), phenobarbital, carbamazepine, cardiac glycosides (digoxin and oleander), ethanol, iron, salicylates, theophylline, tricyclic antidepressants, and valproate. Data on newer pharmaceuticals not reviewed in the previous American Academy of Clinical Toxicology/European Association of Poison Centres and Clinical Toxicologists statements such as quetiapine, olanzapine, citalopram, and Factor Xa inhibitors were included. No studies on the optimal dosing for either single-dose or multiple-dose activated charcoal were found. In the reviewed clinical data, the time of administration of the first dose of charcoal was beyond one hour in 97% (n = 1006 individuals), beyond two hours in 36% (n = 491 individuals), and beyond 12 h in 4% (n = 43 individuals) whereas the timing of the first dose in controlled studies was within one hour of ingestion in 48% (n = 2359 individuals) and beyond two hours in 36% (n = 484) of individuals. CONCLUSIONS This systematic review found heterogenous data. The higher GRADE data was focused on a few select poisonings, while studies that addressed patients with unknown and or mixed ingestions were hampered by low rates of clinically meaningful toxicity or death. Despite these limitations, they reported a benefit of activated charcoal beyond one hour in many clinical scenarios.
Collapse
Affiliation(s)
- Lotte C G Hoegberg
- Department of Anesthesiology, The Danish Poisons Information Centre, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Greene Shepherd
- Division of Practice Advancement and Clinical Education, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - David M Wood
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK.,Clinical Toxicology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jami Johnson
- Oklahoma Center for Poison and Drug Information, University of Oklahoma College of Pharmacy, Oklahoma City, OK, USA
| | - Robert S Hoffman
- Division of Medical Toxicology, Ronald O. Perelman Department of Emergency Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - E Martin Caravati
- Division of Emergency Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Wui Ling Chan
- Department of Emergency Medicine, Ng Teng Fong General Hospital, Singapore, Singapore
| | - Silas W Smith
- Division of Medical Toxicology, Ronald O. Perelman Department of Emergency Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Kent R Olson
- California Poison Control System, San Francisco Division, University of California, San Francisco, California
| | - Sophie Gosselin
- Emergency Department CISSS Montérégie Centre, Greenfield Park, Canada.,Centre antipoison du Québec, Québec, Canada.,Department of Emergency Medicine, McGill Faculty of Medicine, Montreal, Canada
| |
Collapse
|
4
|
Tokunaga A, Miyamoto H, Fumoto S, Nishida K. Effect of Chronic Kidney Disease on Hepatic Clearance of Drugs in Rats. Biol Pharm Bull 2021; 43:1324-1330. [PMID: 32879206 DOI: 10.1248/bpb.b20-00124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pharmacokinetics of some hepatically cleared drugs have been reported to fluctuate in patients with renal impairment, but the definitive factors have not been clarified. We compared the pharmacokinetics of some drugs with different hepatic elimination processes in a chronic kidney disease (CKD) rat model, to optimize their administration during kidney injury. We chose indocyanine green (ICG), midazolam (MDZ), and acetaminophen (APAP) as reference drugs to determine changes in hepatic clearance pathways in presence of CKD. Drugs were intravenously administered via the jugular vein to the CKD model rats, previously established by adenine administration, and then, blood, bile, and urine samples were collected. The plasma concentration of ICG, which is eliminated into the bile without biotransformation, increased; and its total body clearance (CLtot) significantly decreased in the CKD group compared to the control group. Moreover, the plasma concentrations of MDZ and APAP, metabolized in the liver by CYP3A and Ugt1a6 enzymes, respectively, were higher in the CKD group than in the control group. The biliary clearances of APAP and its derivative APAP-glucuronide increased in the CKD group, whereas their renal clearances were markedly decreased with respect to those in the control group. Altogether, plasma concentrations of some hepatically eliminated drugs increased in the CKD rat model, but depending on their pharmacokinetic characteristics. This study provides useful information for optimizing the administration of some hepatically cleared drugs in CKD patients.
Collapse
Affiliation(s)
- Ayako Tokunaga
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Hirotaka Miyamoto
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Shintaro Fumoto
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Koyo Nishida
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
5
|
Evaluation of the ameliorative effects of Phyllanthus niruri on the deleterious insecticide imidacloprid in the vital organs of chicken embryos. J Ayurveda Integr Med 2019; 11:495-501. [PMID: 31757597 PMCID: PMC7772494 DOI: 10.1016/j.jaim.2019.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/06/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
Background Insecticides are widely used in agriculture to curb the loss caused by insects. These insecticides are incorporated into the food chain and accumulate in the human body, as well disturb the various metabolic pathways. Imidacloprid is an insect neurotoxin commonly used in agriculture to control the insect pests. P. niruri is a traditional medicinal shrub widely used as an anti-inflammatory, antipyretic, and anti-lethality agent. Objective The present study is designed to evaluate the ameliorative effects of Phyllanthus niruri (Bhumi amla) on the deleterious Insecticide imidacloprid in the vital organs of Chicken embryos. Materials and methods The embryonated chicken eggs were divided into the four groups (one control and three treated groups); the chorioallantoic membranes of control received 200 μl phosphate buffer saline, whereas group I and group II received 100 μg imidacloprid and 200 μl aqueous extract of P. niruri (PNE) respectively. Group III received both 100 μg imidacloprid and 200 μl PNE. The serum was collected on the 18th day its development; which was subjected to the biochemical analysis based on colorimetric assay in semi-automated biochemical analyzer using commercial kits. Results We observed significant in ovo effects of imidacloprid on chicken embryos; the values of aspartate aminotransferase (AST), alanine aminotransferase (ALT), were increased in imidacloprid treated group I; histopathology also revealed damage to the liver (necrotic areas and dilated blood sinusoids). Alkaline phosphatase (ALP), amylase, cholesterol, triglycerides protein and albumin levels were also altered significantly (p < 0.05). Conclusion The serum biochemicals were returned back to the nearly normal levels. PNE has ameliorated and overcome the effects of imidacloprid reasonably with the subsequent treatment among group III. Hence, P. niruri may be used to minimize the effects of an accidental exposure of imidacloprid.
Collapse
|
6
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. J Appl Toxicol 2019; 40:151-168. [PMID: 31389060 DOI: 10.1002/jat.3880] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress is proposed to be a critical factor in various diseases, including liver pathologies. Antioxidants derived from medicinal plants have been studied extensively and are relevant to many illnesses, including liver diseases. Several hepatic disorders, such as viral hepatitis and alcoholic or nonalcoholic steatohepatitis, involve free radicals/oxidative stress as agents that cause or at least exacerbate liver injury, which can result in chronic liver diseases, such as liver fibrosis, cirrhosis and end-stage hepatocellular carcinoma. In this scenario, nuclear factor-E2-related factor-2 (Nrf2) appears to be an essential factor to counteract or attenuate oxidative or nitrosative stress in hepatic cells. In fact, a growing body of evidence indicates that Nrf2 plays complex and multicellular roles in hepatic inflammation, fibrosis, hepatocarcinogenesis and regeneration via the induction of its target genes. Inflammation is the most common feature of chronic liver diseases, triggering fibrosis, cirrhosis and hepatocellular carcinoma. Increasing evidence indicates that Nrf2 counteracts the proinflammatory process by modulating the recruitment of inflammatory cells and inducing the endogenous antioxidant response of the cell. In this review, the interactions between antioxidant and inflammatory molecular pathways are analyzed.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| |
Collapse
|
7
|
Ghanem CI, Manautou JE. Modulation of Hepatic MRP3/ABCC3 by Xenobiotics and Pathophysiological Conditions: Role in Drug Pharmacokinetics. Curr Med Chem 2019; 26:1185-1223. [PMID: 29473496 DOI: 10.2174/0929867325666180221142315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Liver transporters play an important role in the pharmacokinetics and disposition of pharmaceuticals, environmental contaminants, and endogenous compounds. Among them, the family of ATP-Binding Cassette (ABC) transporters is the most important due to its role in the transport of endo- and xenobiotics. The ABCC sub-family is the largest one, consisting of 13 members that include the cystic fibrosis conductance regulator (CFTR/ABCC7); the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) and the multidrug resistanceassociated proteins (MRPs). The MRP-related proteins can collectively confer resistance to natural, synthetic drugs and their conjugated metabolites, including platinum-containing compounds, folate anti-metabolites, nucleoside and nucleotide analogs, among others. MRPs can be also catalogued into "long" (MRP1/ABCC1, -2/C2, -3/C3, -6/C6, and -7/C10) and "short" (MRP4/C4, -5/C5, -8/C11, -9/C12, and -10/C13) categories. While MRP2/ABCC2 is expressed in the canalicular pole of hepatocytes, all others are located in the basolateral membrane. In this review, we summarize information from studies examining the changes in expression and regulation of the basolateral hepatic transporter MPR3/ABCC3 by xenobiotics and during various pathophysiological conditions. We also focus, primarily, on the consequences of such changes in the pharmacokinetic, pharmacodynamic and/or toxicity of different drugs of clinical use transported by MRP3.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacologicas (ININFA), Facultad de Farmacia y Bioquimica. CONICET. Universidad de Buenos Aires, Buenos Aires, Argentina.,Catedra de Fisiopatologia. Facultad de Farmacia y Bioquimica. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jose E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
8
|
Qi HY, Li L, Ma H. Cellular stress response mechanisms as therapeutic targets of ginsenosides. Med Res Rev 2017; 38:625-654. [DOI: 10.1002/med.21450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/28/2017] [Accepted: 04/14/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Hong-yi Qi
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| | - Li Li
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| | - Hui Ma
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| |
Collapse
|
9
|
Kane AE, Huizer-Pajkos A, Mach J, McKenzie C, Mitchell SJ, de Cabo R, Jones B, Cogger V, Le Couteur DG, Hilmer SN. N-Acetyl cysteine does not prevent liver toxicity from chronic low-dose plus subacute high-dose paracetamol exposure in young or old mice. Fundam Clin Pharmacol 2016; 30:263-75. [PMID: 26821200 DOI: 10.1111/fcp.12184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/07/2016] [Accepted: 01/25/2016] [Indexed: 12/27/2022]
Abstract
Paracetamol is an analgesic commonly used by people of all ages, which is well documented to cause severe hepatotoxicity with acute overexposures. The risk of hepatotoxicity from nonacute paracetamol exposures is less extensively studied, and this is the exposure most common in older adults. Evidence on the effectiveness of N-acetyl cysteine (NAC) for nonacute paracetamol exposures, in any age group, is lacking. This study aimed to examine the effect of long-term exposure to therapeutic doses of paracetamol and subacute paracetamol overexposure, in young and old mice, and to investigate whether NAC was effective at preventing paracetamol hepatotoxicity induced by these exposures. Young and old male C57BL/6 mice were fed a paracetamol-containing (1.33 g/kg food) or control diet for 6 weeks. Mice were then dosed orally eight times over 3 days with additional paracetamol (250 mg/kg) or saline, followed by either one or two doses of oral NAC (1200 mg/kg) or saline. Chronic low-dose paracetamol exposure did not cause hepatotoxicity in young or old mice, measured by serum alanine aminotransferase (ALT) elevation, and confirmed by histology and a DNA fragmentation assay. Subacute paracetamol exposure caused significant hepatotoxicity in young and old mice, measured by biochemistry (ALT) and histology. Neither a single nor double dose of NAC protected against this toxicity from subacute paracetamol in young or old mice. This finding has important clinical implications for treating toxicity due to different paracetamol exposure types in patients of all ages, and implies a need to develop new treatments for subacute paracetamol toxicity.
Collapse
Affiliation(s)
- Alice Elizabeth Kane
- Kolling Institute of Medical Research, Reserve Rd, St Leonards, NSW, Australia.,Royal North Shore Hospital, Reserve Rd, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Aniko Huizer-Pajkos
- Kolling Institute of Medical Research, Reserve Rd, St Leonards, NSW, Australia.,Royal North Shore Hospital, Reserve Rd, St Leonards, NSW, Australia
| | - John Mach
- Kolling Institute of Medical Research, Reserve Rd, St Leonards, NSW, Australia.,Royal North Shore Hospital, Reserve Rd, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Catriona McKenzie
- Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, Australia
| | - Sarah Jayne Mitchell
- National Institute on Aging, National Institutes of Health, Nathan Shock Dr, Baltimore, MD, USA
| | - Rafael de Cabo
- National Institute on Aging, National Institutes of Health, Nathan Shock Dr, Baltimore, MD, USA
| | - Brett Jones
- Kolling Institute of Medical Research, Reserve Rd, St Leonards, NSW, Australia.,Royal North Shore Hospital, Reserve Rd, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Victoria Cogger
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Centre for Education and Research on Ageing and ANZAC Research Institute, Hospital Rd, Concord, NSW, Australia
| | - David G Le Couteur
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Centre for Education and Research on Ageing and ANZAC Research Institute, Hospital Rd, Concord, NSW, Australia
| | - Sarah Nicole Hilmer
- Kolling Institute of Medical Research, Reserve Rd, St Leonards, NSW, Australia.,Royal North Shore Hospital, Reserve Rd, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
10
|
Holm JB, Mazaud-Guittot S, Danneskiold-Samsøe NB, Chalmey C, Jensen B, Nørregård MM, Hansen CH, Styrishave B, Svingen T, Vinggaard AM, Koch HM, Bowles J, Koopman P, Jégou B, Kristiansen K, Kristensen DM. Intrauterine Exposure to Paracetamol and Aniline Impairs Female Reproductive Development by Reducing Follicle Reserves and Fertility. Toxicol Sci 2016; 150:178-89. [DOI: 10.1093/toxsci/kfv332] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
11
|
Kane AE, Mitchell SJ, Mach J, Huizer-Pajkos A, McKenzie C, Jones B, Cogger V, Le Couteur DG, de Cabo R, Hilmer SN. Acetaminophen hepatotoxicity in mice: Effect of age, frailty and exposure type. Exp Gerontol 2015; 73:95-106. [PMID: 26615879 DOI: 10.1016/j.exger.2015.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/21/2015] [Accepted: 11/22/2015] [Indexed: 12/12/2022]
Abstract
Acetaminophen is a commonly used analgesic that can cause severe hepatotoxicity in overdose. Despite old age and frailty being associated with extensive and long-term utilization of acetaminophen and a high prevalence of adverse drug reactions, there is limited information on the risks of toxicity from acetaminophen in old age and frailty. This study aimed to assess changes in the risk and mechanisms of hepatotoxicity from acute, chronic and sub-acute acetaminophen exposure with old age and frailty in mice. Young and old male C57BL/6 mice were exposed to either acute (300 mg/kg via oral gavage), chronic (100 mg/kg/day in diet for six weeks) or sub-acute (250 mg/kg, t.i.d., for three days) acetaminophen, or saline control. Pre-dosing mice were scored for the mouse clinical frailty index, and after dosing serum and liver tissue were collected for assessment of toxicity and mechanisms. There were no differences with old age or frailty in the degree of hepatotoxicity induced by acute, chronic or subacute acetaminophen exposure as assessed by serum liver enzymes and histology. Age-related changes in the acetaminophen toxicity pathways included increased liver GSH concentrations, increased NQO1 activity and an increased pro- and anti-inflammatory response to acetaminophen in old age. Frailty-related changes included a negative correlation between frailty index and serum protein, albumin and ALP concentrations for some mouse groups. In conclusion, although there were changes in some pathways that would be expected to influence susceptibility to acetaminophen toxicity, there was no overall increase in acetaminophen hepatotoxicity with old age or frailty in mice.
Collapse
Affiliation(s)
- Alice E Kane
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Royal North Shore Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | | | - John Mach
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Royal North Shore Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Aniko Huizer-Pajkos
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Royal North Shore Hospital, Sydney, NSW, Australia.
| | | | - Brett Jones
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Royal North Shore Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Victoria Cogger
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Centre for Education and Research on Ageing, ANZAC Research Institute, Sydney, NSW, Australia.
| | - David G Le Couteur
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Centre for Education and Research on Ageing, ANZAC Research Institute, Sydney, NSW, Australia.
| | | | - Sarah N Hilmer
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Royal North Shore Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Mcgill MR, Jaeschke H. A direct comparison of methods used to measure oxidized glutathione in biological samples: 2-vinylpyridine and N-ethylmaleimide. Toxicol Mech Methods 2015; 25:589-95. [PMID: 26461121 DOI: 10.3109/15376516.2015.1094844] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ratio of glutathione disulfide (GSSG) to reduced glutathione (GSH) in biological samples is a frequently used parameter of oxidative stress. As a result, many methods are developed to measure GSSG. The most popular and convenient of these relies on enzymatic cycling following the chemical masking of GSH in the sample using 2-vinylpyridine (2VP). However, 2VP is a slow reactant and its use may result in artificially high GSSG values due to oxidation of the sample over time. Fast-reacting reagents such as N-ethylmaleimide (NEM) may provide more accurate results. We performed a direct comparison of methods using 2VP and NEM. With 2VP, the percentage of total glutathione (GSH+GSSG) in the oxidized form was significantly higher in all tested tissues (kidney, lung and liver) compared to the same procedure performed using NEM. We conclude that NEM, when coupled with a simple solid-phase extraction procedure, is more accurate for the determination of GSSG. We also tested the effects of various handling and storage conditions on GSSG. A detailed description and a discussion of other methods are also included.
Collapse
Affiliation(s)
- Mitchell R Mcgill
- a Department of Pharmacology , Toxicology and Therapeutics, University of Kansas Medical Center , Kansas City , KS , USA
| | - Hartmut Jaeschke
- a Department of Pharmacology , Toxicology and Therapeutics, University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
13
|
Effect of prenatal and early life paracetamol exposure on the level of neurotransmitters in rats—Focus on the spinal cord. Int J Dev Neurosci 2015; 47:133-9. [DOI: 10.1016/j.ijdevneu.2015.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/25/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022] Open
|
14
|
Holm JB, Chalmey C, Modick H, Jensen LS, Dierkes G, Weiss T, Jensen BAH, Nørregård MM, Borkowski K, Styrishave B, Martin Koch H, Mazaud-Guittot S, Jegou B, Kristiansen K, Kristensen DM. Aniline Is Rapidly Converted Into Paracetamol Impairing Male Reproductive Development. Toxicol Sci 2015; 148:288-98. [DOI: 10.1093/toxsci/kfv179] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
15
|
Ghanem CI, Rudraiah S, Bataille AM, Vigo MB, Goedken MJ, Manautou JE. Role of nuclear factor-erythroid 2-related factor 2 (Nrf2) in the transcriptional regulation of brain ABC transporters during acute acetaminophen (APAP) intoxication in mice. Biochem Pharmacol 2015; 94:203-11. [PMID: 25667042 DOI: 10.1016/j.bcp.2015.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Changes in expression of liver ABC transporters have been described during acute APAP intoxication. However, the effect of APAP on brain ABC transporters is poorly understood. The aim of this study was to evaluate the effect of APAP on brain ABC transporters expression and the role of the oxidative stress sensor Nrf2. Male C57BL/6J mice were administered APAP (400mg/kg) for analysis of brain mRNA and protein expression of Mrp1-6, Bcrp and P-gp. The results show induction of P-gp, Mrp2 and Mrp4 proteins, with no changes in Bcrp, Mrp1 or Mrp5-6. The protein values were accompanied by corresponding changes in mRNA levels. Additionally, brain Nrf2 nuclear translocation and expression of two Nrf2 target genes, NAD(P)H quinone oxidoreductase 1 (Nqo1) and Hemoxygenase 1 (Ho-1), was evaluated at 6, 12 and 24h after APAP treatment. Nrf2 nuclear content increased by 58% at 12h after APAP along with significant increments in mRNA and protein expression of Nqo1 and Ho-1. Furthermore, APAP treated Nrf2 knockout mice did not increase mRNA or protein expression of Mrp2 and Mrp4 as observed in wildtypes. In contrast, P-gp induction by APAP was observed in both genotypes. In conclusion, acute APAP intoxication induces protein expression of brain P-gp, Mrp2 and Mrp4. This study also suggests that brain changes in Mrp2 and Mrp4 expression may be due to in situ Nrf2 activation by APAP, while P-gp induction is independent of Nrf2 function. The functional consequences of these changes in brain ABC transporters by APAP deserve further attention.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina; Cátedra de Fisiopatología. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Amy M Bataille
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - María B Vigo
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Michael J Goedken
- Office of Translational Science, Rutgers University, Piscataway, NJ 08854, United States
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States.
| |
Collapse
|
16
|
Jang YH, You DH, Nam MJ. Protective effects of HGF gene-expressing human mesenchymal stem cells in acetaminophen-treated hepatocytes. Growth Factors 2015; 33:319-25. [PMID: 26567452 DOI: 10.3109/08977194.2015.1080695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cells (MSC) secrete a great variety of cytokines that have beneficial paracrine actions. Hepatocyte growth factor (HGF) promotes proliferation in several cell types. The aim of the present study was to investigate the protective effect of HGF gene-transfected MSC (HGF-MSC) in acetaminophen (AAP)-treated hepatocytes. We transfected the HGF gene into MSCs and confirmed HGF expression by RT-PCR and western blot. The concentration of HGF in HGF-MSC conditioned media (HGFCM) was upregulated compared with that in control MSCCM samples. Cell viability was increased in HGFCM-treated hepatocytes. Expression of Mcl-1, an anti-apoptosis protein, was increased and expression of pro-apoptosis proteins (Bad, Bik and Bid) was decreased in HGFCM-treated hepatocytes. HGF-MSC had protective effects on AAP-induced hepatocyte damage by enhancing proliferation. These results suggest that HGF-expressing MSCs may provide regenerative potential for liver cell damage.
Collapse
Affiliation(s)
- Yun Ho Jang
- a Department of Biological Science , Gachon University , Seongnam , South Korea and
| | - Dong Hun You
- a Department of Biological Science , Gachon University , Seongnam , South Korea and
| | - Myeong Jin Nam
- a Department of Biological Science , Gachon University , Seongnam , South Korea and
- b HanCell Inc. , Incheon , South Korea
| |
Collapse
|
17
|
Hou X, Yu Q, Zeng F, Ye J, Wu S. A ratiometric fluorescent probe for in vivo tracking of alkaline phosphatase level variation resulting from drug-induced organ damage. J Mater Chem B 2014; 3:1042-1048. [PMID: 32261982 DOI: 10.1039/c4tb01744g] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Clinical drug-induced organ toxicity and damage have been recognized as an important public health issue, and an effective approach capable of in vivo detection of biomarkers resulting from drug-induced organ damage is being actively pursued. Herein, we demonstrate a ratiometric fluorescent probe that can trace the variation in alkaline phosphatase (ALP, an organ damage biomarker) levels spatially in vivo. The probe was synthesized by incorporating a phosphate group and an amine-N-oxide group on a 1,8-naphthalimide derivative. The presence of ALP cleaves the phosphate group from naphthalimide and remarkably alters the probe's photophysical properties, thus achieving ratiometric detection of ALP. The incorporation of amine-N-oxide ensures excellent water solubility and biocompatibility, which guarantees the ratiometric detection of ALP in aqueous media and in the cells overexpressed with ALP. With a detection limit of 0.38 U L-1, the probe was successfully used in detecting ALP in human serum samples. Moreover, the probe can be employed to monitor and spatially map the endogenous variation in ALP levels in zebrafishes. This is the first observation, to our knowledge, of organ-scale ALP pattern in vivo as a result of clinical drug (APAP) induced damage.
Collapse
Affiliation(s)
- Xianfeng Hou
- College of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | |
Collapse
|
18
|
LeBlanc A, Shiao TC, Roy R, Sleno L. Absolute Quantitation of NAPQI-Modified Rat Serum Albumin by LC–MS/MS: Monitoring Acetaminophen Covalent Binding in Vivo. Chem Res Toxicol 2014; 27:1632-9. [DOI: 10.1021/tx500284g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- André LeBlanc
- Pharmaqam, Chemistry Department, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, Québec H3C 3P8, Canada
| | - Tze Chieh Shiao
- Pharmaqam, Chemistry Department, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, Québec H3C 3P8, Canada
| | - René Roy
- Pharmaqam, Chemistry Department, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, Québec H3C 3P8, Canada
| | - Lekha Sleno
- Pharmaqam, Chemistry Department, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
19
|
The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis. Toxicol Appl Pharmacol 2014; 277:77-85. [PMID: 24631341 DOI: 10.1016/j.taap.2014.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/18/2014] [Accepted: 02/28/2014] [Indexed: 01/05/2023]
Abstract
Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis.
Collapse
|
20
|
Blecharz-Klin K, Joniec-Maciejak I, Piechal A, Pyrzanowska J, Wawer A, Widy-Tyszkiewicz E. Paracetamol impairs the profile of amino acids in the rat brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:95-102. [PMID: 24316461 DOI: 10.1016/j.etap.2013.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/18/2013] [Accepted: 11/01/2013] [Indexed: 06/02/2023]
Abstract
In our experiment we investigated the effect of subcutaneous administration of paracetamol on the levels of amino acids in the brain structures. Male Wistar rats received for eight weeks paracetamol at two doses: 10 mg/kg b.w. (group P10, n=9) and 50 mg/kg b.w. per day s.c. (group P50, n=9). The regional brain concentrations of amino acids were determined in the prefrontal cortex, hippocampus, hypothalamus and striatum of control (Con, n=9) and paracetamol-treated groups using HPLC. Evaluation of the biochemical results indicated considerable decrease of the content of amino acids in the striatum (glutamine, glutamic acid, taurine, alanine, aspartic acid) and hypothalamus (glycine) between groups treated with paracetamol compared to the control. In the prefrontal cortex paracetamol increased the level of γ-aminobutyric acid (GABA). The present study demonstrated significant effect of the long term paracetamol treatment on the level of amino acids in the striatum, prefrontal cortex and hypothalamus of rats.
Collapse
Affiliation(s)
- Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| | - Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| | - Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| | - Adriana Wawer
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| | - Ewa Widy-Tyszkiewicz
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland.
| |
Collapse
|
21
|
Gum SI, Cho MK. Recent updates on acetaminophen hepatotoxicity: the role of nrf2 in hepatoprotection. Toxicol Res 2013; 29:165-72. [PMID: 24386516 PMCID: PMC3877995 DOI: 10.5487/tr.2013.29.3.165] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/26/2022] Open
Abstract
Acetaminophen (APAP) known as paracetamol is the main ingredient in Tylenol, which has analgesic and anti-pyretic properties. Inappropriate use of APAP causes major morbidity and mortality secondary to hepatic failure. Overdose of APAP depletes the hepatic glutathione (GSH) rapidly, and the metabolic intermediate leads to hepatocellular death. This article reviews the mechanisms of hepatotoxicity and provides an overview of current research studies. Pharmacokinetics including metabolism (activation and detoxification), subsequent transport (efflux)-facilitating excretion, and some other aspects related to toxicity are discussed. Nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated gene battery plays a critical role in the multiple steps associated with the mitigation of APAP toxicity. The role of Nrf2 as a protective target is described, and potential natural products inhibiting APAP toxicity are outlined. This review provides an update on the mechanism of APAP toxicity and highlights the beneficial role of Nrf2 and specific natural products in hepatoprotection.
Collapse
Affiliation(s)
- Sang Il Gum
- Department of Pharmacology, College of Oriental Medicine, Dongguk University, Kyungju, Korea
| | - Min Kyung Cho
- Department of Pharmacology, College of Oriental Medicine, Dongguk University, Kyungju, Korea
| |
Collapse
|
22
|
Gum SI, Cho MK. Korean red ginseng extract prevents APAP-induced hepatotoxicity through metabolic enzyme regulation: the role of ginsenoside Rg3, a protopanaxadiol. Liver Int 2013; 33:1071-84. [PMID: 23750847 DOI: 10.1111/liv.12046] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/19/2012] [Accepted: 11/03/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inappropriate use of acetaminophen (APAP) can lead to morbidity and mortality secondary to hepatic necrosis. AIMS We evaluated the beneficial effect and molecular mechanism of Korean red ginseng (KRG) on the APAP-mediated hepatotoxicity and identified a major component of KRG for hepatoprotection. METHODS Survival test, liver function test, histopathological study, APAP-metabolic profiling and gene expression were examined in mice. We determined the enzyme expression and upstream signalling in H4IIE cells analysed by RT-PCR, immunoblotting, siRNA gene knockdown and promoter-luciferase assay. RESULTS High doses of KRG reduced mortality at the LD50 of APAP. APAP increased AST and ALT activities, which were abrogated by low doses of KRG. These protective effects were consistent with the results from histopathological examinations. KRG altered APAP metabolic profiles through inhibition of cytochrome P450 2E1 and induction of glutathione S-transferase A2 (GSTA2). Knockdown of GSTA2 catalyses the conjugation of glutathione reversed KRG-mediated protection against N-acetyl-p-benzoquinone imine in H4IIE cells. The nuclear Nrf2 and C/EBPβ, which are essential transcriptional factors for GSTA2 were increased by KRG. These effects were downstream of multiple signalling, including PI3K, JNK or PKA. Ginsenoside Rg3 but not Rb1, Rc and Rg1 significantly increased GSTA2 protein expression. Rg3 resulted in the transcriptional activation of GSTA2 downstream of the multiple cellular signalling. CONCLUSIONS These results demonstrate that KRG is efficacious in protection against APAP-induced hepatotoxicity and mortality through metabolic regulation and that Rg3 is a major component of KRG for the GST induction, implying that Rg3 should be considered to be a potential hepatoprotective agent.
Collapse
Affiliation(s)
- Sang Il Gum
- Department of Pharmacology, Dongguk University, Kyungju, Korea
| | | |
Collapse
|
23
|
Novak A, Carpini GD, Ruiz ML, Luquita MG, Rubio MC, Mottino AD, Ghanem CI. Acetaminophen inhibits intestinal p-glycoprotein transport activity. J Pharm Sci 2013; 102:3830-7. [PMID: 23897240 DOI: 10.1002/jps.23673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/31/2013] [Accepted: 06/27/2013] [Indexed: 01/15/2023]
Abstract
Repeated acetaminophen (AP) administration modulates intestinal P-glycoprotein (P-gp) expression. Whether AP can modulate P-gp activity in a short-term fashion is unknown. We investigated the acute effect of AP on rat intestinal P-gp activity in vivo and in vitro. In everted intestinal sacs, AP inhibited serosal-mucosal transport of rhodamine 123 (R123), a prototypical P-gp substrate. R123 efflux plotted against R123 concentration adjusted well to a sigmoidal curve. Vmax decreased 50% in the presence of AP, with no modification in EC50, or slope, ruling out the possibility of inhibition to be competitive. Inhibition by AP was absent at 0°C, consistent with interference of the active transport of R123 by AP. Additionally, AP showed no effect on normal localization of P-gp at the apical membrane of the enterocyte and neither affected paracellular permeability. Consistent with absence of a competitive inhibition, two further strategies strongly suggested that AP is not a P-gp substrate. First, serosal-mucosal transport of AP was not affected by the classical P-gp inhibitors verapamil or Psc 833. Second, AP accumulation was not different between P-gp knock-down and wild-type HepG2 cells. In vivo intestinal absorption of digoxin, another substrate of P-gp, was assessed in the presence or absence of AP (100 μM). Portal digoxin concentration was increased by 214%, in average, by AP, as compared with digoxin alone. In conclusion, AP inhibited P-gp activity, increasing intestinal absorption of digoxin, a prototypical substrate. These results suggest that therapeutic efficacy of P-gp substrates can be altered if coadministered with AP.
Collapse
Affiliation(s)
- Analia Novak
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
24
|
Effects of an Agaricus blazei aqueous extract pretreatment on paracetamol-induced brain and liver injury in rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:469180. [PMID: 23984368 PMCID: PMC3741950 DOI: 10.1155/2013/469180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/02/2013] [Indexed: 11/17/2022]
Abstract
The action of an Agaricus blazei aqueous extract pretreatment on paracetamol injury in rats was examined not only in terms of the classical indicators (e.g., levels of hepatic enzymes in the plasma) but also in terms of functional and metabolic parameters (e.g., gluconeogenesis). Considering solely the classical indicators for tissue damage, the results can be regarded as an indication that the A. blazei extract is able to provide a reasonable degree of protection against the paracetamol injury in both the hepatic and brain tissues. The A. blazei pretreatment largely prevented the increased levels of hepatic enzymes in the plasma (ASP, ALT, LDH, and ALP) and practically normalized the TBARS levels in both liver and brain tissues. With respect to the functional and metabolic parameters of the liver, however, the extract provided little or no protection. This includes morphological signs of inflammation and the especially important functional parameter gluconeogenesis, which was impaired by paracetamol. Considering these results and the long list of extracts and substances that are said to have hepatoprotective effects, it would be useful to incorporate evaluations of functional parameters into the experimental protocols of studies aiming to attribute or refute effective hepatoprotective actions to natural products.
Collapse
|
25
|
Hepatoprotective effects of mushrooms. Molecules 2013; 18:7609-30. [PMID: 23884116 PMCID: PMC6270077 DOI: 10.3390/molecules18077609] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/23/2022] Open
Abstract
The particular characteristics of growth and development of mushrooms in nature result in the accumulation of a variety of secondary metabolites such as phenolic compounds, terpenes and steroids and essential cell wall components such as polysaccharides, β-glucans and proteins, several of them with biological activities. The present article outlines and discusses the available information about the protective effects of mushroom extracts against liver damage induced by exogenous compounds. Among mushrooms, Ganoderma lucidum is indubitably the most widely studied species. In this review, however, emphasis was given to studies using other mushrooms, especially those presenting efforts of attributing hepatoprotective activities to specific chemical components usually present in the mushroom extracts.
Collapse
|
26
|
The amelioration of N-acetyl-p-benzoquinone imine toxicity by ginsenoside Rg3: the role of Nrf2-mediated detoxification and Mrp1/Mrp3 transports. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:957947. [PMID: 23766864 PMCID: PMC3666202 DOI: 10.1155/2013/957947] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022]
Abstract
Previously, we found that Korean red ginseng suppressed acetaminophen (APAP)-induced hepatotoxicity via alteration of its metabolic profile involving GSTA2 induction and that ginsenoside Rg3 was a major component of this gene induction. In the present study, therefore, we assessed the protective effect of Rg3 against N-acetyl-p-benzoquinone imine (NAPQI), a toxic metabolic intermediate of APAP. Excess NAPQI resulted in GSH depletion with increases in the ALT and AST activities in H4IIE cells. Rg3 pretreatment reversed GSH depletion by NAPQI. Rg3 resulted in increased mRNA levels of the catalytic and modulatory subunit of glutamate cysteine ligase (GCL), the rate-limiting steps in GSH synthesis and subsequently increased GSH content. Rg3 increased levels of nuclear Nrf2, an essential transcriptional factor of these genes. The knockdown or knockout of the Nrf2 gene abrogated the inductions of mRNA and protein by Rg3. Abolishment of the reversal of GSH depletion by Rg3 against NAPQI was observed in Nrf2-deficient cells. Rg3 induced multidrug resistance-associated protein (Mrp) 1 and Mrp3 mRNA levels, but not in Nrf2-deficient cells. Taken together, these results demonstrate that Rg3 is efficacious in protecting hepatocytes against NAPQI insult, due to GSH repletion and coordinated gene regulations of GSH synthesis and Mrp family genes by Nrf2.
Collapse
|
27
|
The pharmacokinetic profile of intravenous paracetamol in adult patients undergoing major abdominal surgery. Ther Drug Monit 2013; 34:713-21. [PMID: 23149443 DOI: 10.1097/ftd.0b013e31826a70ea] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Intravenous (IV) paracetamol is commonly used in the postoperative period for the treatment of mild to moderate pain. The main pathways for paracetamol metabolism are glucuronidation, sulfation, and oxidation, accounting for approximately 55%, 30%, and 10% of urinary metabolites, respectively. The aim of this study was to describe the pharmacokinetics of IV paracetamol and its metabolites in adult patients after major abdominal surgery. METHODS Twenty patients were given 1 g of paracetamol by IV infusion at induction of anesthesia (Interval 1) and every 6 hours thereafter, with the final dose given at 48-72 hours (Interval 2). Plasma and urine samples were collected for up to 8 hours after infusion for both intervals. The samples were analyzed by high-performance liquid chromatography to determine the amount of paracetamol and its metabolites. The data were modeled in Phoenix WinNonlin using a user-defined ASCII parent-metabolite model with linear disposition, to obtain the estimates for volume of distribution, metabolic and urinary clearance. RESULTS Mean (95% confidence interval) metabolic clearance to paracetamol glucuronide increased from 0.06 (0.05-0.08) to 0.14 (0.11-0.18) L · h⁻¹ · kg⁻¹, P value <0.001 and urinary clearance increased from 0.08 (0.07-0.09) to 0.14 (0.10-0.17) L · h⁻¹ · kg⁻¹, P value 0.002. The mean (95% confidence interval) volume of distribution of paracetamol increased from 0.17 (0.12-0.21) to 0.43 (0.27-0.59) L · kg⁻¹, P value 0.032. CONCLUSIONS After major abdominal surgery, there were apparent increases in the metabolic conversion to paracetamol glucuronide and its urinary clearance suggesting potential induction of paracetamol glucuronidation.
Collapse
|
28
|
Christiansen S, Kortenkamp A, Axelstad M, Boberg J, Scholze M, Jacobsen PR, Faust M, Lichtensteiger W, Schlumpf M, Burdorf A, Hass U. Mixtures of endocrine disrupting contaminants modelled on human high end exposures: an exploratory study in rats. ACTA ACUST UNITED AC 2012; 35:303-16. [DOI: 10.1111/j.1365-2605.2011.01242.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Ghanem CI, Arias A, Novak A, Carpini GD, Villanueva S, Blazquez AG, Marin JJ, Mottino AD, Rubio MC. Acetaminophen-induced stimulation of MDR1 expression and activity in rat intestine and in LS 174T human intestinal cell line. Biochem Pharmacol 2011; 81:244-50. [DOI: 10.1016/j.bcp.2010.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
|
30
|
Kristensen DM, Hass U, Lesné L, Lottrup G, Jacobsen PR, Desdoits-Lethimonier C, Boberg J, Petersen JH, Toppari J, Jensen TK, Brunak S, Skakkebaek NE, Nellemann C, Main KM, Jégou B, Leffers H. Intrauterine exposure to mild analgesics is a risk factor for development of male reproductive disorders in human and rat. Hum Reprod 2010; 26:235-44. [PMID: 21059752 DOI: 10.1093/humrep/deq323] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND More than half of pregnant women in the Western world report intake of mild analgesics, and some of these drugs have been associated with anti-androgenic effects in animal experiments. Intrauterine exposure to anti-androgens is suspected to contribute to the recent increase in male reproductive problems, and many of the anti-androgenic compounds are like the mild analgesics potent inhibitors of prostaglandin synthesis. Therefore, it appears imperative to further investigate the potential endocrine disrupting properties of mild analgesics. METHODS In a prospective birth cohort study, 2297 Danish and Finnish pregnant women completed a questionnaire and 491 of the Danish mothers participated in a telephone interview, reporting on their use of mild analgesics during pregnancy. The testicular position of newborns was assessed by trained paediatricians. In rats, the impact of mild analgesics on anogenital distance (AGD) after intrauterine exposure was examined together with the effect on ex vivo gestational day 14.5 testes. RESULTS In the Danish birth cohort, the use of mild analgesics was dose-dependently associated with congenital cryptorchidism. In particular, use during the second trimester increased the risk. This risk was further increased after the simultaneous use of different analgesics. The association was not found in the Finnish birth cohort. Intrauterine exposure of rats to paracetamol led to a reduction in the AGD and mild analgesics accordingly reduced testosterone production in ex vivo fetal rat testes. CONCLUSION There was an association between the timing and the duration of mild analgesic use during pregnancy and the risk of cryptorchidism. These findings were supported by anti-androgenic effects in rat models leading to impaired masculinization. Our results suggest that intrauterine exposure to mild analgesics is a risk factor for development of male reproductive disorders.
Collapse
Affiliation(s)
- David Møbjerg Kristensen
- Department of Growth and Reproduction, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 568] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|