1
|
Fawzy MH, Moustafa YM, Khodeer DM, Saeed NM, El-Sayed NM. Doxepin as OCT2 inhibitor ameliorates inflammatory response and modulates PI3K/Akt signaling associated with cisplatin-induced nephrotoxicity in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03473-1. [PMID: 39400714 DOI: 10.1007/s00210-024-03473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Organic cationic transporter 2 (OCT2) was identified as the main transporter involved in the accumulation of cisplatin (CP) in the proximal tubular renal cells, resulting in nephrotoxicity. Doxepin (DOX) is a tricyclic agent with an inhibitory effect on OCT2. This study aimed to explore the possible mechanisms of the renoprotective role of DOX toward CP-induced nephrotoxicity. Rats were randomly divided into six groups: group 1, control; group 2, CP; groups 3, 4, and 5 were treated with graded doses of DOX (5, 10, and 20 mg/kg, respectively) intraperitoneally (ip) once daily for 10 consecutive days and group 6 was treated only with DOX (20 mg/kg). On the seventh day, a single injected dose of CP (10 mg/kg, ip) was given to the rats in groups 2-5. Seventy-two hours after CP injection, rats were sacrificed, and the kidneys were removed for histological and biochemical measurements. DOX ameliorated the CP-induced histopathological alterations. DOX significantly reduced the expression of OCT2, lipid peroxidation marker (MDA), and inflammatory cytokines, including TNF-α, IL-6, IL-1, IL-2, and IL-1β, and increased the activity of antioxidant enzymes. In addition, pre- and co-treatment with DOX significantly reduced the CP-mediated apoptotic effect by reducing the renal tissue expression of BAX and caspase-3 levels, upregulating the expression of Bcl-2, and modulating the phosphorylation of PI3K/Akt signaling cascade. DOX exerts a nephroprotective impact against CP-mediated nephrotoxicity via the inhibition of OCT2, suppression of inflammation, oxidative stress, and apoptotic markers, and modulation of PI3K/Akt signaling cascade.
Collapse
Affiliation(s)
- Mariam H Fawzy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo, Badr City, Egypt
| | - Dina M Khodeer
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Noha M Saeed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Norhan M El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
2
|
Lyrio RMDC, Rocha BRA, Corrêa ALRM, Mascarenhas MGS, Santos FL, Maia RDH, Segundo LB, de Almeida PAA, Moreira CMO, Sassi RH. Chemotherapy-induced acute kidney injury: epidemiology, pathophysiology, and therapeutic approaches. FRONTIERS IN NEPHROLOGY 2024; 4:1436896. [PMID: 39185276 PMCID: PMC11341478 DOI: 10.3389/fneph.2024.1436896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Despite significant advancements in oncology, conventional chemotherapy remains the primary treatment for diverse malignancies. Acute kidney injury (AKI) stands out as one of the most prevalent and severe adverse effects associated with these cytotoxic agents. While platinum compounds are well-known for their nephrotoxic potential, other drugs including antimetabolites, alkylating agents, and antitumor antibiotics are also associated. The onset of AKI poses substantial risks, including heightened morbidity and mortality rates, prolonged hospital stays, treatment interruptions, and the need for renal replacement therapy, all of which impede optimal patient care. Various proactive measures, such as aggressive hydration and diuresis, have been identified as potential strategies to mitigate AKI; however, preventing its occurrence during chemotherapy remains challenging. Additionally, several factors, including intravascular volume depletion, sepsis, exposure to other nephrotoxic agents, tumor lysis syndrome, and direct damage from cancer's pathophysiology, frequently contribute to or exacerbate kidney injury. This article aims to comprehensively review the epidemiology, mechanisms of injury, diagnosis, treatment options, and prevention strategies for AKI induced by conventional chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Felipe Luz Santos
- Department of Medicine, Universidade Salvador (UNIFACS), Salvador, Brazil
| | | | | | | | | | - Rafael Hennemann Sassi
- Hematology Department, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
3
|
Oishi H, Tabibzadeh N, Morizane R. Advancing preclinical drug evaluation through automated 3D imaging for high-throughput screening with kidney organoids. Biofabrication 2024; 16:10.1088/1758-5090/ad38df. [PMID: 38547531 PMCID: PMC11304660 DOI: 10.1088/1758-5090/ad38df] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
High-throughput drug screening is crucial for advancing healthcare through drug discovery. However, a significant limitation arises from availablein vitromodels using conventional 2D cell culture, which lack the proper phenotypes and architectures observed in three-dimensional (3D) tissues. Recent advancements in stem cell biology have facilitated the generation of organoids-3D tissue constructs that mimic human organsin vitro. Kidney organoids, derived from human pluripotent stem cells, represent a significant breakthrough in disease representation. They encompass major kidney cell types organized within distinct nephron segments, surrounded by stroma and endothelial cells. This tissue allows for the assessment of structural alterations such as nephron loss, a characteristic of chronic kidney disease. Despite these advantages, the complexity of 3D structures has hindered the use of organoids for large-scale drug screening, and the drug screening pipelines utilizing these complexin vitromodels remain to be established for high-throughput screening. In this study, we address the technical limitations of kidney organoids through fully automated 3D imaging, aided by a machine-learning approach for automatic profiling of nephron segment-specific epithelial morphometry. Kidney organoids were exposed to the nephrotoxic agent cisplatin to model severe acute kidney injury. An U.S. Food and Drug Administration (FDA)-approved drug library was tested for therapeutic and nephrotoxicity screening. The fully automated pipeline of 3D image acquisition and analysis identified nephrotoxic or therapeutic drugs during cisplatin chemotherapy. The nephrotoxic potential of these drugs aligned with previousin vivoand human reports. Additionally, Imatinib, a tyrosine kinase inhibitor used in hematological malignancies, was identified as a potential preventive therapy for cisplatin-induced kidney injury. Our proof-of-concept report demonstrates that the automated screening process, using 3D morphometric assays with kidney organoids, enables high-throughput screening for nephrotoxicity and therapeutic assessment in 3D tissue constructs.
Collapse
Affiliation(s)
- Haruka Oishi
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Nahid Tabibzadeh
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Ryuji Morizane
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, United States of America
| |
Collapse
|
4
|
Shin KH, Lee KR, Kang MJ, Chae YJ. Strong inhibition of organic cation transporter 2 by flavonoids and attenuation effects on cisplatin-induced cytotoxicity. Chem Biol Interact 2023; 379:110504. [PMID: 37084994 DOI: 10.1016/j.cbi.2023.110504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Organic cation transporter 2 (OCT2) is predominantly expressed in the basolateral membrane of renal proximal tubule cells and contributes to the renal excretion of various drugs such as metformin, cisplatin, oxaliplatin, cimetidine, and lamivudine. Cisplatin, an anticancer agent for various cancers, is a substrate of OCT2, and cisplatin-induced nephrotoxicity is in part attributed to OCT2 activity in the kidney, which increases the renal accumulation of cisplatin. In this study, we aimed to identify flavone derivatives with strong inhibitory effects on OCT2 transport. Among the 80 flavonoids tested, 24 showed moderate to strong inhibitory effects against OCT2 transport activity. The IC50 values were less than 5 μM for 10 flavonoids. All 10 compounds alleviated cisplatin-induced cytotoxicity in cells expressing OCT2, even though the magnitude of the effects varied depending on the functional moieties in each position. Multiple factor analysis revealed that the methyl group at the R1 position and methoxy group at the R6 position of the flavonol backbone are important for OCT2 inhibition. Information on the functional moieties in the flavonol backbone would help develop effective OCT2 inhibitors by providing a structural association with OCT2 inhibitory effects. In addition, the compounds with strong inhibitory effects on OCT2 identified in this study may be potential candidates for clinical use to mitigate cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Kwang-Hee Shin
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, South Korea; Department of Bioscience, University of Science and Technology, Daejeon, 34113, South Korea
| | - Min-Ji Kang
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju, 55338, South Korea
| | - Yoon-Jee Chae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju, 55338, South Korea.
| |
Collapse
|
5
|
The Role of Organic Cation Transporters in the Pharmacokinetics, Pharmacodynamics and Drug-Drug Interactions of Tyrosine Kinase Inhibitors. Int J Mol Sci 2023; 24:ijms24032101. [PMID: 36768423 PMCID: PMC9917293 DOI: 10.3390/ijms24032101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) decisively contributed in revolutionizing the therapeutic approach to cancer, offering non-invasive, tolerable therapies for a better quality of life. Nonetheless, degree and duration of the response to TKI therapy vary depending on cancer molecular features, the ability of developing resistance to the drug, on pharmacokinetic alterations caused by germline variants and unwanted drug-drug interactions at the level of membrane transporters and metabolizing enzymes. A great deal of approved TKIs are inhibitors of the organic cation transporters (OCTs). A handful are also substrates of them. These transporters are polyspecific and highly expressed in normal epithelia, particularly the intestine, liver and kidney, and are, hence, arguably relevant sites of TKI interactions with other OCT substrates. Moreover, OCTs are often repressed in cancer cells and might contribute to the resistance of cancer cells to TKIs. This article reviews the OCT interactions with approved and in-development TKIs reported in vitro and in vivo and critically discusses the potential clinical ramifications thereof.
Collapse
|
6
|
Torres-Vergara P, Rivera R, Escudero C, Penny J. Maternal and Fetal Expression of ATP-Binding Cassette and Solute Carrier Transporters Involved in the Brain Disposition of Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:149-177. [PMID: 37466773 DOI: 10.1007/978-3-031-32554-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Evidence from preclinical and clinical studies demonstrate that pregnancy is a physiological state capable of modifying drug disposition. Factors including increased hepatic metabolism and renal excretion are responsible for impacting disposition, and the role of membrane transporters expressed in biological barriers, including the placental- and blood-brain barriers, has received considerable attention. In this regard, the brain disposition of drugs in the mother and fetus has been the subject of studies attempting to characterize the mechanisms by which pregnancy could alter the expression of ATP-binding cassette (ABC) and solute carrier (SLC) transporters. This chapter will summarize findings of the influence of pregnancy on the maternal and fetal expression of ABC and SLC transporters in the brain and the consequences of such changes on the disposition of therapeutic drugs.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.
- Grupo de Investigación Vascular (GRIVAS), Universidad del Bio-Bio, Chillán, Chile.
| | - Robin Rivera
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Grupo de Investigación Vascular (GRIVAS), Universidad del Bio-Bio, Chillán, Chile
- Laboratorio de Fisiología Vascular, Facultad de Ciencias Básicas, Universidad del Bio Bio, Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Saad AAA, Zhang F, Mohammed EAH, Wu X. Clinical Aspects of Drug–Drug Interaction and Drug Nephrotoxicity at Renal Organic Cation Transporters 2 (OCT2) and Multidrug and Toxin Exclusion 1, and 2-K (MATE1/MATE2-K). Biol Pharm Bull 2022; 45:382-393. [DOI: 10.1248/bpb.b21-00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Fan Zhang
- Department of Pharmacy, the First Hospital of Lanzhou University
| | | | - Xin’an Wu
- Department of Pharmacy, the First Hospital of Lanzhou University
| |
Collapse
|
8
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1180-1192. [DOI: 10.1093/jpp/rgac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022]
|
9
|
Uddin ME, Talebi Z, Chen S, Jin Y, Gibson AA, Noonan AM, Cheng X, Hu S, Sparreboom A. In Vitro and In Vivo Inhibition of MATE1 by Tyrosine Kinase Inhibitors. Pharmaceutics 2021; 13:pharmaceutics13122004. [PMID: 34959286 PMCID: PMC8707461 DOI: 10.3390/pharmaceutics13122004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
The membrane transport of many cationic prescription drugs depends on facilitated transport by organic cation transporters of which several members, including OCT2 (SLC22A2), are sensitive to inhibition by select tyrosine kinase inhibitors (TKIs). We hypothesized that TKIs may differentially interact with the renal transporter MATE1 (SLC47A1) and influence the elimination and toxicity of the MATE1 substrate oxaliplatin. Interactions with FDA-approved TKIs were evaluated in transfected HEK293 cells, and in vivo pharmacokinetic studies were performed in wild-type, MATE1-deficient, and OCT2/MATE1-deficient mice. Of 57 TKIs evaluated, 37 potently inhibited MATE1 function by >80% through a non-competitive, reversible, substrate-independent mechanism. The urinary excretion of oxaliplatin was reduced by about 2-fold in mice with a deficiency of MATE1 or both OCT2 and MATE1 (p < 0.05), without impacting markers of acute renal injury. In addition, genetic or pharmacological inhibition of MATE1 did not significantly alter plasma levels of oxaliplatin, suggesting that MATE1 inhibitors are unlikely to influence the safety or drug-drug interaction liability of oxaliplatin-based chemotherapy.
Collapse
Affiliation(s)
- Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (Z.T.); (Y.J.); (A.A.G.)
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (Z.T.); (Y.J.); (A.A.G.)
| | - Sijie Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.C.); (X.C.)
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (Z.T.); (Y.J.); (A.A.G.)
| | - Alice A. Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (Z.T.); (Y.J.); (A.A.G.)
| | - Anne M. Noonan
- Department of Internal Medicine, Division of Medical Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.C.); (X.C.)
| | - Shuiying Hu
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (Z.T.); (Y.J.); (A.A.G.)
- Correspondence:
| |
Collapse
|
10
|
Soodvilai S, Meetam P, Siangjong L, Chokchaisiri R, Suksamrarn A, Soodvilai S. Germacrone Reduces Cisplatin-Induced Toxicity of Renal Proximal Tubular Cells via Inhibition of Organic Cation Transporter. Biol Pharm Bull 2021; 43:1693-1698. [PMID: 33132314 DOI: 10.1248/bpb.b20-00392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cisplatin is a widely used chemotherapy for solid tumors; however, its benefits are limited by serious nephrotoxicity, particularly in proximal tubular cells. The present study investigated the renoprotective effect and mechanisms of germacrone, a bioactive terpenoid compound found in Curcuma species on cisplatin-induced toxicity of renal cells. Germacrone (50 and 100 µM) attenuated apoptosis of human renal proximal tubular cells, RPTEC/TERT1 following treatment with 50 µM cisplatin and for 48 h. Co-treating RPTEC/TERT1 cells with cisplatin and germacrone significantly reduced cellular platinum content compared with cisplatin treatment alone. The effect of germacrone on organic cation transporter 2 (OCT2) which is a transporter responsible for cisplatin uptake was determined. Germacrone showed an inhibitory effect on OCT2-mediated methyl-4-phenylpyridinium acetate (3H-MPP+) uptake with IC50 of 15 µM with less effect on OCT1. The germacrone's protective effect on cisplatin-induced cytotoxicity was not observed in cancer cells; cisplatin's anti-cancer activity was preserved. In conclusion, germacrone prevents cisplatin-induced toxicity in renal proximal tubular cells via inhibition OCT2 transport function and reducing cisplatin accumulation. Thus germacrone may be a good candidate agent used for reducing cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Sirima Soodvilai
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University
| | - Paranee Meetam
- Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University
| | - Lawan Siangjong
- Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University
| | | | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University
| | - Sunhapas Soodvilai
- Research Center of Transporter Protein for Medical Innovation and Department of Physiology, Faculty of Science, Mahidol University
| |
Collapse
|
11
|
McSweeney KR, Gadanec LK, Qaradakhi T, Ali BA, Zulli A, Apostolopoulos V. Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. Cancers (Basel) 2021; 13:1572. [PMID: 33805488 PMCID: PMC8036620 DOI: 10.3390/cancers13071572] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Administration of the chemotherapeutic agent cisplatin leads to acute kidney injury (AKI). Cisplatin-induced AKI (CIAKI) has a complex pathophysiological map, which has been linked to cellular uptake and efflux, apoptosis, vascular injury, oxidative and endoplasmic reticulum stress, and inflammation. Despite research efforts, pharmaceutical interventions, and clinical trials spanning over several decades, a consistent and stable pharmacological treatment option to reduce AKI in patients receiving cisplatin remains unavailable. This has been predominately linked to the incomplete understanding of CIAKI pathophysiology and molecular mechanisms involved. Herein, we detail the extensively known pathophysiology of cisplatin-induced nephrotoxicity that manifests and the variety of pharmacological and genetic alteration studies that target them.
Collapse
|
12
|
Inhibitory effects of vandetanib on creatinine transport via renal organic cation transporter OCT2. Eur J Pharm Sci 2021; 158:105666. [PMID: 33296710 DOI: 10.1016/j.ejps.2020.105666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/11/2023]
Abstract
Vandetanib (ZD6474, Zactima®, Caprelsa®) is a newly developed dual tyrosine kinase inhibitor of vascular endothelial growth factor and epidermal growth factor receptor. Recently, several reports have indicated the interaction of vandetanib with tyrosine kinase inhibitors and transporters. However, these characteristics of vandetanib remain unclear. We examined the interaction of vandetanib with the human organic cation transporter 2 (hOCT2) stably expressed in human embryonic kidney (HEK) 293 cells. The specific uptake of vandetanib was not observed in hOCT2-expressing HEK293 cells. Vandetanib inhibited the uptake of creatinine mediated by hOCT2 in a dose-dependent manner. The IC50 value for vandetanib inhibition of creatinine uptake by hOCT2 was 3.7 ± 1.0 μM (average ± SE of three separate experiments). The IC50 value of cimetidine and trimethoprim for hOCT2 were 100 ± 13.5 and 52.1 ± 8.0 μM, respectively. Vandetanib showed markedly higher affinity for hOCT2 than cimetidine and trimethoprim. These results suggest that hOCT2 may play a crucial role in elevating the serum creatinine levels, as well as increasing the risk of renal impairment during vandetanib administration.
Collapse
|
13
|
Topletz-Erickson AR, Lee AJ, Mayor JG, Rustia EL, Abdulrasool LI, Wise AL, Dailey B, DeChenne S, Walker LN, Alley SC, Endres CJ. Tucatinib Inhibits Renal Transporters OCT2 and MATE Without Impacting Renal Function in Healthy Subjects. J Clin Pharmacol 2020; 61:461-471. [PMID: 32989831 PMCID: PMC7984390 DOI: 10.1002/jcph.1750] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
Tucatinib is a potent tyrosine kinase inhibitor selective for human epidermal growth factor receptor 2 (HER2) approved by the US Food and Drug Administration for the treatment of HER2‐positive metastatic breast cancer and in development for other HER2‐positive solid tumors. Modest, reversible serum creatinine (SCr) elevations have been observed in tucatinib clinical trials. SCr is conveyed by the renal drug transporters organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1) and 2‐K (MATE2‐K) and can increase in the presence of inhibitors of these transporters. In vitro, tucatinib inhibited OCT2‐, MATE1‐, and MATE2‐K‐mediated transport of metformin, with IC50 values of 14.7, 0.340, and 0.135 µM, respectively. Tucatinib also inhibited OCT2‐ and MATE1‐mediated transport of creatinine, with IC50 values of 0.107 and 0.0855 µM, respectively. A phase 1 study with metformin administered orally in the absence and presence of tucatinib was conducted in 18 healthy subjects. Renal function was assessed by measuring glomerular filtration rate (GFR; based on iohexol plasma clearance) and endogenous markers (SCr, cystatin C‐based estimated glomerular filtration rate [eGFR]) with and without tucatinib. Metformin exposure increased (1.4‐fold) and renal clearance decreased (29.99‐17.64 L/h) with tucatinib, with no effect on metformin maximum concentration. Creatinine clearance transiently decreased 23% with tucatinib. GFR and eGFR, which are unaffected by OCT2 and/or MATE1/2‐K transport, were unchanged with tucatinib. These data demonstrate that tucatinib inhibits OCT2‐ and MATE1/2‐K‐mediated tubular secretion of creatinine, which may manifest as mild SCr elevations that are not indicative of renal impairment.
Collapse
Affiliation(s)
| | | | - JoAl G Mayor
- Development, Seattle Genetics, Bothell, Washington, USA
| | | | | | | | - Ben Dailey
- PRA Health Sciences, Lenexa, Kansas, USA
| | | | - Luke N Walker
- Development, Seattle Genetics, Bothell, Washington, USA
| | - Stephen C Alley
- Translational Sciences, Seattle Genetics, Bothell, Washington, USA
| | | |
Collapse
|
14
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Abstract
Influx and efflux kidney tubular transporters are major determinants of the disposition of xenobiotics, including pharmaceutical drugs. On the basolateral membrane of proximal tubular cells, there are influx transporters, such as organic cation transporters. On the apical membrane of proximal tubular cells, there are efflux transporters, such as multidrug and toxin extrusion proteins. The secretion process across the apical membrane into the lumen occurs via efflux transporters which plays an important role in serum creatinine (sCr) elimination in urine. The interference of a pharmaceutical drug with transporters can lead to changes in sCr with no alterations in biomarkers or light microscopic evidence indicative of renal injury. Identification of transporters that influence drug disposition, toxicity, and overall nonclinical safety assessment is important in drug discovery and development programs. This mini review describes some key aspects of kidney tubular transporters and drug-induced renal toxicities in safety risk assessment and drug development.
Collapse
Affiliation(s)
- Zaher A Radi
- Pfizer Worldwide Research, Development and Medical, Drug Safety R&D, Cambridge, MA, USA
| |
Collapse
|
16
|
Hiramatsu SI, Ikemura K, Fujisawa Y, Iwamoto T, Okuda M. Concomitant lansoprazole ameliorates cisplatin-induced nephrotoxicity by inhibiting renal organic cation transporter 2 in rats. Biopharm Drug Dispos 2020; 41:239-247. [PMID: 32473602 DOI: 10.1002/bdd.2242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Cisplatin is used widely for the treatment of multiple solid tumors. Cisplatin-induced nephrotoxicity is caused by renal accumulation of cisplatin via human organic cation transporter 2 (hOCT2). As lansoprazole, a proton pump inhibitor, is known to inhibit hOCT2 activity, lansoprazole might ameliorate cisplatin-induced nephrotoxicity. A previous study showed that concomitant lansoprazole administration ameliorated nephrotoxicity in patients receiving cisplatin. However, the detailed mechanism remains to be clarified. In the present study, the drug-drug interaction between lansoprazole and cisplatin was examined using hOCT2-expressing cultured cells and rat renal slices. Moreover, the effect of lansoprazole on cisplatin-induced nephrotoxicity and the pharmacokinetics of cisplatin in rats was investigated. In the uptake study, lansoprazole potently inhibited the uptake of cisplatin in hOCT2-expressing cultured cells and rat renal slices. The in vivo rat study showed that concomitant lansoprazole significantly ameliorated cisplatin-induced nephrotoxicity and reduced the renal accumulation of platinum up to approximately 60% of cisplatin alone at 72 h after cisplatin intraperitoneal administration. Furthermore, the renal uptake of platinum at 3 min after intravenous cisplatin administration in rats with cisplatin and lansoprazole decreased to 78% of rats with cisplatin alone. In addition, there was no significant difference in the plasma platinum concentration between rats treated with and without lansoprazole at 3 min after cisplatin intravenous administration. These findings suggested that concomitant lansoprazole ameliorated cisplatin-induced nephrotoxicity by inhibiting rOCT2-mediated cisplatin uptake in rats, thus decreasing cisplatin accumulation in the kidney. The present findings provided important information for the establishment of novel protective approaches to minimize cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Shun-Ichi Hiramatsu
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kenji Ikemura
- Department of Pharmacy, Osaka University Hospital, Suita, Osaka, Japan
| | - Yutaka Fujisawa
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Takuya Iwamoto
- Department of Pharmacy, Mie University Hospital, Tsu, Mie, Japan
| | - Masahiro Okuda
- Department of Pharmacy, Osaka University Hospital, Suita, Osaka, Japan
| |
Collapse
|
17
|
Huang KM, Uddin ME, DiGiacomo D, Lustberg MB, Hu S, Sparreboom A. Role of SLC transporters in toxicity induced by anticancer drugs. Expert Opin Drug Metab Toxicol 2020; 16:493-506. [PMID: 32276560 DOI: 10.1080/17425255.2020.1755253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION . Membrane transporters are integral to the maintenance of cellular integrity of all tissue and cell types. While transporters play an established role in the systemic pharmacokinetics of therapeutic drugs, tissue specific expression of uptake transporters can serve as an initiating mechanism that governs the accumulation and impact of cytotoxic drugs. AREAS COVERED . This review provides an overview of organic cation transporters as determinants of chemotherapy-induced toxicities. We also provide insights into the recently updated FDA guidelines for in vitro drug interaction studies, with a particular focus on the class of tyrosine kinase inhibitors as perpetrators of transporter-mediated drug interactions. EXPERT OPINION . Studies performed over the last few decades have highlighted the important role of basolateral uptake and apical efflux transporters in the pathophysiology of drug-induced organ damage. Increased understanding of the mechanisms that govern the accumulation of cytotoxic drugs has provided insights into the development of novel strategies to prevent debilitating toxicities. Furthermore, we argue that current regulatory guidelines provide inadequate recommendations for in vitro studies to identify substrates or inhibitors of drug transporters. Therefore, the translational and predictive power of FDA-approved drugs as modulators of transport function remains ambiguous and warrants further revision of the current guidelines.
Collapse
Affiliation(s)
- Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Duncan DiGiacomo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Maryam B Lustberg
- Department of Medical Oncology, College of Medicine, the Ohio State University and Comprehensive Cancer Center , Columbus, OH, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| |
Collapse
|
18
|
Wang R, Wang S, Chan S, Wang Y, Zhang Y, Zuo Z, Chi-Fung Chan G, Li H, Sun H. Bismuth Porphyrin Antagonizes Cisplatin-Induced Nephrotoxicity via Unexpected Metallothionein-Independent Mechanisms. iScience 2020; 23:101054. [PMID: 32353763 PMCID: PMC7191608 DOI: 10.1016/j.isci.2020.101054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 12/29/2022] Open
Abstract
Cisplatin (CDDP) has been a highly successful anticancer drug in cancer therapy; however, its further application suffers severe nephrotoxicity. Herein, we identify bismuth tetraphenylporphyrinate [Bi(TPP)] as a potent protective agent against CDDP-induced nephrotoxicity. Bi(TPP) attenuates CDDP-induced acute kidney injury and prevents the death of mice exposed to a lethal dose of CDDP. The protective potency of bismuth porphyrin complexes could be optimized by varying lipophilic TPP ligands with ideal ClogP values of 8–14. Unexpectedly, Bi(TPP) exhibited a protective role via metallothionein-independent pathways, i.e., maintenance of redox homeostasis and energy supplement, elimination of accumulated platinum in the kidney, and inactivation of caspases cascade in apoptotic pathway. Significantly, Bi(TPP) does not compromise the antitumor activity of CDDP in the orthotopic tumor xenograft mouse model. These findings suggest that Bi(TPP) could be incorporated into current CDDP-based cancer therapy as a nephroprotective agent. Bi(TPP), a potent nephroprotectant against cisplatin-induced toxicity, is disclosed Protective potency of Bi(TPP) could be modulated by varying lipophilic TPP ligands Bi(TPP) ameliorates cisplatin-induced renal damage via multiple mechanisms Combined therapy with Bi(TPP) does not compromise the antitumor efficacy of cisplatin
Collapse
Affiliation(s)
- Runming Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Suyu Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Shing Chan
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Yuchuan Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong S.A.R., P.R. China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong S.A.R., P.R. China
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong S.A.R., P.R. China.
| |
Collapse
|
19
|
Liu X. Transporter-Mediated Drug-Drug Interactions and Their Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:241-291. [PMID: 31571167 DOI: 10.1007/978-981-13-7647-4_5] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug transporters are considered to be determinants of drug disposition and effects/toxicities by affecting the absorption, distribution, and excretion of drugs. Drug transporters are generally divided into solute carrier (SLC) family and ATP binding cassette (ABC) family. Widely studied ABC family transporters include P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), and multidrug resistance proteins (MRPs). SLC family transporters related to drug transport mainly include organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug/toxin extrusions (MATEs). These transporters are often expressed in tissues related to drug disposition, such as the small intestine, liver, and kidney, implicating intestinal absorption of drugs, uptake of drugs into hepatocytes, and renal/bile excretion of drugs. Most of therapeutic drugs are their substrates or inhibitors. When they are comedicated, serious drug-drug interactions (DDIs) may occur due to alterations in intestinal absorption, hepatic uptake, or renal/bile secretion of drugs, leading to enhancement of their activities or toxicities or therapeutic failure. This chapter will illustrate transporter-mediated DDIs (including food drug interaction) in human and their clinical significances.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
20
|
|
21
|
Roles of Renal Drug Transporter in Drug Disposition and Renal Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:341-360. [PMID: 31571169 DOI: 10.1007/978-981-13-7647-4_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The kidney plays an important role in maintaining total body homeostasis and eliminating toxic xenobiotics and metabolites. Numerous drugs and their metabolites are ultimately eliminated in the urine. The reabsorption and secretion functions of the nephron are mediated by a variety of transporters located in the basolateral and luminal membranes of the tubular cells. In the past decade, many studies indicated that transporters play important roles in drug pharmacokinetics and demonstrated the impact of renal transporters on the disposition of drugs, drug-drug interactions, and nephrotoxicities. Here, we focus on several important renal transporters and their roles in drug elimination and disposition, drug-induced nephrotoxicities and potential clinical solutions.
Collapse
|
22
|
Fedecostante M, Westphal KGC, Buono MF, Sanchez Romero N, Wilmer MJ, Kerkering J, Baptista PM, Hoenderop JG, Masereeuw R. Recellularized Native Kidney Scaffolds as a Novel Tool in Nephrotoxicity Screening. Drug Metab Dispos 2018; 46:1338-1350. [PMID: 29980578 DOI: 10.1124/dmd.118.080721] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022] Open
Abstract
Drug-induced kidney injury in medicinal compound development accounts for over 20% of clinical trial failures and involves damage to different nephron segments, mostly the proximal tubule. Yet, currently applied cell models fail to reliably predict nephrotoxicity; neither are such models easy to establish. Here, we developed a novel three-dimensional (3D) nephrotoxicity platform on the basis of decellularized rat kidney scaffolds (DS) recellularized with conditionally immortalized human renal proximal tubule epithelial cells overexpressing the organic anion transporter 1 (ciPTEC-OAT1). A 5-day SDS-based decellularization protocol was used to generate DS, of which 100-μm slices were cut and used for cell seeding. After 8 days of culturing, recellularized scaffolds (RS) demonstrated 3D-tubule formation along with tubular epithelial characteristics, including drug transporter function. Exposure of RS to cisplatin (CDDP), tenofovir (TFV), or cyclosporin A (CsA) as prototypical nephrotoxic drugs revealed concentration-dependent reduction in cell viability, as assessed by PrestoBlue and Live/Dead staining assays. This was most probably attributable to specific uptake of CDDP by the organic cation transporter 2 (OCT2), TFV through organic anion transporter 1 (OAT1), and CsA competing for P-glycoprotein-mediated efflux. Compared with 2D cultures, RS showed an increased sensitivity to cisplatin and tenofovir toxicity after 24-hour exposure (9 and 2.2 fold, respectively). In conclusion, we developed a physiologically relevant 3D nephrotoxicity screening platform that could be a novel tool in drug development.
Collapse
Affiliation(s)
- Michele Fedecostante
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Koen G C Westphal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Michele F Buono
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Natalia Sanchez Romero
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Martijn J Wilmer
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Janis Kerkering
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Pedro Miguel Baptista
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Joost G Hoenderop
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| |
Collapse
|
23
|
Organic solute carrier 22 (SLC22) family: Potential for interactions with food, herbal/dietary supplements, endogenous compounds, and drugs. J Food Drug Anal 2018; 26:S45-S60. [PMID: 29703386 PMCID: PMC9326878 DOI: 10.1016/j.jfda.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023] Open
|
24
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
25
|
Awdishu L, Mehta RL. The 6R's of drug induced nephrotoxicity. BMC Nephrol 2017; 18:124. [PMID: 28372552 PMCID: PMC5379580 DOI: 10.1186/s12882-017-0536-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/25/2017] [Indexed: 01/05/2023] Open
Abstract
Drug induced kidney injury is a frequent adverse event which contributes to morbidity and increased healthcare utilization. Our current knowledge of drug induced kidney disease is limited due to varying definitions of kidney injury, incomplete assessment of concurrent risk factors and lack of long term outcome reporting. Electronic surveillance presents a powerful tool to identify susceptible populations, improve recognition of events and provide decision support on preventative strategies or early intervention in the case of injury. Research in the area of biomarkers for detecting kidney injury and genetic predisposition for this adverse event will enhance detection of injury, identify those susceptible to injury and likely mitigate risk. In this review we will present a 6R framework to identify and mange drug induced kidney injury – risk, recognition, response, renal support, rehabilitation and research.
Collapse
Affiliation(s)
- Linda Awdishu
- UC San Diego Skaggs School of Pharmacy, San Diego, USA. .,UC San Diego School of Medicine, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Ravindra L Mehta
- UC San Diego School of Medicine, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
26
|
Renal drug transporters and their significance in drug-drug interactions. Acta Pharm Sin B 2016; 6:363-373. [PMID: 27709005 PMCID: PMC5045553 DOI: 10.1016/j.apsb.2016.07.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/12/2022] Open
Abstract
The kidney is a vital organ for the elimination of therapeutic drugs and their metabolites. Renal drug transporters, which are primarily located in the renal proximal tubules, play an important role in tubular secretion and reabsorption of drug molecules in the kidney. Tubular secretion is characterized by high clearance capacities, broad substrate specificities, and distinct charge selectivity for organic cations and anions. In the past two decades, substantial progress has been made in understanding the roles of transporters in drug disposition, efficacy, toxicity and drug-drug interactions (DDIs). In the kidney, several transporters are involved in renal handling of organic cation (OC) and organic anion (OA) drugs. These transporters are increasingly recognized as the target for clinically significant DDIs. This review focuses on the functional characteristics of major human renal drug transporters and their involvement in clinically significant DDIs.
Collapse
Key Words
- ABC, ATP-binding cassette
- ATP, adenosine triphosphate
- AUC, area under the plasma concentration curve
- BBB, blood–brain barrier
- CHO, Chinese hamster ovary
- CL, plasma clearance
- CLR, renal clearance
- Cmax, maximum plasma concentration
- DDIs, drug–drug interactions
- Drug–drug interactions
- FDA, U.S. Food and Drug Administration
- GSH, glutathione
- HEK, human embryonic kidney
- IC50, half maximal inhibitory concentration
- ITC, International Transporter Consortium
- Ki, inhibitory constant
- MATE, multidrug and toxin extrusion protein
- MPP+, 1-methyl-4-phenylpyridimium
- MRP, multidrug resistance-associated protein
- MSD, membrane-spanning domain
- MW, molecular weight
- NBD, nucleotide-binding domain
- NME, new molecular entity
- NSAID, non-steroidal anti-inflammatory drugs
- Nephrotoxicity
- OA, organic anion
- OAT or Oat, organic anion transporters
- OATP or Oatp, organic anion-transporting peptide
- OC, organic cation
- OCT or Oct, organic cation transporter
- OCTN, Organic zwitterions/cation transporters
- Organic anions
- Organic cations
- P-gp, P-glycoprotein
- PAH, p-aminohippurate
- Renal drug transporters
- SLC, solute carrier
- SNP, single-nucleotide polymorphism
- TEA, tetraethylammonium
- TMD, transmembrane domain
- URAT, urate transporter
- fe, fraction of the absorbed dose excreted unchanged in urine
Collapse
|
27
|
Kajiwara M, Ban T, Matsubara K, Nakanishi Y, Masuda S. Urinary Dopamine as a Potential Index of the Transport Activity of Multidrug and Toxin Extrusion in the Kidney. Int J Mol Sci 2016; 17:ijms17081228. [PMID: 27483254 PMCID: PMC5000626 DOI: 10.3390/ijms17081228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 01/11/2023] Open
Abstract
Dopamine is a cationic natriuretic catecholamine synthesized in proximal tubular cells (PTCs) of the kidney before secretion into the lumen, a key site of its action. However, the molecular mechanisms underlying dopamine secretion into the lumen remain unclear. Multidrug and toxin extrusion (MATE) is a H+/organic cation antiporter that is highly expressed in the brush border membrane of PTCs and mediates the efflux of organic cations, including metformin and cisplatin, from the epithelial cells into the urine. Therefore, we hypothesized that MATE mediates dopamine secretion, a cationic catecholamine, into the tubule lumen, thereby regulating natriuresis. Here, we show that [3H]dopamine uptake in human (h) MATE1-, hMATE-2K- and mouse (m) MATE-expressing cells exhibited saturable kinetics. Fluid retention and decreased urinary excretion of dopamine and Na+ were observed in Mate1-knockout mice compared to that in wild-type mice. Imatinib, a MATE inhibitor, inhibited [3H]dopamine uptake by hMATE1-, hMATE2-K- and mMATE1-expressing cells in a concentration-dependent manner. At clinically-relevant concentrations, imatinib inhibited [3H]dopamine uptake by hMATE1- and hMATE2-K-expressing cells. The urinary excretion of dopamine and Na+ decreased and fluid retention occurred in imatinib-treated mice. In conclusion, MATE transporters secrete renally-synthesized dopamine, and therefore, urinary dopamine has the potential to be an index of the MATE transporter activity.
Collapse
Affiliation(s)
- Moto Kajiwara
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Tsuyoshi Ban
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
28
|
Hino A, Yoshida H, Tada Y, Koike M, Minami R, Masaie H, Ishikawa J. Changes from imatinib mesylate to second generation tyrosine kinase inhibitors improve renal impairment with imatinib mesylate in chronic myelogenous leukemia. Int J Hematol 2016; 104:605-611. [PMID: 27460678 DOI: 10.1007/s12185-016-2071-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 01/20/2023]
Abstract
Understanding adverse events in long-term tyrosine kinase inhibitor (TKI) therapy for chronic myelogenous leukemia (CML) is important. We investigated changes in renal function during TKI therapy for CML. We retrospectively analyzed levels of serum creatinine (sCrn) and values of estimated glomerular filtration rate (eGFR) from June 2001 to March 2015. Sixty patients initially treated with imatinib were enrolled in this study. Continuous variables of sCrn and eGFR were compared by paired student's t test. Median age or duration of treatment with imatinib was 49 years (range 19-81) or 101 months (range 8-165), respectively. Mean levels of sCrn or mean values of eGFR had increased or decreased 1 year later from start of imatinib throughout observation with statistical significance (p < 0.05), respectively. In 38 patients, the TKI used was changed from imatinib to a second-generation TKI (nilotinib: 32; dasatinib: 6) for various reasons. We observed statistically significant (p < 0.05) amelioration in mean levels of sCrn and values of eGFR after only 1 month following the changes to second-generation TKIs. These results suggest that imatinib has adverse effects on renal function and that changes from imatinib to a second-generation TKI should be considered as a therapeutic option in cases of renal impairment due to imatinib.
Collapse
Affiliation(s)
- Akihisa Hino
- Department of Hematology and Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan.
| | - Hitoshi Yoshida
- Department of Hematology and Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan
| | - Yuma Tada
- Department of Hematology and Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan
| | - Midori Koike
- Department of Hematology and Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan
| | - Ryota Minami
- Department of Hematology and Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan
| | - Hiroaki Masaie
- Department of Hematology and Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan
| | - Jun Ishikawa
- Department of Hematology and Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan
| |
Collapse
|
29
|
Wagner DJ, Hu T, Wang J. Polyspecific organic cation transporters and their impact on drug intracellular levels and pharmacodynamics. Pharmacol Res 2016; 111:237-246. [PMID: 27317943 DOI: 10.1016/j.phrs.2016.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/02/2016] [Indexed: 01/11/2023]
Abstract
Most drugs are intended to act on molecular targets residing within a specific tissue or cell type. Therefore, the drug concentration within the target tissue or cells is most relevant to its pharmacological effect. Increasing evidences suggest that drug transporters not only play a significant role in governing systemic drug levels, but are also an important gate keeper for intra-tissue and intracellular drug concentrations. This review focuses on polyspecific organic cation transporters, which include the organic cation transporters 1-3 (OCT1-3), the multidrug and toxin extrusion proteins 1-2 (MATE1-2) and the plasma membrane monoamine transporter (PMAT). Following an overview of the tissue distribution, transport mechanisms, and functional characteristics of these transporters, we highlight the studies demonstrating the ability of locally expressed OCTs to impact intracellular drug concentrations and directly influence their pharmacological and toxicological activities. Specifically, OCT1-mediated metformin access to its site of action in the liver is impacted by genetic polymorphisms and chemical inhibition of OCT1. The impact of renal OCT2 and MATE1/2-K in cisplatin intrarenal accumulation and nephrotoxicity is reviewed. New data demonstrating the role of OCT3 in salivary drug accumulation and secretion is discussed. Whenever possible, the pharmacodynamic response and toxicological effects is presented and discussed in light of intra-tissue and intracellular drug exposure. Current challenges, knowledge gaps, and future research directions are discussed. Understanding the impact of transporters on intra-tissue and intracellular drug concentrations has important implications for rational-based optimization of drug efficacy and safety.
Collapse
Affiliation(s)
- David J Wagner
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States.
| | - Tao Hu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States.
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States.
| |
Collapse
|
30
|
Inhibition of OCT2, MATE1 and MATE2-K as a possible mechanism of drug interaction between pazopanib and cisplatin. Pharmacol Res 2016; 110:89-95. [PMID: 27178732 DOI: 10.1016/j.phrs.2016.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/15/2016] [Accepted: 05/06/2016] [Indexed: 11/21/2022]
Abstract
We hypothesized that pazopanib is an inhibitor of cisplatin renal transporters OCT2, MATE1 and MATE2-K based on previous studies demonstrating an interaction between tyrosine kinase inhibitors and these transporters. Because several combinations of targeted therapies and cytotoxics are currently in development for cancer treatment, such an interaction is worth investigating. Experiments on HEK293 cells stably transfected to express OCT2, MATE1, MATE2-K or an empty vector (EV) were conducted. The inhibitory effect of pazopanib on these transporters was measured using the uptake of fluorescent substrate ASP+ and cisplatin in the different cell lines. The effect of pazopanib on cisplatin-induced cytotoxicity was also evaluated. A decrease of ASP+ uptake was observed in OCT2-HEK, MATE1-HEK and MATE2K-HEK cell lines after addition of pazopanib at increasing concentrations. Pazopanib inhibited cisplatin specific uptake in OCT2-HEK, MATE1-HEK and MATE2K-HEK lines. Cytotoxicity experiments showed that co-incubation of cisplatin with pazopanib multiplied up to 2.7, 2.4 and 1.6 times the EC50 values of cisplatin in OCT2-HEK, MATE1-HEK and MATE2K-HEK cell lines respectively, reaching about the same values as in EV-HEK cells. To conclude, pazopanib inhibits OCT2, MATE1 and MATE2-K, which are involved in cisplatin secretion into urine. The combination of these two drugs may lead to an interaction and increase the cisplatin-induced systemic toxicity. Given the wide variability of plasma pazopanib concentrations observed in vivo, the interaction may occur in a clinical setting, particularly in overexposed patients. The existence of a drug-drug interaction should be investigated when pazopanib is associated with a substrate of these transporters.
Collapse
|
31
|
Vidal-Petiot E, Rea D, Serrano F, Stehlé T, Gardin C, Rousselot P, Peraldi MN, Flamant M. Imatinib Increases Serum Creatinine by Inhibiting Its Tubular Secretion in a Reversible Fashion in Chronic Myeloid Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 16:169-74. [DOI: 10.1016/j.clml.2015.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 11/23/2015] [Accepted: 12/04/2015] [Indexed: 10/22/2022]
|
32
|
Li Q, Yang H, Guo D, Zhang T, Polli JE, Zhou H, Shu Y. Effect of Ondansetron on Metformin Pharmacokinetics and Response in Healthy Subjects. ACTA ACUST UNITED AC 2016; 44:489-94. [PMID: 26825640 DOI: 10.1124/dmd.115.067223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/19/2016] [Indexed: 01/11/2023]
Abstract
The 5-hydroxytryptamine-3 (5-HT3) receptor antagonists such as ondansetron have been used to prevent and treat nausea and vomiting for over 2 decades. This study was to determine whether ondansetron could serve as a perpetrator drug causing transporter-mediated drug-drug interactions in humans. Twelve unrelated male healthy Chinese volunteers were enrolled into a prospective, randomized, double-blind, crossover study to investigate the effects of ondansetron or placebo on the pharmacokinetics of and the response to metformin, a well-characterized substrate of organic cation transporters and multidrug and toxin extrusions (MATEs). Ondansetron treatment caused a statistically significantly higher Cmax of metformin compared with placebo (18.3 ± 5.05 versus 15.2 ± 3.23; P = 0.006) and apparently decreased the renal clearance of metformin by 37% as compared with placebo (P = 0.001). Interestingly, ondansetron treatment also statistically significantly improved glucose tolerance in subjects, as indicated by the smaller glucose area under the curve in the oral glucose tolerance test (10.4 ± 1.43) as compared with placebo (11.5 ± 2.29 mmol∙mg/l) (P = 0.020). It remains possible that ondansetron itself may affect glucose homeostasis in human subjects, but our clinical study, coupled with our previous findings in cells and in animal models, indicates that ondansetron can cause a drug-drug interaction via its potent inhibition of MATE transporters in humans.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (Q.L., H.Y., D.G., J.E.P., Y.S.); Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, People's Republic of China (Q.L., T.Z., H.Z.)
| | - Hong Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (Q.L., H.Y., D.G., J.E.P., Y.S.); Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, People's Republic of China (Q.L., T.Z., H.Z.)
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (Q.L., H.Y., D.G., J.E.P., Y.S.); Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, People's Republic of China (Q.L., T.Z., H.Z.)
| | - Taolan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (Q.L., H.Y., D.G., J.E.P., Y.S.); Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, People's Republic of China (Q.L., T.Z., H.Z.)
| | - James E Polli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (Q.L., H.Y., D.G., J.E.P., Y.S.); Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, People's Republic of China (Q.L., T.Z., H.Z.)
| | - Honghao Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (Q.L., H.Y., D.G., J.E.P., Y.S.); Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, People's Republic of China (Q.L., T.Z., H.Z.)
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (Q.L., H.Y., D.G., J.E.P., Y.S.); Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, People's Republic of China (Q.L., T.Z., H.Z.)
| |
Collapse
|
33
|
Wen J, Zeng M, Shu Y, Guo D, Sun Y, Guo Z, Wang Y, Liu Z, Zhou H, Zhang W. Aging increases the susceptibility of cisplatin-induced nephrotoxicity. AGE (DORDRECHT, NETHERLANDS) 2015; 37:112. [PMID: 26534724 PMCID: PMC5005850 DOI: 10.1007/s11357-015-9844-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/13/2015] [Indexed: 05/12/2023]
Abstract
Cisplatin (CDDP) nephrotoxicity is one of the most common side effects in cancer treatment, causing the disruption of chemotherapy. In this study, we analyzed the influence of nongenetic factors on CDDP-induced nephrotoxiciy using the data from 182 CDDP-treated and 52 carboplatin (CBP)-treated patients. The mean change of eGFR (100% to baseline) in CDDP-treated patients was -9.2%, which was significantly lower than that in the population with CBP therapy. By using the chi-squared test and multivariate logistic regression analysis, age (≥50 years) is found associated with CDDP-induced nephrotoxicity, with odds ratio (OR) of 9.167 and 11.771, respectively. Three- and 18-month-old mice were employed to study the age-dependent susceptibility of CDDP-induced nephrotoxicity. Biochemical parameters, histopathogical examination, and mRNA biomarkers indicated that old mice were subjected to more severe kidney injury. In addition, old mice accumulated more CDDP in kidney than young mice, and the protein level of CDDP efflux transporter, MATE1, in aged mice kidney was 35% of that in young mice. Moreover, inflammatory receptor TLR4 was higher in the kidney of old mice, indicating the alteration of inflammatory signaling in old mice. After CDDP administration, the induced alterations of TNF-α, ICAM-1, and TLR4 were more extensive in old mice. To summarize, aging increased the susceptibility of CDDP-induced renal function decline or nephrotoxicity.
Collapse
Affiliation(s)
- Jiagen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Meizi Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Dong Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Yi Sun
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Youhong Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Pharmacogenetics, Changsha, China.
| |
Collapse
|
34
|
Synergistic cytotoxicity from combination of imatinib and platinum-based anticancer drugs specifically in Bcr-Abl positive leukemia cells. J Pharmacol Sci 2015; 129:210-5. [DOI: 10.1016/j.jphs.2015.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 11/23/2022] Open
|
35
|
Shen H, Liu T, Jiang H, Titsch C, Taylor K, Kandoussi H, Qiu X, Chen C, Sukrutharaj S, Kuit K, Mintier G, Krishnamurthy P, Fancher RM, Zeng J, Rodrigues AD, Marathe P, Lai Y. Cynomolgus Monkey as a Clinically Relevant Model to Study Transport Involving Renal Organic Cation Transporters: In Vitro and In Vivo Evaluation. Drug Metab Dispos 2015; 44:238-49. [DOI: 10.1124/dmd.115.066852] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/19/2015] [Indexed: 01/12/2023] Open
|
36
|
Li L, Sun S, Weng Y, Song F, Zhou S, Bai M, Zhou H, Zeng S, Jiang H. Interaction of six protoberberine alkaloids with human organic cation transporters 1, 2 and 3. Xenobiotica 2015; 46:175-83. [PMID: 26134304 DOI: 10.3109/00498254.2015.1056283] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Organic cation transporters (OCTs) play an important role in drug safety and efficacy. Protoberberine alkaloids are ubiquitous organic cations or weak bases with remarkable biological actives. This study was to elucidate the potential interaction of alkaloids (coptisine, jatrorrhizine, epiberberine, berberrubine, palmatine and corydaline) with OCTs using Madin-Darby canine kidney (MDCK) cells stably expressing human OCT1, OCT2 and OCT3. 2. All the tested alkaloids significantly inhibited the uptake of MPP(+), a model OCT substrate, in MDCK-hOCTs cells with the IC50 of 0.931-9.65 μM. Additionally, coptisine, jatrorrhizine and epiberberine were substrates of all the hOCTs with the Km of 0.273-5.80 μM, whereas berberrubine was a substrate for hOCT1 and hOCT2, but not for hOCT3, the Km values were 1.27 and 1.66 μM, respectively. The transport capacity of coptisine in MDCK cells expressing the variants of hOCT1-P341L or hOCT2-A270S was significantly higher than that in wild-type (WT) cells with the Clint (Vmax/Km) of 379 ± 7.4 and 433 ± 5.7 μl/mg protein/min, respectively. 3. The above data indicate that the tested alkaloids are potent inhibitors, and coptisine, jatrorrhizine, epiberberine and berberrubine are substrates of hOCT1, hOCT2 and/or hOCT3 with high affinity. In addition, the variants (OCT1-P341L and OCT2-A270S) possess higher transport capacity to coptisine than WT hOCTs.
Collapse
Affiliation(s)
- Liping Li
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Siyuan Sun
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Yayun Weng
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Feifeng Song
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Sisi Zhou
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Mengru Bai
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Hui Zhou
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Su Zeng
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Huidi Jiang
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| |
Collapse
|
37
|
Shen H, Liu T, Morse BL, Zhao Y, Zhang Y, Qiu X, Chen C, Lewin AC, Wang XT, Liu G, Christopher LJ, Marathe P, Lai Y. Characterization of Organic Anion Transporter 2 (SLC22A7): A Highly Efficient Transporter for Creatinine and Species-Dependent Renal Tubular Expression. Drug Metab Dispos 2015; 43:984-93. [PMID: 25904762 DOI: 10.1124/dmd.114.062364] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
The contribution of organic anion transporter OAT2 (SLC22A7) to the renal tubular secretion of creatinine and its exact localization in the kidney are reportedly controversial. In the present investigation, the transport of creatinine was assessed in human embryonic kidney (HEK) cells that stably expressed human OAT2 (OAT2-HEK) and isolated human renal proximal tubule cells (HRPTCs). The tubular localization of OAT2 in human, monkey, and rat kidney was characterized. The overexpression of OAT2 significantly enhanced the uptake of creatinine in OAT2-HEK cells. Under physiologic conditions (creatinine concentrations of 41.2 and 123.5 µM), the initial rate of OAT2-mediated creatinine transport was approximately 11-, 80-, and 80-fold higher than OCT2, multidrug and toxin extrusion protein (MATE)1, and MATE2K, respectively, resulting in approximately 37-, 1850-, and 80-fold increase of the intrinsic transport clearance when normalized to the transporter protein concentrations. Creatinine intracellular uptake and transcellular transport in HRPTCs were decreased in the presence of 50 µM bromosulfophthalein and 100 µM indomethacin, which inhibited OAT2 more potently than other known creatinine transporters, OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2K (IC50: 1.3 µM vs. > 100 µM and 2.1 µM vs. > 200 µM for bromosulfophthalein and indomethacin, respectively) Immunohistochemistry analysis showed that OAT2 protein was localized to both basolateral and apical membranes of human and cynomolgus monkey renal proximal tubules, but appeared only on the apical membrane of rat proximal tubules. Collectively, the findings revealed the important role of OAT2 in renal secretion and possible reabsorption of creatinine and suggested a molecular basis for potential species difference in the transporter handling of creatinine.
Collapse
Affiliation(s)
- Hong Shen
- Departments of Metabolism and Pharmacokinetics (H.S., T.L., B.L.M., Yuep.Z., X.Q., C.C., P.M., Y.L.), Bioanalytical Sciences (Y.Z., G.L.), Oncology Translational Research (A.C.L., X.-T.W.), and Biotransformation (L.J.C.), Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Tongtong Liu
- Departments of Metabolism and Pharmacokinetics (H.S., T.L., B.L.M., Yuep.Z., X.Q., C.C., P.M., Y.L.), Bioanalytical Sciences (Y.Z., G.L.), Oncology Translational Research (A.C.L., X.-T.W.), and Biotransformation (L.J.C.), Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Bridget L Morse
- Departments of Metabolism and Pharmacokinetics (H.S., T.L., B.L.M., Yuep.Z., X.Q., C.C., P.M., Y.L.), Bioanalytical Sciences (Y.Z., G.L.), Oncology Translational Research (A.C.L., X.-T.W.), and Biotransformation (L.J.C.), Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Yue Zhao
- Departments of Metabolism and Pharmacokinetics (H.S., T.L., B.L.M., Yuep.Z., X.Q., C.C., P.M., Y.L.), Bioanalytical Sciences (Y.Z., G.L.), Oncology Translational Research (A.C.L., X.-T.W.), and Biotransformation (L.J.C.), Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Yueping Zhang
- Departments of Metabolism and Pharmacokinetics (H.S., T.L., B.L.M., Yuep.Z., X.Q., C.C., P.M., Y.L.), Bioanalytical Sciences (Y.Z., G.L.), Oncology Translational Research (A.C.L., X.-T.W.), and Biotransformation (L.J.C.), Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Xi Qiu
- Departments of Metabolism and Pharmacokinetics (H.S., T.L., B.L.M., Yuep.Z., X.Q., C.C., P.M., Y.L.), Bioanalytical Sciences (Y.Z., G.L.), Oncology Translational Research (A.C.L., X.-T.W.), and Biotransformation (L.J.C.), Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Cliff Chen
- Departments of Metabolism and Pharmacokinetics (H.S., T.L., B.L.M., Yuep.Z., X.Q., C.C., P.M., Y.L.), Bioanalytical Sciences (Y.Z., G.L.), Oncology Translational Research (A.C.L., X.-T.W.), and Biotransformation (L.J.C.), Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Anne C Lewin
- Departments of Metabolism and Pharmacokinetics (H.S., T.L., B.L.M., Yuep.Z., X.Q., C.C., P.M., Y.L.), Bioanalytical Sciences (Y.Z., G.L.), Oncology Translational Research (A.C.L., X.-T.W.), and Biotransformation (L.J.C.), Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Xi-Tao Wang
- Departments of Metabolism and Pharmacokinetics (H.S., T.L., B.L.M., Yuep.Z., X.Q., C.C., P.M., Y.L.), Bioanalytical Sciences (Y.Z., G.L.), Oncology Translational Research (A.C.L., X.-T.W.), and Biotransformation (L.J.C.), Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Guowen Liu
- Departments of Metabolism and Pharmacokinetics (H.S., T.L., B.L.M., Yuep.Z., X.Q., C.C., P.M., Y.L.), Bioanalytical Sciences (Y.Z., G.L.), Oncology Translational Research (A.C.L., X.-T.W.), and Biotransformation (L.J.C.), Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Lisa J Christopher
- Departments of Metabolism and Pharmacokinetics (H.S., T.L., B.L.M., Yuep.Z., X.Q., C.C., P.M., Y.L.), Bioanalytical Sciences (Y.Z., G.L.), Oncology Translational Research (A.C.L., X.-T.W.), and Biotransformation (L.J.C.), Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Punit Marathe
- Departments of Metabolism and Pharmacokinetics (H.S., T.L., B.L.M., Yuep.Z., X.Q., C.C., P.M., Y.L.), Bioanalytical Sciences (Y.Z., G.L.), Oncology Translational Research (A.C.L., X.-T.W.), and Biotransformation (L.J.C.), Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Yurong Lai
- Departments of Metabolism and Pharmacokinetics (H.S., T.L., B.L.M., Yuep.Z., X.Q., C.C., P.M., Y.L.), Bioanalytical Sciences (Y.Z., G.L.), Oncology Translational Research (A.C.L., X.-T.W.), and Biotransformation (L.J.C.), Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| |
Collapse
|
38
|
Expression of xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1. Toxicol In Vitro 2014; 30:95-105. [PMID: 25500123 DOI: 10.1016/j.tiv.2014.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
The kidney is a major target for drug-induced injury, primarily due the fact that it transports a wide variety of chemical entities into and out of the tubular lumen. Here, we investigated the expression of the main xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1 at an mRNA and/or protein level. RPTEC/TERT1 cells expressed OCT2, OCT3, OCTN2, MATE1, MATE2, OAT1, OAT3 and OAT4. The functionality of the OCTs was demonstrated by directional transport of the fluorescent dye 4-Di-1-ASP. In addition, P-glycoprotein activity in RPTEC/TERT1 cells was verified by fluorescent dye retention in presence of various P-glycoprotein inhibitors. In comparison to proliferating cells, contact inhibited RPTEC/TERT1 cells expressed increased mRNA levels of several ABC transporter family members and were less sensitive to cyclosporine A. We conclude that differentiated RPTEC/TERT1 cells are well suited for utilisation in xenobiotic transport and pharmacokinetic studies.
Collapse
|
39
|
Gundert-Remy U, Bernauer U, Blömeke B, Döring B, Fabian E, Goebel C, Hessel S, Jäckh C, Lampen A, Oesch F, Petzinger E, Völkel W, Roos PH. Extrahepatic metabolism at the body's internal–external interfaces. Drug Metab Rev 2014; 46:291-324. [DOI: 10.3109/03602532.2014.900565] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Abstract
Organic anions and cations (OAs and OCs, respectively) comprise an extraordinarily diverse array of compounds of physiological, pharmacological, and toxicological importance. The kidney, primarily the renal proximal tubule, plays a critical role in regulating the plasma concentrations of these organic electrolytes and in clearing the body of potentially toxic xenobiotics agents, a process that involves active, transepithelial secretion. This transepithelial transport involves separate entry and exit steps at the basolateral and luminal aspects of renal tubular cells. Basolateral and luminal OA and OC transport reflects the concerted activity of a suite of separate proteins arranged in parallel in each pole of proximal tubule cells. The cloning of multiple members of several distinct transport families, the subsequent characterization of their activity, and their subcellular localization within distinct regions of the kidney, now allows the development of models describing the molecular basis of the renal secretion of OAs and OCs. New information on naturally occurring genetic variation of many of these processes provides insight into the basis of observed variability of drug efficacy and unwanted drug-drug interactions in human populations. The present review examines recent work on these issues.
Collapse
Affiliation(s)
- Ryan M Pelis
- Novartis Pharmaceuticals Corp., Translational Sciences, East Hanover, New Jersey, USA
| | | |
Collapse
|
41
|
Abstract
Members of the solute carrier (SLC) family of transporters are responsible for the cellular influx of a broad range of endogenous compounds and xenobiotics in multiple tissues. Many of these transporters are highly expressed in the gastrointestinal tract, liver, and kidney and are considered to be of particular importance in governing drug absorption, elimination, and cellular sensitivity of specific organs to a wide variety of oncology drugs. Although the majority of studies on the interaction of oncology drugs with SLC have been restricted to the use of exploratory in vitro model systems, emerging evidence suggests that several SLCs, including OCT2 and OATP1B1, contribute to clinically important phenotypes associated with those agents. Recent literature has indicated that modulation of SLC activity may result in drug-drug interactions, and genetic polymorphisms in SLC genes have been described that can affect the handling of substrates. Alteration of SLC function by either of these mechanisms has been demonstrated to contribute to interindividual variability in the pharmacokinetics and toxicity associated with several oncology drugs. In this report, we provide an update on this rapidly emerging field.
Collapse
Affiliation(s)
- Jason A Sprowl
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
42
|
Carrisi C, Antonucci D, Lunetti P, Migoni D, Girelli CR, Dolce V, Fanizzi FP, Benedetti M, Capobianco L. Transport of platinum bonded nucleotides into proteoliposomes, mediated by Drosophila melanogaster thiamine pyrophosphate carrier protein (DmTpc1). J Inorg Biochem 2013; 130:28-31. [PMID: 24148759 DOI: 10.1016/j.jinorgbio.2013.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 11/30/2022]
Abstract
The results of the present study suggest that DmTpc1 is actively implicated in the specific uptake of free cytoplasmic Pt bonded nucleotides, and therefore could be linked to the mechanism of action of some platinum-based antitumor drugs. Although DmTpc1 has a low affinity for model [Pt(dien)(N7-5'-dGTP)] and cis-[Pt(NH3)2(py)(N7-5'-dGTP)] compared to dATP it's well known that DNA platination level of few metal atoms per double-stranded molecule may account for the pharmacological activity of platinum based antitumor drugs. This is the first investigation where it has been demonstrated that a mitochondrial carrier is directly involved in the transport of metalated purines related with the cisplatin mechanism of action. Moreover it is shown as a lower hindrance of nucleotide bonded platinum complexes could strongly enhance mitochondrial uptake. Furthermore, a new application of ICP-AES addressed to measure the transport of metalated nucleobases, by using a recombinant protein reconstituted into liposomes, has been here, for the first time, developed and compared with a standard technique such as the liquid scintillation counting.
Collapse
Affiliation(s)
- Chiara Carrisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; IFOM Foundation, FIRC Institute of Molecular Oncology Foundation, IFOM-IEO Campus, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yamagishi Y, Watari A, Hayata Y, Li X, Kondoh M, Yoshioka Y, Tsutsumi Y, Yagi K. Acute and chronic nephrotoxicity of platinum nanoparticles in mice. NANOSCALE RESEARCH LETTERS 2013; 8:395. [PMID: 24059288 PMCID: PMC3849727 DOI: 10.1186/1556-276x-8-395] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/01/2013] [Indexed: 05/21/2023]
Abstract
Platinum nanoparticles are being utilized in various industrial applications, including in catalysis, cosmetics, and dietary supplements. Although reducing the size of the nanoparticles improves the physicochemical properties and provides useful performance characteristics, the safety of the material remains a major concern. The aim of the present study was to evaluate the biological effects of platinum particles less than 1 nm in size (snPt1). In mice administered with a single intravenous dose of snPt1, histological analysis revealed necrosis of tubular epithelial cells and urinary casts in the kidney, without obvious toxic effects in the lung, spleen, and heart. These mice exhibited dose-dependent elevation of blood urea nitrogen, an indicator of kidney damage. Direct application of snPt1 to in vitro cultures of renal cells induced significant cytotoxicity. In mice administered for 4 weeks with twice-weekly intraperitoneal snPt1, histological analysis of the kidney revealed urinary casts, tubular atrophy, and inflammatory cell accumulation. Notably, these toxic effects were not observed in mice injected with 8-nm platinum particles, either by single- or multiple-dose administration. Our findings suggest that exposure to platinum particles of less than 1 nm in size may induce nephrotoxicity and disrupt some kidney functions. However, this toxicity may be reduced by increasing the nanoparticle size.
Collapse
Affiliation(s)
- Yoshiaki Yamagishi
- Laboratories of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akihiro Watari
- Laboratories of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuya Hayata
- Laboratories of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Xiangru Li
- Laboratories of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masuo Kondoh
- Laboratories of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratories of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsutsumi
- Laboratories of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kiyohito Yagi
- Laboratories of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
44
|
Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 2013; 34:413-35. [PMID: 23506881 DOI: 10.1016/j.mam.2012.10.010] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 08/18/2012] [Indexed: 12/14/2022]
Abstract
The SLC22 family contains 13 functionally characterized human plasma membrane proteins each with 12 predicted α-helical transmembrane domains. The family comprises organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). The transporters operate as (1) uniporters which mediate facilitated diffusion (OCTs, OCTNs), (2) anion exchangers (OATs), and (3) Na(+)/zwitterion cotransporters (OCTNs). They participate in small intestinal absorption and hepatic and renal excretion of drugs, xenobiotics and endogenous compounds and perform homeostatic functions in brain and heart. Important endogeneous substrates include monoamine neurotransmitters, l-carnitine, α-ketoglutarate, cAMP, cGMP, prostaglandins, and urate. It has been shown that mutations of the SLC22 genes encoding these transporters cause specific diseases like primary systemic carnitine deficiency and idiopathic renal hypouricemia and are correlated with diseases such as Crohn's disease and gout. Drug-drug interactions at individual transporters may change pharmacokinetics and toxicities of drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstr. 6, 97070 Würzburg, Germany.
| |
Collapse
|
45
|
Motohashi H, Nakao Y, Masuda S, Katsura T, Kamba T, Ogawa O, Inui KI. Precise comparison of protein localization among OCT, OAT, and MATE in human kidney. J Pharm Sci 2013; 102:3302-8. [DOI: 10.1002/jps.23567] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/06/2013] [Accepted: 04/09/2013] [Indexed: 01/11/2023]
|
46
|
Seong S, Lim M, Sohn S, Moon J, Oh SJ, Kim B, Ryoo H, Chung J, Joo Y, Bang S, Jung C, Kim D, Park S, Yoon S, Kim I, Lee H, Won J, Min Y, Cheong J, Park J, Eom K, Hyun M, Kim M, Kim H, Park M, Park J, Kim C, Kim H, Kim Y, Park E, Zang D, Jo D, Lee H, Yoon YR. Influence of enzyme and transporter polymorphisms on trough imatinib concentration and clinical response in chronic myeloid leukemia patients. Ann Oncol 2013; 24:756-60. [DOI: 10.1093/annonc/mds532] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
47
|
Motohashi H, Inui KI. Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS JOURNAL 2013; 15:581-8. [PMID: 23435786 DOI: 10.1208/s12248-013-9465-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 02/12/2013] [Indexed: 01/11/2023]
Abstract
In the kidney, human organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs) are the major transporters for the secretion of cationic drugs into the urine. In the human kidney, OCT2 mediates the uptake of drugs from the blood at the basolateral membrane of tubular epithelial cells, and MATE1 and MATE2-K secrete drugs from cells into the lumen of proximal tubules. However, the expression of these transporters depends on the species of the animal. In the rodent kidney, OCT1 and OCT2 are expressed at the basolateral membrane, and MATE1 localizes at the brush-border membrane. Together, these transporters recognize various compounds and have overlapping, but somewhat different, substrate specificities. OCTs and MATEs can transport important drugs, such as metformin and cisplatin. Therefore, functional variation in OCTs and MATEs, including genetic polymorphisms or inter-individual variation, may seriously affect the pharmacokinetics and/or pharmacodynamics of cationic drugs. In this review, we summarize the recent findings and clinical importance of these transporters.
Collapse
|
48
|
Nishihara K, Masuda S, Shinke H, Ozawa A, Ichimura T, Yonezawa A, Nakagawa S, Inui KI, Bonventre JV, Matsubara K. Urinary chemokine (C-C motif) ligand 2 (monocyte chemotactic protein-1) as a tubular injury marker for early detection of cisplatin-induced nephrotoxicity. Biochem Pharmacol 2013; 85:570-82. [PMID: 23291264 DOI: 10.1016/j.bcp.2012.12.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
Because of the difficulty in detecting segment-specific response in the kidney, we investigated the molecular events underlying acute kidney injury in the proximal tubules of rats with cisplatin (cis-diamminedichloroplatinum II)-induced nephrotoxicity. Microarray analysis revealed that mRNA levels of several cytokines and chemokines, such as interleukin-1beta, chemokine (C-C motif) ligand (CCL) 2, CCL20, chemokine (C-X-C motif) ligand (CXCL) 1, and CXCL10 were significantly increased after cisplatin treatment in both isolated proximal tubules and whole kidney. Interestingly, tubular CCL2 mRNA levels increased soon after cisplatin administration, whereas CCL2 mRNA levels in whole kidney first decreased and then increased. Levels of both CCL2 and kidney injury molecule-1 (KIM-1) in the whole kidney increased after cisplatin administration. Immunofluorescence analysis revealed CCL2 changes in the proximal tubular cells initially and then in the medullary interstitium. Urinary CCL2 excretion significantly increased approximately 3-fold compared with controls the day after cisplatin administration (5mg/kg), when no changes were observed plasma creatinine and blood urea nitrogen levels. Urinary levels of KIM-1 also increased 3-fold after cisplatin administration. In addition, urinary CCL2 rather than KIM-1 increased in chronic renal failure rats after administration of low-dose cisplatin (2mg/kg), suggesting that urinary CCL2 was selective for cisplatin-induced nephrotoxicity in renal impairment. These results indicated that the increase in cytokine and chemokine expression in renal epithelial cells might be responsible for kidney deterioration in cisplatin-induced nephrotoxicity, and that urinary CCL2 is associated with tubular injury and serves as a sensitive and noninvasive marker for the early detection of cisplatin-induced tubular injury.
Collapse
Affiliation(s)
- Kumiko Nishihara
- Department of Pharmacy, Kyoto University Hospital, Faculty of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today 2012. [PMID: 23207804 DOI: 10.1016/j.drudis.2012.11.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A recent paper in this journal sought to counter evidence for the role of transport proteins in effecting drug uptake into cells, and questions that transporters can recognize drug molecules in addition to their endogenous substrates. However, there is abundant evidence that both drugs and proteins are highly promiscuous. Most proteins bind to many drugs and most drugs bind to multiple proteins (on average more than six), including transporters (mutations in these can determine resistance); most drugs are known to recognise at least one transporter. In this response, we alert readers to the relevant evidence that exists or is required. This needs to be acquired in cells that contain the relevant proteins, and we highlight an experimental system for simultaneous genome-wide assessment of carrier-mediated uptake in a eukaryotic cell (yeast).
Collapse
|
50
|
Nies AT, Schwab M. Organic cation transporter pharmacogenomics and drug-drug interaction. Expert Rev Clin Pharmacol 2012; 3:707-11. [PMID: 22111772 DOI: 10.1586/ecp.10.60] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Anne T Nies
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, D-70376 Stuttgart, Germany and University of Tübingen, Tübingen, Germany
| | | |
Collapse
|